用户名: 密码: 验证码:
Ti表面共固定肝素和纤连蛋白分子:复合生物功能化的实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心血管植入材料面临的最主要的问题是凝血和血栓发生,因此提高这类生物材料的生物相容性是非常重要和有意义的。目前,通过物理或者化学的方法在材料表面固定抗凝和促内皮细胞粘附的生物分子已经被证实能够较好的抑制血栓发生和促进内皮化,但是多数研究都集中在改善血液相容性或者加速内皮化的某一方面,还很少有同时兼顾抗凝和促内皮化表面构建的研究,而且基本未见有同时兼顾多种生物学功能表面构建的报道。
     本文选择具有较好生物相容性的Ti作为改性基础,主要采用两种不同的生物化修饰方法在其表面同时固定具有抗凝和促内皮化的生物分子:肝素和纤连蛋白。首先研究了Ti表面肝素和纤连蛋白的层层自组装(LBL),并对自组装膜的生物相容性进行了评价;其次,在此基础上,发展出了单分子自组装肝素和纤连蛋白的方法,借助APTE硅烷化单层以及静电吸引力的作用,在Ti表面构建肝素/纤连蛋白(Hep/Fn)复合生物膜,并对实验条件进行优化。研究了在不同pH (pH7, pH4)以及在有无EDC催化下的Hep/Fn复合生物膜的稳定性和生物功能性,包括血液相容性、内皮细胞相容性、炎症相容性以及抗平滑肌细胞增生性能。最后对所构建的Hep/Fn复合生物膜的生物学功能的机理进行了探讨。综合采用石英晶体微天平(QCM-D)、水接触角分析、傅立叶变换红外光谱(FTIR)、酶联免疫吸附实验(ELISA)、免疫荧光染色分析、扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)等方法对Hep/Fn复合膜的制备过程、生物学活性、成分和性质分别进行了定性和定量表征;通过血小板粘附和激活实验、凝血时间(APTT、PT)实验、纤维蛋白原吸附和变性检测、内皮细胞培养实验、巨噬细胞和细胞因子检测实验以及平滑肌细胞培养实验,全面评价了所构建的复合膜的生物相容性。并通过体外PBS浸泡法以及流动腔实验对制备的复合膜的稳定性以及血小板粘附和内皮细胞附着力进行了初步评价;最后综合借助酶联免疫吸附法、电化学法和等温滴定量热的方法对相关机理问题进行了初步研究。全文主要结果如下:
     1.肝素和纤连蛋白可以LBL方式组装在Ti表面且具有一定的稳定性和较好的血液相容性。但是Hep/Fn自组装膜的内皮细胞相容性略差,可能是因为多层膜中肝素的释放所致。LBL构建的多层膜中生物分子释放的控制对于其生物学功能的实现是重要的决定条件。
     2.获得了血液相容性和内皮细胞相容性均较好的pH4体系下构建的Hep/Fn复合表面。定量及定性表征显示,尽管肝素和纤连蛋白在不同构建体系(pH7,pH4,EDC/NHS)下样品表面的量无显著差异,但是pH4下肝素结合ATIII的能力最好,纤连蛋白细胞结合位点(RGD)的暴露最多,因此复合物中的生物分子均保持了较好的生物活性,这也是导致后续生物学实验结果差异的主要原因之一。
     3.在pH4条件下形成的Hep/Fn复合膜具有较好的稳定性和生物活性。流动状态的下证实此复合生物膜具有较好的血液相容性,且表面粘附的内皮细胞具有较高的稳定性,这为将来的体内应用提供了重要的参考依据。
     4.培养内皮细胞和巨噬细胞后的Hep/Fn修饰的样品上的细胞因子表达(TNF-a, MCP-1和IL-1B)要比纯Ti上面的低,共固定Hep/Fn复合物可以减少巨噬细胞的粘附量,从而可以明显的提高材料的抗炎症性能;而且,Hep/Fn复合物可以有效的抑制平滑肌细胞的迁移和增殖,从而抑制植入材料上的内膜增生,但是却不会影响内皮细胞的粘附和生长。研究发现,Hep/Fn复合物促进内皮化和抑制平滑肌细胞增生的机制不同,其机制跟肝素结合到纤连蛋白上导致纤连蛋白构象变化有关。
     5.综合利用酶联免疫法、电化学和等温滴定量热法研究了不同pH体系下构建的Hep/Fn表面的肝素和纤连蛋白的生物学活性,并对两种分子的相互作用进行了分析,对样品表面吸附血浆蛋白行为进行了综合分析和比较,同时也研究了肝素和纤连蛋白在溶液中的相互作用过程。获得了对前期不同pH条件下Hep/Fn复合物不同生物学行为较好的解释,对于深入了解不同pH条件下的Hep/Fn表面的不同生物学行为具有十分重要的参考意义和价值。
Coagulation and thrombosis formation are the main problem faced by the cardiovascular implant biomaterials, thereby it is very important and meaningful to improve the biocompatibility of these biomaterials. Currently, it has been proven that the thrombus inhibition and endothelialization can be achieved by immobilizing anti-coagulant and endothelialized biomolecules on biomaterials surface through physical or chemical methods, but most studies have just focused on improving the blood compatibility accelerating endothelialization, few studies take into account both anticoagulant and endothelialization of the surface simultaneously, and almost no report referred to the simultaneous construction of multi-biofunction is found.
     In this paper, Titanium (Ti) with better biocompatibility is chosen as the substrate, and two biomodification methods are mainly used to immobilize the anti-coagulant and endothelialized biomolecules at the same time. Firstly, layer-by-layer (LBL) assembly of heparin and fibronectin on Ti surface was studied, and the biocompatibility of assembled film was evaluated. Secondly, on the basis of LBL of heparin and fibronectin, a method of single molecular self-assembly of heparin and fibronectin was developed. The heparin/fibronectin (Hep/Fn) film was built on Ti surface via APTE silanized monolayer and electrostatic attraction, and then the experimental conditions were optimized. The stability and biofunctionality of Hep/Fn film formed under different pH conditions (pH7, pH4) and with/without EDC/NHS was investigated, including blood compatibility, endothelia cells (EC) compatibility, inflammation compatibility and anti-hyperplasia properties. Finally, the mechanism of Hep/Fn complex and its biofunctionality were probed. Quartz crystal microbalance with dissipation (QCM-D), water contact angle measurement, Fourier transform infrared spectroscopy (FTIR), Enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining analysis, scanning electron microscopy (SEM), atomic force microscopy and X-ray photoelectron spectroscopy (XPS) were used to quantitatively/qualitatively characterize the fabrication process, biological activity, component and morphology, respectively. And the systemic biocompatibility of Hep/Fn film was evaluated by platelet adhesion and activation, clot time (APTT, PT and TT) test, fibrinogen adsorption and denaturation, EC, smooth muscle cell and macrophage culture and cytokines detection. Furtherly, the stability, platelet adhesion and the adhesion force of EC on Hep/Fn film were evaluated via in vitro PBS immersion and flow chamber experiments. Finally, the related primary mechanism was probed by combining ELISA, electrochemistry method and isothermal titration calorimeter (ITC). The following conclusions are obtained according to the results coming from the research mentioned above:
     1. Heparin and fibronectin can be assembled on Ti surface by LBL method, and the assembly film displays a certain stability and good blood compatibility. However, a slightly worse endothelial cell compatibility of Hep/Fn self-assembled film is observed, possibly the release of heparin from the multilayers is the main reason. The control of biomolecules release is an important determinant condition for the realization of biofunction of the LBL assembled film.
     2. The surface with both better blood compatibility and EC compatibility was obtained, i.e. the surface constructed under pH4. The result of quantitative/qualitative characterization showed that though the amount of heparin and fibronectin on different samples (pH7, pH4, EDC/NHS) was not obviously different, the heparin-binding ability of ATIII and the exposure of cell-binding sites (RGD) for the sample of pH4were the best. Therefore, the biomolecues in Hep/Fn complex kept biological activity well, which may be also the reason for the different result of subsequential bioevaluation.
