用户名: 密码: 验证码:
维生素D受体基因多态性和乙型肝炎病毒与胰腺癌的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     随着医疗技术的进步,部分恶性肿瘤的治疗和预后得到了极大改善,但是胰腺癌的治疗和预后仍然处于另一种相对不同的情况。根据最新统计数据,世界范围内胰腺癌死亡率在总癌症死亡率中占第8位,发达国家中占总癌症死亡率的第4位,每年约有266000人死于胰腺癌,并且大部分病人在确诊后的一年内死亡。胰腺位于腹膜后间隙造成胰腺癌早期症状隐匿,直到患者出现明显症状而确诊时疾病多已处于进展期。胰腺癌的预后很大程度上与肿瘤分期有关,早期病人术后5年生存率已经达到20%左右,但是总体的5年生存率仍然不足5%。因此针对胰腺癌危险因素的一级预防在整个疾病的防治中尤为重要。
     目前认为导致个体罹患胰腺癌的因素大体分为两类:一种是基因因素。关于基因多态性与胰腺癌的关系,人们做了相当深入的研究,也发现了某些基因多态性与胰腺癌的发病风险存在相关性。既往研究显示维生素D(Vitamin D,VD)在体外实验中可以明显抑制胰腺癌细胞的增殖以及口服补充VD的剂量或接受日光照射时间长短与胰腺癌的发病风险相关。但是关于维生素D受体(Vitamin D receptor, VDR)基因多态性与胰腺癌的关系的研究仍非常有限。
     另一种是环境及后天生理病理因素,如吸烟、饮酒、肥胖、糖尿病以及慢性胰腺炎等。近5年来关于乙型肝炎病毒(Hepatitis B virus, HBV)与胰腺癌相关性的研究逐渐成为胰腺癌流行病学的一个热点,但是不同研究的结果存在争议。我们在进行病例对照研究的基础上汇总既往文献报道结果更新meta分析结果以进一步探讨两者之间的关系。
     本课题以济南为中心的山东地区胰腺癌病人和健康人群为研究对象,采用适宜的试验方法,对VDR基因rs2228570、rs1544410位点多态性和HBV与胰腺癌发病风险的相关性进行了研究,同时分别探讨VDR基因多态性和HBV与胰腺癌发生部位、疾病分期和病理分化程度的相关性。
     第一部分维生素D受体基因rs2228570、rs1544410多态性与胰腺癌的相关研究
     VDR作为一种亲核蛋白受体,广泛分布于体内各组织细胞中。早期研究发现VDR在体内的生物学作用主要是经典的钙磷平衡调节作用,随着近年来研究的不断深入,相关结果显示VDR还具有调节细胞周期、抑制细胞增殖及促进细胞分化和凋亡的作用。基于以上研究,VDR的表达以及VDR基因多态性与癌症的研究成为近十年来的研究热点之一。目前的研究结果显示VDR表达与人类癌细胞株的分化程度有关,对多种组织来源的癌细胞如人前列腺癌细胞、乳腺癌细胞、皮肤癌细胞以及胰腺癌细胞具有调节生长、分化的作用,同时对抑制癌细胞等方面有调节作用。为了进一步探讨VDR基因多态性与胰腺癌的关系,我们设计了本部分研究来分析VDR基因多态性与胰腺癌的发病风险、肿瘤发生部位、疾病分期和癌细胞分化的关系。
     目的与方法
     本研究中探讨VDR基因rs2228570、rs1544410位点多态性与胰腺癌的关系。病例组为经病理确诊为胰腺腺癌的患者,对照组为健康查体人群,病例组共258人、对照组385人,病例组与对照组为1:1.5。我们应用限制性片段长度多态性聚合酶链反应(polymerase chain reaction and restriction fragment length polymorphism, PCR-RFLP)技术测定VDR基因rs2228570、rs1544410多态性等位基因以及基因型的频数,并进行单因素以及多因素逻辑回归分析来研究不同等位基因、基因型与胰腺癌发病风险的关系;此外,通过应用列联表分析来检验基因型频率与胰腺癌发生部位、疾病分期和肿瘤分化程度的关系。
     结果
     1.rs2228570单核苷酸位点与胰腺癌的关系
     分别进行单因素回归分析和调整年龄、性别、吸烟史、饮酒史及糖尿病等混杂因素的多因素回归分析,结果显示:rs2228570基因多态性中TT基因型与胰腺癌发病风险显著相关(单因素:OR=3.024,95%CI=1.919~4.764, P=0.005:多因素:AOR=2.978,95%CI=1.844~4.81,P=0.0006):携带至少一个T等位基因的CT+TT基因型胰腺癌患病风险显著增加(单因素:OR=2.424,95%CI=1.718~3.420,P=0.001:多因素:AOR=1.995,95%CI=1.311~3.035,P=0.0013);T等位基因与胰腺癌发病风险显著相关(OR=1.869,95%CI=1.489~2.347,P=0.0001)。将胰腺癌按高分化、中分化、低分化分组,将胰腺癌分化程度与rs2228570多态性基因型频率进行列联表分析,结果显示rs2228570基因多态性与胰腺癌分化程度显著相关(P=0.006,χ2=19.7208)。
     2. rs1544410基因多态性与胰腺癌的关系
     分别进行单因素回归分析和调整年龄、性别、吸烟史、饮酒史及糖尿病等混杂因素的多因素回归分析,结果显示:至少含有一个G等位基因的AG+GG基因型与胰腺癌患病风险呈负相关(单因素:OR=0.631,95%CI=0.449~0.887,P=0.008;多因素:AOR=0.648,95%CI=0.453-0.928, P=0.0179);G等位基因与胰腺癌发病风险呈负相