     3. The good stability and biological activity was still maintained after PBS immersion for several for Hep/Fn film formed under pH4condition. The Hep/Fn film was proved to have good blood compatibility undere flow condition, moreover, the attached EC was stable on Hep/Fn film under this condition. This provides important basis for the possible in vivo applications in future.
     4. The results of macrophage and EC culture showed that the expression of cytokine as TNF-α, MCP-1and IL-1βon the films was lower than that on pure Ti. Hep/Fn films could suppress the number of adherent macrophage. The activation of macrophage on the films was more serious than that on pure Ti, however, the reason remained to be explained. From anti-inflammatory experiment, Hep/Fn modified specimen improved the ability of anti-inflammatory obviously; and from the results of SMC culture, Hep/Fn modified specimen could effectively inhibit the immigration and proliferation of SMC, further the hyperplasia of intima on the implant, but it would not influence the adhesion and growth of EC. The mechanism of promoting endothelialization and suppressing hyperplasia of SMC was different, which may be related to the change of conformation of Fn caused by binding of Hep and Fn.
     5. ELISA, electronchemical methods and ITC were utilized to study the biological activity of Hep as well as Fn on the surface of the Hep/Fn composite film under different pH systems and analyze the interaction between these two biomolecules in solution. The results were an explanation to the existence of different biological behaviors of the Hep/Fn films under various pH systems, which have significant meanings for us to better understand bibiomolecular reaction on the surface of Hep/Fn films.
引文
[1]许玉韵.2004年心血管疾病防治回顾并展望200年[J].中国医药导刊,2005;1:1-5.
    [2]胡大一.美国心脏病学学会第54届年会热点荟萃[J].中华心血管病杂志,2005;6:1222-1223.
    [3]于新蕊,汤青.心血管疾病将成为威胁全球健康的炸弹[J].国外医学,社会医学分册,2005;2:96.
    [4]蒋世良,徐仲英,赵世华等.先天性心脏病计入治疗并发症分析[J].中华心血管病杂志,2009;37:976-983.
    [5]乔丽英.镁基生物材料的表面改性和生物相容性研究[D].重庆大学博士论文,2008.
    [6]Reclarua L, Liithy H, Eschler PY, et al.Corrosion behaviour of cobalt-chromium dental alloys doped with precious metals[J].Biomaterials,2005;26:4358-4365.
    [7]Wei LC, Ping JC, Lin C, et al.A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p.titanium Ti-6A1-4V and Ti-13Nb-13Zr alloys [J]. Biomaterials, 2005;26:2899-2907.
    [8]Wang J, Layrolle P, Stigter M, et al.Biomimetic and electrolytic calcium phosphate coatings on titanium alloy:physicochemical characteristics and cell attachment[J]. Biomaterials,2004;25:583-592.
    [9]冯颖芳,康浩方,张震.钛合金医用植入物材料的研究及应用[J].稀有金属,2001;25(5):349-354.
    [10]何宝明,王玉林,戴正宏.生物医用钛及其合金材料的开发应用进展、市场状况及问题分析[J].钛工业进展,2003;20(4-5):82-87
    [11]Hong J, Andersson J, Ekdahl N,et al.Titanium is a highly thrombogenic biomaterial: possible implications for osteogenesis[J]. Thromb Haemost,1999; 82:58-64.
    [12]张辉,钟博,邓玉福。生命单元表面行为的物理表征[M].科学出版社,2006.
    [13]Alanazi A, Nojiri C, Kido T, et al. Engineering analysis of diamond-like carbon coated polymeric materials for biomedical applications [J]. Artificial Organs,2000;24(8):624-627.
    [14]Li DJ, Gu HQ. Cell attachment on diamond-like carbon coating[J]. Bullet of Mater Sci, 2002; 25(1):7-13.
    [15]McKenna CJ, Camrud AR, Sangiorgi G, et al. Fibrin-film stenting in a porcine coronary injury model:efficacy and safety compared with uncoated stents[J]. J Am Coll Cardio.1998; 31(6):1434-1438
    [16]Haase J, Storger H, Hofmann M, et al. Comparison of stainless steel stents coated with turbostratic carbon and uncoated stents for percutaneous coronary interventions [J]. J Invas Cardio.2003; 15(10):562-565.
    [17]Amon M, Bolz A, Schaldach M. Improvement of stenting therapy with a silicon carbon coated tantalum stent[J]. J Mater Sci:Mater in Med.1996; 7:273-278.
    [18]Huang N, Yang P, Leng YX, et al. Hemocompatibility of titanium oxide films[J]. Biomaterials,2003; 24:2177-2187.
    [19]Peppas NA, Lnager R. New challenges in biomaterials[J]. Science, 1994;263:1715-1720.
    [20]Klee D, Hoecker H. Polymers for biomedical application:improvement of the interface compatibility[J]. Adv Polym Sci,1999;149:1-8.
    [21]罗祥林,段友容,凌鸿.聚醚氨酯共价键合肝素的研究[J].生物医学工程学杂志,2000;17(1):16-18.
    [22]Eloy R, Belleville J, Rissoan MC, et al. Heparinization of medical grade polyurethanes[J]. J Biomater Applicat,1988; 2(4):475-519.
    [23]Tan QG, Ji J, Barbosa MA, et al. Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant[J]. Biomaterials, 2003;24(25):4699-4705.
    [24]Chung TW, Yang MG, Liu DZ, et al. Enhancing growth human endothelial cells on Arg-Gly-Asp (RGD) embedded poly (-caprolactone) (PCL) surface with nanometer scale of surface disturbance[J]. J Biomedl Mater Res A,2005,72A(2):213-219.
    [25]Weatherford DA, Sackman JE, Reddick TT, et al. Vascular endothelial growth factor and heparin in a biologic glue promotes human aortic endothelial cell proliferation with aortic smooth muscle cell inhibition[J]. Surgery,1996; 120(2):433-439.
    [26]Miller KM, Huskey RA, Bigby LF, et al. Characterization of biomedical polymer-adherent macrophages:interleukin 1 generation and scanning electron microscopy studies[J]. Biomaterials,1989; 10:187-195.
    [27]Miller KM, Rose-Capara V, Anderson JM. Generation of IL1-like activity in response to biomedical polymer implants:A comparison of in vitro and in vivo models[J]. J Biomed Mater Res,1989;23:1007-1026.
    [28]Soderquist ME, Walton AG. Structural changes in proteins adsorbed on polymer surfaces[J]. J Coll Inter Sci,1980;79:386-397.
    [29]Bakker WW, van der Lei B, Nieuwenhuis P, et al. Reduced thrombogenicity of artificial materials by coating with ADPase[J]. Biomaterials,1991;12:603-606.
    [30]Swiegers G, Malefetse T. Synthesis beyond the molecule[J]. Chem Rev,2000; 100: 3483-3573.
    [31]Wendoloski JJ, Gardner KH, Hirschinger J. et al.Molecular dynamics in ordered structures:computer simulation and experimental results for nylon 66 crystals[J]. Science 1990;247:431-436.
    [32]Decher G. Fuzzy nanoassemblies-toward layered polymeric multicomposites[J]. Science,1997,277:1232-1237.
    [33]林全愧,计剑,谭庆网,任科峰,沈家骢.层层自组装技术在生物医用材料领域中的应用研究进展[J].高分子通报,2006,5:58-63.
    [34]Chung AJ, Rubner M F. Methods of loading and releasing low molecular weight cationic molecules in weak polyelectrolyte multilayer films[J]. Langmuir,2002;18: 1176-1183.
    [35]Qiu X, Leporatti S, Mohwald H. Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles[J].Langmuir,2001;17: 5375-5380.
    [36]Pei RJ, Cui X. Yang X R, et al. Assembly of alternating polycation and DNA multilayer films by electrostatic layer-by-layer adsorption[J]. Biomacromolecules,2001;2: 463-468.
    [37]Lvov YM, Sukhrukov GB. Protein architecture:Assembly of ordered films by means of alternated adsorption of oppositely charged macromolecules[J]. Membr Cell Biol,1997;11(3):277-303.
    [38]Chluba J, Voegel JC, Decher G, et al. Peptide hormone covalently bound to polyelectrolytes and embedded into multilayer architectures conserving full biological activity[J].Biomacromolecules,2001;2(3):800-805.
    [39]Sehotte M, Kurth DG, Mhwald H, et al. Metallosupramoleeular thin polyeleetrelyte films[J]. Angew Chem Int Ed,1998;37(20):2891-2893.
    [40]Shimazaki Y, Mitsaishi M, Yamamoto M, et al. Preparation of the layer-by-layer deposited ultrathin film based on the charge-transfor interaction. Langmuir,1997;13(6): 1385-1387.
    [41]AnmiJ, Kobayashi Y, Heshi T,et al. Layer-by-layer construction of multilayer thin films composed of avidin and biotin—labeled poly(amine)s. Langmuir,1999; 15(1): 221-226.
    [42]Wu JM, Hayakawa S, Tsuru K, et al. Crystallization of anatase from amorphous titania in hot water and in vitro biomineralization[J].J Ceram Soc Jpn,2002;110(6):78-1283.
    [43]Yoshioka T, Tsuru K, Hayakawa S, et al. Preparation of alginic acid layers on stainless-steel substrates biomedical applications[J]. Biomaterials,2003;24:2889-2894.
    [44]Steffen HJ, Schmidt J, Gonzalez-Elipe A. Biocompatible surfaces by immobilization of heparin on diamond-like carbon films deposited on various substrates[J]. Surf Interface Anal,2000; 29:386-391.
    [45]刘敬肖,杨大智,蔡英骥.Ti02与Ti02-SiO2薄膜的表面性质及生物活性研究[J].硅酸盐学报,2001;29(4):350-354.
    [46]Kim JH, Kim SC. PEO-grafting on PU/PS IPNs for enhanced blood compatibility-effect of pendant length and grafting density[J]. Biomaterials,2002; 23:2015-2025.
    [47]Love JC, Estroff LA, Kriebel JK, et al. Selfassembled monolayers of thiolates on metals as a form of nanotechnology[J]. Chem. Rev,2005; 105 (4):1103-1169.
    [48]Nanci A, Wuest JD, Peru L, et al. Chemical modification of titanium surfaces for covalent attachment of biological molecules[J]. J Biomed Mater Res,1998;40:324-335.
    [49]Morra M, Cassinelli C, Carpi A, et al. Effects of molecular weight and surface functionalization on surface composition and cell adhesion to Hyaluronan coated titanium[J], Biomed Pharmaeother,2006;60(8):365-369.
    [50]Falconnet D, Csucs G, Grandin MH, et al. Surface engineering approachesto micropattern surfaces for cellbased assays[J]. Biomaterials,2006;27(16):3044-3063.
    [51]Finke B, Luethen F, Sehroeder K, et al. The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces[J]. Biomaterials,2007;28(30):4521-4534.
    [52]Shin H, Jo S, Mikos AG. Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modified with Arg-Gly-Asp peptides and a poly(ethylene glycol) spacer[J]. J Biomed Mater Res,2002;61:169-179.
    [53]白薇,陈治清,张敏等.氨基注入钛表面及其微观分析[J].华西口腔医学杂志,2003;21(1):22-24.
    [54]吴志宏.胶原分子修饰羟基磷灰石及钛表面研究[D].四川大学硕士论文,2005.
    [55]Yin YB, Wise SG, Nosworthy NJ, et al. Covalent immobilisation of tropoelastin on a plasma deposited interface for enhancement of endothelialisation on metal surfaces[J]. Biomaterials,2009; 30:1675-1681.
    [56]Fax L, Ekblad T, Liedberg B, et al. Blood compatibility of photografted hydrogel coatings[J]. Biomaterialia,2010;6:2599-2608.
    [57]Kim H, Urban MW. Molecular level surface degradation mechanisms resulting from UVradiation; Part Ⅰ; epoxy spectroscopic studies[J]. Langmuir,1998; 14:7325-7244.
    [58]Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science,2007,318:426-430.
    [59]葛胜男.钛氧薄膜材料表面层粘连蛋白修饰以及内皮化研究[D].西南交通大学 硕士学位论文,2007.
    [60]Hersel U, Dahmen C, Kessler H. RGD modified polymers:biomaterials for stimulated celladhesion and beyond. Biomaterials,2003;24:4385-4415.
    [61]Kiaei D, Safranj A, Chen JP, et al. Immobilization of proteins on glow Dishcarge treated polymers[J]. Radiat Phys Chem,1992; 39:463-467.
    [62]Riesenfeld J, Olsson P, Sanchez J, et al. Surface modification with functionally active heparin[J]. Med Device Technol,1995;6(2):24-31.
    [63]Ovrum E, Tangen G, Tollofsrud S, et al. Heparin-coated circuits and reduced systemic anticoagulation applied to 2500 consecutive first-time coronary artery bypass grafting procedures[J]. Ann Thorac Surg,2003;76(4):1144-1148.
    [64]Rubens FD. Cardiopulmonary bypass technology transfer:musings of a cardiac surgeon[J]. J Biomater Sci Polym Ed,2002;13(4):485-499.
    [65]Yoshioka T, Tsuru K, Hayakawa S,et al. Preparation of alginic acid layers on stainless-steel substrates biomedical applications [J]. Biomaterials,2003;24:2889-2894.
    [66]Kishida A, Ueno Y, Fukudomef N,et al. Immobilization of human thrombomodulin onto poly(ether urethane urea) for developing antithrombogenic blood-contacting materials[J]. Biomaterials,1994; 15(10):848-852.
    [67]Bakker WW, van der Lei B, Nieuwenhuis P, et al. Reduced thrombogenicity of artificial materials by coating with ADPase[J]. Biomaterials,1991;12:603-606.
    [68]Marconi W, Bartoli F, Mantovani E, et al.Development of new antithrombogenic surfaces by employing platelet antiaggregating agents:preparation and characterization[J]. Trans Am Soc Artiflntern Organs,1979;25:280-286.
    [69]Nilsson PH, Engberg AE, Back J, et al.The creation of an antithrombotic surface by apyrase immobilization[J]. Biomaterials,2010; 31:4484-4491.
    [70]孟舒献温晓娜冯亚青等.肝素化聚氨酯表面修饰材料的研究[J].生物医学工程学杂志,2004;21(4):597-601.
    [71]计剑,封麟先,沈家骢.白蛋白原位复合的生物医用功能材料的研究(Ⅱ)-白蛋白的选择性吸附和血液相容性研究[J].高等学校化学学报,2002;23(12):2639-2734.
    [72]Maale N, Albrecht R, Loscalzo J, et al. The potent platelet inhibitory effects of S-Nitrosated albumin coating of artificial surfaces[J].J Am Coll Cardio, 1999;33(5):1408-1414.
    [73]Martins MC, Wang D, Ji J, et al. Albumin and fibrinogen adsorption on PU-PHEMA surfaces[J]. Biomaterials,2003; 24 (12):2067-2076.
    [74]Brynda E, Houska M, Jirouskova M, et al. Albumin and heparin multilayer coatings for blood-contacting medical devices [J]. J Biomed Mater Res,2000;51(2):249-257.
    [75]黄楠.表面改性在介入器械上的应用[J].中国介入影像与治疗学,2004;1(2):87-91.
    [76]Paderi JE, Stuart K, Sturek M, et al. The inhibition of platelet adhesion and activation on collagen during balloon angioplasty by collagen-binding peptidoglycans[J]. Biomaterials, 2011;32:1-8.
    [77]Nagai N, Kubota R, Okahashi R, et al.Blood compatibility evaluation of elastic gelatin gel from salmon collagen[J]. J Biosci Bioeng.2008,106(4):412-415.
    [78]Mum MS, Quattrone AJ. Dialysis of poisons and drugs-update[J]. Trans Am Soc Artif Intern Organs,1981;27:499-506.
    [79]Ji J, Tan QG, Fan DZ, et al. Fabrication of alternating polycation and albumin multilayer coating onto stainless steel by electrostatic layer-by-layer adsorption[J]. Colloids SurfB,Biointerface,2004;34:185-193.
    [80]Tan Q G, Ji J, Barbosa M A, et al. Constructing thremboresistan sun Cace oil/ biomedical stainless steel via layer-by-layer deposition anticoagulant [J]. Biomaterials, 2003;24(25):4699-4705.
    [81]Brynda E, Houska M, et al. Albumin and heparin multilayer coatings for blood-contacting medical devices[J].J Biomed Mater Res,2000;51:249-257.
    [82]Serizawa T, Yamaguchi M, Akashi M. Alternating bioactivity of polymeric layer-by-layer assemblies:anticoagulation vs procoagulation of human blood[J]. Biomacromolecules,2002;3:723-731.
    [83]Thierry B, Winnik FM, Tabrizian M, et al. Bioactive coatings of endovascular gents based on polyelectrolyte multilayers[J].Biomacromolecules,2003;4:1564-1570.
    [84]Thierry B, Winnik FM, Tabfizian M, et al. Delivery platform for hydrophobic drugs: prodrug approach combined with self-assembled multilayers[J].J Am Chem Soc,2005;127 (6):1626-1627.
    [85]Meng S, Liu ZJ, Shen L, et al.The effect of a layer-by-layer chitosan-heparin coating on the endothelialization and coagulation properties of a coronary stent system[J]. Biomaterials,2009;30:2276-2283.
    [86]Chen JL, Li QL, Chen JY, et al. Improving blood-compatiblity of titanium by coating collagen-heparin multilayers [J]. Applied Surface Science,2009;25:6894-6900.
    [87]Wang XH, Li DP, Wang WJ, et al.Covalent immobilization of chitosan and heparin on PLGA surface[J]. International Journal of Biological Macromolecules,2003;33:95-100.
    [88]Zhu AP, Zhang M, Wu J, et al.Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface[J]. Biomaterials,2002;23:4657-4665.
    [89]Bos GW, Scharenborg NM, Poot AA, et al. Blood compatibility of surfaces with immobilized albumin-heparin conjugate and effect of endothelial cell seeding on platelet adhesion[J]. J Biomed Mater Res,1999;47:279-291.
    [90]Chen H, Teramura Y, Iwata H. Co-immobilization of urokinase and thrombomodulin on islet surfaces by poly(ethylene glycol)-conjugated phospholipid[J]. J Control Rel,2011;150(2):229-234.
    [91]蔡开勇,林松柏,姚康德.组织工程相关生物材料表面工程的研究进展[J].化学进展,2001;13:56-60.
    [92]Chen YM, Tanaka M, Gong JP,et al. Platelet adhesion to human umbilical vein endothelial cells cultured onanionic hydrogel scaffolds[J]. Biomaterials,2007;28: 1752-1760.
    [93]Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering[J]. Biomaterials, 2003;24:4353-4364.
    [94]Yang J, Bei JZ, Wang SG. Enhanced cell affinity of poly(D,L-lactide) by combining plasma treatment with collagen anchorage[J]. Biomaterials,2002; 32:2607-2614.
    [95]Lin YS, Wang SS, Chung TW, et al. Growth of endothelial cells on different concentrations of Gly Arg-Gly Asp photochemically grafted in polyethylene glycol modified polyurethane[J]. Artif Organs,2001;25:617-621.
    [96]Hasenbein ME, Andersen TI, Biozios R. Micropatterned surfaces modified with select peptides promote exculsive interactions with osteoblasts[J]. Biomaterials, 2002;23:3937-3942.
    [97]Lateef SS, Boateng S, Hartman TJ, et al. GRGDSP peptide-bound silicone membranes withstand mechanical flexing in vitro and display enhanced fibroblast adhesion[J]. Biomaterials,2002;23:3159-3168.
    [98]Mann BK, Tsai AT, Scottburden T, et al. Modification of surface swith cell adhesion peptides alters extraeellular matrix deposition[J]. Biomaterials,1999;20:2281-2286.
    [99]Lehn JM. Supramolecular chemistry concepts and perspectives[M]. Weinheim:VCH Publishers.1995.
    [100]Picart C, Mutterer J, Richert L, et al. Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers[J]. Proc Natl Acad Sci,2002;99(20): 12531-12535.
    [101]Zhu HG, Ji J, Shen JC. Biomacromolecules electrostatic self-assembly on 3-dimensional tissue engineering scaffold. Biomacromolecules,2003;4:378-387.
    [102]Mendelsoh JD, Yang SY, Rubner MF, et al. Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films[J]. Biomacromolecules,2003;4:96-106.
    [103]侯悦,林全愧,计剑等.交联结构对肝素/壳聚糖层层组装多层膜内皮细胞相容性的影响.高等学校化学学报,2008;9:1890-1894.
    [104]Hubbell JA, Massia AP.Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor[J]. Biotechnology,1991;9:568-572.
    [105]Chiu LLY, Radisic M. Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues[J].Biomaterials,2010;31:226-241.
    [106]Rezania A, Healy KE. Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells[J]. Biotechnol Prog,1999;15:19-32.
    [107]Karakecili AG, Demirtas TT, Satriano C, et al. Evaluation of L929 fibroblast attachment and proliferation on Arg-Gly-Asp-Ser(RGDS)-immobilized chitosan in serum-containing/serum-free cultrues[J]. J Biosci Bioeng,2007;1:69-77.
    [108]任慧兰,杨苹,鲁雄等.生物材料表面微图形化及其研究进展[J].功能材料,2007;增刊38:1822-1825.
    [109]白海静,徐静娟,陈洪渊,细胞图案化研究进展[J].高等学校化学学报,2008;12:2618-2626.
    [110]Chou L, Firth JD, Uitto VJ, et al. Effects of titanium substratum and grooved surface topography on metalloproteinase-2 expression in human fibroblasts[J]. J Biomed Mater Res, 1998; 39:437-445.
    [111]Ma H, Zhang Z, Beebe TP, et al. Fabrication of biofunctionalized microstructures of a nonfouling comb polymer by soft lithography[J]. Adv Funct Mater,2005; 15:529-540.
    [112]Mrksich M, Dike LE, Tien J, et al.Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver[J]. Exp Cell Res,1997; 235:305-313.
    [113]Yang ZP, Chilkoti A. Microstamping of a biological ligand onto an activated polymer surface. Adv Mater,2000; 6:413-417.
    [114]Jiang XP, Zheng HP, Gourdin S,et al. Polymer-on-polymer stamping:universal approaches to chemically patterned surfaces. Langmuir,2002; 18:2607-2615.
    [115]Kao WJ, Lee DM.In vivo modulation of host response and macrophage behavior by polymer networks grafted with fibronectin-derived biomimeticoligopeptides:the role of RGD and PHSRN domain[J].Biomaterials,2001;22:2901-2910.
    [116]Meinel L, Hofmann S, Karageorgiou V.The inflammatory responses to silk films in vitro and in vivo[J]. Biomaterials,2004;2:47-53.
    [117]Wang LC, Brown JR, Varki A,et al. Heparin's anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L-and P-selectins[J]. J Clin Invest 2002;110:127-136.
    [118]Kim SE, Song SH, Yun YP, et al. The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function. Biomaterials,2011;32(2):366-373.
    [119]Horwitz JA, Shum KM, Bodle JC, et al.Biological performance of biodegradable amino acid-based poly(ester amide)s:Endothelial cell adhesion and inflammation in vitro. J Biomed Mater Res,2010; 95(2):371-380.
    [120]Defife KM, Grako K, Cruz-Aranda G, et al. Poly(ester amide) co-polymers promote blood and tissue compatibility[J]. J Biomater Sci Polym Ed,2009; 20:1495-1511.
    [121]Nilsson B, Ekdahl KN, Mollnes TE, et al. The role of complement in biomaterial-induced inflammation[J]. Mol Immunol,2007;44(1-3):82-94.
    [122]Engberg AE, Sandholm K, Bexborn F, et al. Inhibition of complement activation on a model biomaterial surface by streptococcal M protein-derived peptides[J]. Biomaterials, 2009;30:2653-2659.
    [123]Andersson J, Larsson R, Richter R, et al. Binding of a model regulator of complement activation (RCA) to a biomaterial surface:surface-bound factor H inhibits complement activation[J]. Biomaterials,2001;22(17):2435-2443.
    [124]Coombes AGA, Breeze V, Lin W. Lactic acid-stabilized albumin for microsphere formulation and biomedical coatigs[J].Biomaterials; 2001,22:1-8.
    [125]Chuang TW, Masters KS. Regulation of polyurethane hemocompatibility and endothelialization by tethered hyaluronic acid oligosaccharides[J]. Biomaterials,2009;30: 5341-5351.
    [126]陈俊英.Ti基生物材料表面促内皮/抗凝双功能修饰层的构建与化学生物学评价[J].前沿动态,2009;1:12-16.
    [127]Wang Y, Xu W, Chen Y. Surface modification on polyurethanes by using bioactive carboxymethylated fungal glucan from Poria cocos[J]. Colloids Surf B:Biointerfaces,2010; 81(2):629-633.
    [128]Wang XY, Zhang XH, Castellot J,et al.Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses[J]. Biomaterials,2008;29:894-903.
    [129]Decher G, Hong JD. Buildup of ultrathin multilayer films by a self-assembly process. 1. consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces [J]. Makromol Chem Macromol Symp,1991; 46:321-327.
    [130]Decher G, Hong JD, Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process:Ⅲ. consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces[J]. Thin Solid Films,1992; 831-835.
    [131]Vazquez E, Dewitt DM, Hmamond PT, et al. Construction of hydrolytically-degradable thin films via layer-by-layer deposition of degradable polyelectrolytes[J]. J Am Chem Soc,2002;124 (47):13992-13998.
    [132]Cai K, Rechtenbach A, Hao J, et al. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique:characterization and cell behaviour aspects[J].Biomaterials,2005; 26:5960-5971.
    [133]Ai H, Meng H, Ichinose I, et al. Biocompatibility of layer-by-layer self-assembled nanofilm on silicone rubber for neurons[J]. J Neurosci Method,2003; 128:1-8.
    [134]He W, Bellamkond RV. Nanoscale neuro-integrative coatings for neural implants[J].Biomaterials,2005;26:2983-2990.
    [135]Trau D, Renneberg R. Encapsulation of glucose oxidase microparticles within a nanoscale layer-by-layer film:Immobilization and biosensor applications [J]. Biosensors Bioelectron,2003;18:1491-1499.
    [136]Duran A, Conde A, Coedo AG, et al. Sol-gel coatings for protection and bioactivation of metals used in orthopaedic devices[J]. J Mater Chem,2004;14:2282-2290.
    [137]Vercik LCO, Alencar AC, Ramires I, et al. Dental implants:surface modification of cp-Ti using plasma spraying and the deposition of hydroxyapatite[J]. Mater Sci Forum, 2003;416:669-674.
    [138]Rigberg D, Tulloch A, Chun Y, et al. Thin-film nitinol (NiTi):a feasibility study for a novel aortic stent graft material[J]. J Vasc Surg 2009;50:375-380.
    [139]Bentley KL, Klebe R, Hurst RE, et al. Heparin binding is necessary, but not sufficient, for fibronectin aggregation[J]. J Bio Chem,1985;260(12):7250-7256.
    [140]Suri CR, Mishra GC. Activating piezoelectric crystal surface by silanization for microgravimetric immunobiosensor application[J]. Biosen Bioelectron,1996; (12): 1199-1205.
    [141]Yang MC, Lin WC. The grafting of chitosan oligomer to polysulfone membrane via ozone-treatment and its effect on anti-bacterial activity[J]. J Poly Res,2002; 9:135-140.
    [142]Sauerbrey G.Z. Use a quartz vibrator from weight thin films on a microbalance[J]. Z. Physik.1959; 155:206-210.
    [143]Li G, Shi X, Yang P, et al. Investigation of fibrinogen adsorption on solid surface by quartz crystal microbalance with dissipation(QCM-D) and ELISA[J]. Solid State Ion, 2008;179:932-935.
    [144]Kang IK, Kwon OH, Lee YM, et al. Preparation and surface characterization of functional group-grafted and heparin-immobilized polyurethanes by plasma glow discharge[J]. Biomaterials,1996; 17:841-847.
    [145]Hamerli P, Weigel Th, Groth Th,et al. Surface properties of and cell adhesion onto allylamine-plasma coated polyethylenterephtalat membranes[J]. Biomaterials,2003; 24: 3989-3999.
    [146]Byun Y, Jacobs HA, Feijen J,et al.Effect of fibronectin on the binding of antithrombin III to immobilized heparin[J]. J Biomed Mater Res,1996; 30:95-100.
    [147]Tanabe J, Fujita H, Iwamatsu A, et al. Fibronectin inhibits platele aggregation independently of RGD sequence. J Bio Chem [J].1993; 268(36):27143-27147.
    [148]Wissink MJB, Beernink R, Pieper JS, et al. Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro evaluation[J]. Biomaterials, 2001;22:151-163.
    [149]Jung YC, Bhushan B. Contact angle, Adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity[J]. Nanotechnology,2006; 17:4970-4980.
    [150]Xu LP, Pan F, Yu GN, et al. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy[J]. Biomaterials,2009;30:1512-1523.
    [151]Middleton CA, Pendegrass CJ, Gordon D,et al.Fibronectin silanized titanium alloy:A bioinductive and durable coating to enhance fibroblast attachment in vitro[J]. J. Biomed. Mater. Res,2007;83A:1032-1038.
    [152]Capila I, Linhardt RJ. Heparin-protein interactions[J]. Angew Chem Int Ed Engl, 2002;41:391-412.
    [153]Wissink MJB, Beernink R, Scharenborg NM,ET AL.Endothelial cell seeding of (heparinized) collagen matrices:effects of bFGF pre-loading on proliferation (after low density seeding) and pro-coagulant factors[J]. J Control Release,2000; 67:141-155.
    [154]Turk H, Haag R, Alban S. Dendritic polyglycerol sulfates as new heparin analogues and potent inhibitors of the complement system[J]. Bioconjug Chem,2004; 15:162-167.
    [155]Tsai WB, Grunkemeier JM, Horbett TA. Variations in the ability of adsorbed fibrinogen to mediate platelet adhesion to polystyrenebased materials:a multivariate statistical analysis of antibody binding to the platelet binding sites of fibrinogen[J]. J Biomed Mater Res A,2003;67:1255-1268.
    [156]Cao L, Chang M, Lee CY, et al. Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition[J]. J Biomed Mater Res,2007; 81 A:827-837.
    [157]Baumgartner HR.The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi[J]. Microvascular Research,1973; 5:167-179.
    [158]Shibuichi S, Onda T, Satoh N, et al. Super water-and oil-repellent surfaces resulting from fractal structure[J]. J Phys Chem,1996;100:19512-19517.
    [159]Alferiev IS, Connolly JM, Stachelek SJ, et al. Surface heparinization of polyurethane via bromoalkylation of hard segment nitrogens[J]. Biomacromolecules,2006;7:317-322.
    [160]Michanetzis GP, Katsala N, Missirlis YF. Comparison of haemocompatibility improvement of four polymeric biomaterials by two heparinization techniques[J]. Biomaterials,2003;4:677-688.
    [161]Vana EL, Grondahl L, Chuad KN,et al. Controlled release of heparin from poly(e-caprolactone)electrospun fibers[J]. Biomaterials,2006; 27:2042-2050.
    [162]Clowes AW, Clowes MM. Kinetics of cellular proliferation afterarterial injury 2. Inhibition of smooth-muscle growth by heparin[J]. Lab Invest,1985;52:611-616。
    [163]Jordan RE, Oosta GM. The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin[J]. J Biol Chem,1980;255 (21): 10081-10090.
    [164]Griffith MJ. Kinetics of the heparin-enhanced antithrombin Ⅲ/thrombin reaction. Evidence for a template model for the mechanism of action of heparin. J Biol Chem,1982; 257 (13):7360-7365.
    [165]Kloczewiak M, Timmons S, Lukas TJ, et al. Platelet receptor recognition site on human-fibrinogen-synthesis and structurefunction relationship of peptides corresponding to the carboxyterminal segment of the gamma-chain[J]. Biochem J,1984;23:1767-1774.
    [166]武忠,万昌秀,赵强.结合RGD肽的聚酯材料表面粘附内皮细胞的抗剪切力研究[J].北京生物医学工程,2004;23:37-39.
    [167]Charara J, AurengoA, Lelievre JC, et al. Quantitative characterization of blood rheologieal behavior in transient flow with a model including a structure parameter[J]. Biorheology,1991; 22:509-521.
    [168]Sirois E, Charara J, Ruel J, et al. Endothelial cells exposed to erythrocytes under shear sIxess:an in vitro study[J]. Biomaterials,1998,19:1925-1934.
    [169]Weber N, Wendel HP, Ziemer G. Hemocompatibility of heparin-coated surfaces and the role of selective plasma protein adsorption[J]. Biomaterials,2002;23:429-439.
    [170]Gong FR, Cheng XY, Wang SF, et al. Heparin-immobilized polymers as non-inflammatory and non-thrombogenic coating materials for arsenic trioxide eluting stents[J]. Acta Biomaterialia,2010;6:534-546.
    [171]Muller R, Abke J, Schnell E, et al. Surface engineering of stainless steel materials by covalent collagen immobilization to improve implant biocompatibility[J]. Biomaterials, 2005;26:6962-6972.
    [172]Vondele S, Voros J, Hubbell JA. RGD-grafted poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion[J]. Biotechnol Bioeng,2003;82:784-790
    [173]Bertrand P, Jonas, A, Laschewsky A,et al. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces:suitable materials, structure and properties[J]. Macromol Rapid Commun,2000;21:319-348.
    [174]Decher D, Schlenoff JB. Multilayer thin films-sequential assembly of nanocomposite materials. Wiley-VCH, Weinheim,2003.
    [175]Guarnieri D, De Capua A, Ventre M, et al. Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters[J]. Acta Biomaterialia, 2010;6:2532-2539.
    [176]Rowland SM, Stanley KD. Cordis Corporation, assignee, "Biocompatible metal surfaces". US Patent No.5356433,1994
    [177]Puelo DA. Activity of enzyme immobilized on silanized Co-Cr-Mo[J]. J Biomed Mater Res,1995;29:951-957.
    [178]Bunker BC, Rieke PC, Tarasevich BJ, et al. Ceramic thin-film formation on functionalized interfaces through biomimeticprocessing[J]. Science,1994;264:48-55。
    [179]Campbell AA, Fryxell GE, Linehan JC, et al. Surface-induced mineralization:A new method for producing calcium phosphate coatings[J]. J Biomed Mater Res,1996;32: 111-118.
    [180]Mrksich M, Whitesides GM. Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells[J]. Annu Rev Biophys Biomol Struct,1996;25,55-78.
    [181]Mrksich M. Using self-assembled monolayers to model the extracellular matrix[J]. Acta Biomaterialia,2009;5:832-841.
    [182]Dinarvand R, Mahmoodi S, Farboud E, et al. Preparation of gelatin microspheres containing lactic acid-effect of crosslinking on drug release[J]. Acta Pharmaceutica, 2005;55:57-67.
    [183]Luong-Van E, Groudahl T, Chua KN, et al. Controlled release of heparin from poly(e-caprolactone).electrospun fibers[J]. Biomaterials,2006;27:2042-2050.
    [184]Renner L, Pompe T, Sal chert K, et al. Dynamic alterations of fibronectin layers on copolymer substrates with graded physicochemical characteristics[J]. Langmuir,2004; 20: 2928-2933.
    [185]Renner L, Jorgensen B, Markowski M, et al. Control of fibronectin displacement on polymer substrates to influence endothelial cell behaviour[J]. J Mater Sci Mater Med,2004; 15:387-390.
    [186]Bos GW, Scharenborg NM, Poot AA, et al. Proliferation of endothelial cells on immobilized albumin-heparin conjugate loaded with basic fibroblast growth factor[J]. J Biomed Mater Res,1999; 44:330-340.
    [187]Nojiri C, Noishiki Y, Koyanagi H. Aorta-coronary bypass grafting with heparinised vascular grafts in dogs[J]. J Thorac Cardiovasc Surg,1987;93:867-877.
    [188]Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance[J]. Biomaterials,2006;27:2331-2339.
    [189]Basta G, Sarchielli P, Luca G, et al. Optimized parameters for microencapsulation of pancreatic islet cells:an in vitro study clueing on islet graft immunoprotection in type 1 diabetes mellitus[J]. Transpl Immunol,2004;13:289-292.
    [190]Meinel L, Hofmann S, Karageorgiou V, et al. The inflammatory responses to silk films in vitro and in vivo[J]. Biomaterials,2005;26:147-155.
    [191]Anderson JM. Mechanisms of inflammation and infection with implanted devices[J]. Cardiovasc Pathol,1993,2:33S-41S.
    [192]Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer[J]. Cell, 2010;140:883-899.
    [193]Lin CW, Chen LJ, Lee PL, et al. The inhibition of TNF-alpha-induced E-selectin expression in endothelial cells via the JNK/NF-kappaB pathways by highly N-acetylated chitooligosaccharides[J]. Biomaterials,2007;28:1355-1366.
    [194]Luster AD. Chemokines—chemotactic cytokines that mediate inflammation [J]. N Eng J Med,1998;338:436-445.
    [195]Gorzelanny C, Poppelmann B, Pappelbaum K, et al. Human macrophage activation triggered by chitotriosidase-mediated chitin and chitosan degradation[J]. Biomaterials, 2010;33:8556-8563.
    [196]Bailey LO, Lippiatt S, Biancanello FS,et al. The quantification of cellular viability and inflammatory response to stainless steel alloys[J]. Biomaterials,2005;26:5296-5302.
    [197]Tuleuova N, Ramankulov E, Revzin A. Micropatterning aptamer beacons on cell culture surfaces for detection of cytokine release[J]. Cytokine,2010;52:82-98.
    [198]Rudra JS, Tripathi PK, Hildeman DA, et al. Immune responses to coiled coil supramolecular biomaterials[J]. Biomaterials,2010;32:8475-8483.
    [199]Schutte RJ, Amon AP, Rei chert WM. Cytokine profiling using monocytes/macrophages cultured on common biomaterials with a range of surface chemistries[J]. J Biomed Mater Res A,2009;88:128-139.
    [200]Schutte RJ, Xie L, Klitzman B, et al. In vivo cytokine-associated responses to biomaterials[J]. Biomaterials,2009;30:160-168.
    [201]Refai AK, Textor M, Brunette DM, et al. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines[J]. J Biomed Mater Res A,2004;70:194-205.
    [202]Richert L, Lavalle P, Payan E, et al. Layer by layer buildup of polysaccharide films: physical chemistry and cellular adhesion aspects[J]. Langmuir,2004;20:448-458.
    [203]Chua PH, Neoh KG, Kang ET, et al. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion[J]. Biomaterials,2008;29:1412-1421.
    [204]Cardona MA, Simmonsm RL, Kaplan SS. TNF and IL-1 generation by human monocytes in response to biomaterials[J]. J Biomed Mater Res,1992; 26:851-859.
    [205]Ding TT, Sun J, Zhang P. Immune evaluation of biomaterials in TNF-a and IL-1β at mRNA level[J]. J Mater Sci:Mater Med,2007;18:2233-2236.
    [206]McKellar GE, McCarey DW, Sattar N, et al. Role for TNF in atherosclerosis? Lessons from autoimmune disease[J]. Nat Rev Cardiol,2009;6:410-417.
    [207]Kohchi C, Toh-e A. Nucleotide sequence of Candida pelliculosaβ-glucosidase gene[J]. Nucleic Acids Research,1985;13:6273-6282.
    [208]Rae T. A study on the effects of particulate metals of orthopaedic interest on murine macrophages in vitro[J]. J Bone Joint Sur Br,1975; 57:444-450.
    [209]Ramstedt S, Palmquist A, Johansson A, et al. Inflammatory response to injectable biomaterials for stabilisation of vertebral compression fractures[J]. Trends Biomater Artif Organs,2010;24:1-10.
    [210]Mukaida N, Harada A, Matsushima K. Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions[J]. Cytokine Growth Factor Rev,1998;9:9-23.
    [211]Ding TT, Sun J, Zhang P. Study on MCP-1 related to inflammation induced by biomaterials[J]. Biomed Mater,2009;4:35-39.
    [212]Ding TT, Sun J, Zhang P. MCP-1 expression associated with inflammation and biomaterials[J]. Adv Mater Res,2008;47:1423-1426.
    [213]Delaleu N, Bickel M. Interleukin-1 beta and interleukin-18:regulation and activity in local inflammation[J]. Periodontol,2004;35:42-52.
    [214]Santos TC, Marques AP, Horing B, et al. In vivo short-term and long-term host reaction to starch-based scaffolds[J]. Acta Biomaterialia,2010;11:4314-4326.
    [215]Wooley PH, Morren R, Andary J, et al. Inflammatory responses to orthopaedic biomaterials in the murine air pouch[J]. Biomaterials,2002;23:517-526.
    [216]Luthen F, Lange R, Becker P, et al. The influence of surface roughness of titanium on betal and beta3-integrin adhesion and the organization of fibronectin in human osteoblastic cells[J]. Biomaterials,2005;26:2423-2440.
    [217]Murugesan G, Rani S, Ransohoff RM, et al. Endothelial cell expression of monocyte chemotactic protein-1, tissue factor, and thrombomodulin on hydrophilic plasma polymers[J]. J Biomed Mater Res,2000;49:396-408.
    [218]Wang XD, Lennartz MR, Loegering DJ, et al. Multiplexed cytokine detection of interstitial fluid collected from polymeric hollow tube implants—A feasibility study[J]. Cytokine,2008;43:15-9.
    [219]魏立春,邢壮杰,赵晖等.血管内膜增生的机制研究进展[J].大连大学学报,2010.5:92-95.
    [220]Lusis AJ. Therosclerosis[J]. Nature,2000;407:233-241.
    [221]周慧,邓时慧,谷德祥.炎症与动脉粥样硬化的关系[J].中国医药指南,2008;5:61-63.
    [222]梁明,韩雅玲,康建等.雌二醇洗脱支架抑制血管内膜增生的实验研究[J]中华老年多器官疾病杂志,2010;9:454-459.
    [223]Pan CJ, Tang JJ, Shao ZY, et al. Improved blood compatibility of rapamycin-eluting stent by incorporating curcumin[J]. Colloids Surf B:Biointerfaces,2007;59:105-111.
    [224]Dai-Do D, Espinosa E, Liu G, et al. Beta-estradiol inhibits proliferation and migration of human vascular smooth muscle cells:similar effects in cells from postmenopausal females and in males[J]. Cardiovasc Res,1996; 32(5):980-985.
    [225]Damus PS, Hicks M, Rosenberg RB. Anticoagulant action of heparin[J]. Nature, 1997;246:355-357.
    [226]Lindner V, Olson NE, Clowes AW, et al. Inhibition of smooth muscle cell proliferation in injured rat arteries. Interaction of heparin with basic fibroblast growth factor[J]. J Clin Invest,1992;90:2044-2049.
    [227]Futami T, Fujii N, Ohnishi H, et al. Tissue response to titanium implants in the rat maxilla:ultrastructural and histochemical observations of the bone-titanium interface[J]. J Periodontol,2000;71:287-298.
    [228]Julow J, Ishii M, Iwabuchi T. Scanning electron microscopy of the subarachnoid macrophages after subarachnoid haemorrhage, and their possible role in the formation of subarachnoid fibrosis[J]. Acta Neurochirurgica,1979;50:273-280.
    [229]Yang D, Jones KS. Effect of alginate on innate immune activation of macrophages [J]. J Biomed Mater Res,2009; A:411-418.
    [230]Lee S, Shin S, Im YM, et al. Analysis on migration and activation of live macrophages on transparent flat and nano structured titanium[J]. Acta Biomaterialia, 2011;7(5):2337-2344.
    [231]Tapper H. The secretion of performed granules by macrophages and neutrophils Analysis on migration and activation of live macrophages on transparent flat and nano structured titanium[J]. J Leukoc Biol,1996;59:613-622.
    [232]Schutte RJ, Amon AP, Reichert WM. Cytokine profiling using monocytes/macrophages cultured on common biomaterials with a range of surface chemistries[J]. J Biomed Mater Res A,2009;88:128-139.
    [233]Anderson JM. Biological responses to materials[J]. Annu Rev Mater Res,2001;31: 81-110.
    [234]Cavaillon JM. Cytokines and macrophages [J]. Biomed Pharmacother,1994;48: 445-453.
    [235]Jenney CR, Anderson JM. Adsorbed IgG:A potent adhesive substrate for human macrophages[J]. J Biomed Mater Res,2000;50:281-290.
    [236]Kao WJ, Lee D, Schense JC, et al. Fibronectin modulates macrophage adhesion and FBGC formation:The role of RGD, PHSRN, and PRRARV domains[J]. J Biomed Mater Res,2001;55:79-88.
    [237]Anderson JM, Miller KM. Biomaterial biocompatibility and the macrophage[J]. Biomaterials,1984;6:6-10.
    [238]Cardona MA, Simmons RL, Kaplan SS. TNF and IL-1 generation by human monocytes in response to biomaterials[J]. J Biomed Mater Res,1996;26:851-859.
    [239]Ramstedt S, Palmquist A, Johansson A, et al. Inflammatory response to injectable biomaterials for stabilisation of vertebral compression fractures[J]. Trends Biomater Artif Organs,2010;24:1-10.
    [240]Refai AK, Textor M, Brunette DM, et al. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines[J]. J Biomed Mater Res A,2004;70:194-205.
    [241]Lee S, Shin S, Im YM, et al. Analysis on migration and activation of live macrophages on transparent flat and nano structured titanium[J]. Acta Biomaterialia, 2011;7(5):2337-2344.
    [242]Chang DT, Jones JA, Meyerson H, et al. Lymphocyte/macrophage interactions: Biomaterial surface-dependent cytokine, chemokine, and matrix protein production[J]. J Biomed Mater Res A,2008;87:676-687.
    [243]Dadsetan M, Jones JA, Hiltner A, et al. Surface chemistry mediates adhesive structure, cytoskeletal organization, and fusion of macrophages [J]. J Biomed Mater Res A,2004;71: 439-448.
    [244]Boring L, Gosling J, Cleary M, et al. Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis [J]. Nature,1998;394: 894-897.
    [245]Ramstedt S, Palmquist A, Johansson A, et al. Inflammatory response to injectable biomaterials for stabilisation of vertebral compression fractures[J]. Trends Biomater Artif Organs,2010;24:1-10.
    [246]Hartung D, Petrov A, Haider N, et al. Radiolabeled monocyte chemotactic protein 1 for the detection of inflammation in experimental atherosclerosis[J]. J Nucl Med, 2007;48:1816-1821
    [247]Cardona MA, Simmons RL, Kaplan SS. TNF and IL-1 generation by human monocytes in response to biomaterials[J]. J Biomed Mater Res,1996;26:851-859.
    [248]Andersson JM, Suska F, Johansson A, et al. Effect of molecular mobility of polymeric implants on soft tissue reactions:an in vivo study in rats[J]. J Biomed Mater Res A1, 2008;84:652-660.
    [249]Andersson JM, Suska F, Johansson A, et al. Effect of molecular mobility of polymeric implants on soft tissue reactions:an in vivo study in rats[J]. J Biomed Mater Res A1, 2008;84:652-660.
    [250]Li QK, Hata A, Kosugi C, et al. The density of extracellular matrix proteins regulates inflammation and insulin signaling in adipocytes[J]. FEBS,2010;19:4145-4150.
    [251]Anderson JM. Inflammation and the foreign body response[J]. Probl Gen Surg, 1994;11:147-160.
    [252]Mukaida N, Harada A, Matsushima K. Interleukin-8 (IL-8) and monocyte chemotactic and activating factor (MCAF/MCP-1), chemokines essentially involved in inflammatory and immune reactions[J]. Cytokine Growth Factor Rev,1998;9:9-23.
    [253]Clowes AW, Karnovsky MJ. Suppression by heparin of smooth muscle cell proliferation in injured arteries[J]. Nature,1977;265:625-626.
    [254]Powell RJ, Cronenwett JL, Fillinger MF, et al. Endothelial cell modulation of smooth muscle cell morphology and organizational growth pattern[J]. Ann Vase Surg,1996; 10: 4-10.
    [255]Black SC, Gralinski MR, Friedrichs GS, et al. Cardioprotective effects of heparin or N-acetylheparin in an in vivo model of myocardial ischaemic and reperfusion injury[J]. Cardiovasc Res,1995;29:629-636.
    [256]Paparella D, Radi OA, Meng QH, et al. The effects of high-dose heparin on inflammatory andcoagulation factors following cardiopulmonary bypass[J]. Blood Coagul Fibrinolysis,2005;16:323-328.
    [257]Young E. The anti-inflammatory effects of heparin and related compounds[J]. Thromb Res,2008;122:743-752.
    [258]Elsayed E, Becker RC. The impact of heparin compounds on cellular inflammatory responses:a construct for future investigation and pharmaceutical development[J], J Thromb Thrombolysis,2003;15:11-8.
    [259]Wang LC, Brown JC, Varki A, et al. Heparin's anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L-and P-selectins[J]. J Clin Invest,2002;110:127-136.
    [260]Nelson RM, Cecconi O, Roberts WG, et al. Heparin oligosaccharides bind L-and P-selectin and inhibit acute inflammation[J]. Blood,1993;82:3253-3258.
    [261]Lever R, Hoult JRS, Page CP. The effects of heparin and related molecules upon the adhesion of human polymorphonuclear leukocytes to vascular endothelium in vitro[J]. Br J Pharmacol,2000;129:533-540.
    [262]Toworfe GK, Bhattacharyya S, Composto RG, et al. Effect of functional end groups of silane self-assembled monolayer surfaces on apatite formation, fibronectin adsorption and osteoblast cell function[J]. J Tissue Eng Regen Med,2009;3:26-36.
    [263]Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence[J]. Nat Rev Immunol,2007;7:179-186.
    [264]Collier TO, Anderson JM. Protein and surface effects on monocyte and macrophage adhesion, aturation, and survival[J]. J Biomed Mater Res,2002;60:487-496.
    [265]Bader RA, Wagoner KL. Modulation of the response of rheumatoid arthritis synovial fibroblasts to proinflammatory stimulants with cyclic tensile strain[J]. Cytokine,2010; 51: 35-41.
    [266]Holt DJ, Chamberlain LM, Grainger DW. Cell-cell signaling in co-cultures of macrophages and fibroblasts[J]. Biomaterials,2010;36:9382-9394.
    [267]Petaja J. Inflammation and coagulation:An overview[J]. Thromb Res,2011;127: S34-S37.
    [268]Sousa JE, Serruys PW, Costa MA. New frontiers in cardiology, drug-eluting stents: part 1[J]. Circulation,2003;107:2274-2279.
    [269]Sousa JE, Serruys PW, Costa MA. New frontiers in cardiology, drug-eluting stents: part 1[J]. Circulation,2003; 107:2274-2279.
    [270]Laemmel E, Penhoat J, Clerout RW, et al. Heparin immobilized on proteins usable for arterial prosthesis coating:Growth inhibition of smooth-muscle cells[J]. J Biomed Mater Res,1998;39:446-452.
    [271]Homandberg GA, Williams JE, Grant D, et al. Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth[J]. Am J Pathol,1985;120: 327-332.
    [272]Powell RJ, Cronenwett JL, Fillinger MF, et al. Endothelial cell modulation of smooth muscle cell morphology and organizational growth pattern[J]. Ann Vasc Surg,1996; 10: 4-10.
    [273]Lundmark K, Tran PK, Michael K G, et al. Perlecan inhibits smooth muscle cell adhesion to fibronectin:role of heparan sulfate[J]. J Cell Physio,2001; 188:67-74.
    [274]Majack R. Beta-type transforming growth factor specifies organizational behavior in vascular smooth muscle cell cultures[J]. J Cell Biol,1987;105:465-471.
    [275]Adil D. Heparin-immobolized poly (2-hydroxyethylmethacrylate)-based microspheres[J]. J Appl Sci,1999;74:655-662.
    [276]Winters KJ, Walsh JJ, Rubin BJ, et al. Platelet interactions with fibronectin: divalent cation-independent platelet adhesion to the gelatin-binding domain of fibronectin[J]. Blood,1993; 81:1778-1786.
    [277]Clyman RI, McDonald KA, Kramer RH. Integrin receptors on aortic smooth muscle cells mediate adhesion to fibronectin, laminin, and collagen[J]. Circ Res,1990; 67(1):175-186.
    [278]Sachchidanand, Lequin O, Staunton D, et al. Mapping the heparin-binding site on the 13-14F3 fragment of fibronectin[J]. J Biol Chem,2002;277(52):50629-50635.
    [279]Sharma A, Askari JA, Humphries MJ,et al. Crystal structure of a heparin-and integrin-binding segment of human fibronectin[J]. The EMBO Journal,1999;18:1468-1479.
    [280]Haugen PK, McCarthy JB, Skubitz APN, et al. Recognition of the a chain carboxy-terminal heparin binding region of fibronectin involves multiple sites:two contiguous sequences act independently to promote neural cell adhesion[J] J Cell Bio, 1990;6:2733-2745.
    [281]陈松妹.纤维蛋白原的界面电化学活性研究[D].硕士学位论文.2009.
    [282]McCarthy JB, Skubitz AP, Qi Z, et al. RGD-independent cell adhesion to the carboxy-terminal heparin-binding fragment of fibronectin involves heparin-dependent and-independent activities[J].1990; 110:3777-3787.
    [283]Chen CS, Alonso JL, Ostuni E, et al. Cell shape provides global control of focal adhesion assembly. Biochemical and Biophysical Research Communications[J].2003; 25: 355-361.
    [284]Ginsberg MH,Painter RG, Forsyth J, et al. Thrombin increases expression of fibronectin antigen on the platelet surface[J]. PNAS,1980; 77:1049-1053.
    [285]Tsai WB, Grunkemeier JM, McFarland CD, et al. Platelet adhesion to polystyrene-based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von Willebrand's factor[J]. J Biomed Mater Res, 2002;60:348-359.
    [286]Kokubo T, Pattanayak DK, Yamaguchi S, et al. Positively charged bioactive Ti metal prepared by simple chemical and heat treatments. J Biomed Mater Res,2003, 15;67(4):1305-1309.
    [287]藤岛昭,陈震译.电化学测定方法[M].北京大学出版社,1984.
    [288]孙伟,焦奎,丁雅勤.甲基紫与肝素钠结合反应的电化学研究及分析应用[J]。化学学报,2006,64(5):397-402.
    [289]宋熙熙.蛋白质_表面活性剂相互作用及酶催化反应的量热学研究[D].浙江大学硕士学位论文.2008.
    [290]Sun DZ, Wang SB, Song MZ, et al. A microcalorimetric study of host-guest complexes of a-cyclodextrin with alkyl trimethyl ammonium bromides in aqueous solutions[J]. J Solution Chem,2005;34:701-712.
    [291]Kelley D, Mcclements DJ. Interaction of bovine serum albumin with ionic surfactants in aqueous solutions[J]. Food Hydrocolloids,2003;17:73-80.
    [292]Johnson KJ, Sage H, Briscoe G, et al. The compact conformation of fibronectin is determined by intramolecular ionic interactions. J Biol Chem,1999; 274(22):15473-15479.
    [293]Abodol KB, Elham H. Thermodynamic analysis for cationic surfantants binding to bovine serum albumin[J]. Physics and Chemistry of Liquids,2007;45(40):453-441.
    [294]Volpon LD, Orso I, Young CR, et al. NMR structural study of TcUBP1, a single RRM domain protein from Trypanosoma cruzi:contribution of aβ hairpin to RNA binding[J]. Biochemistry,2005; 44:3708-3717.
    [295]Ross PD, Subramanian S. Thermodynamics of Protein Association Reactions:Forces Contributing to Stability Biochemistry 1981,20.3096-3102.
    [296]Teien AN, Lie M.Evaluation of an amidolytic heparin assay method:Increased sensitivity by adding purified antithrombin Ⅲ[J]. Thromb Res,1977; 5:399-410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700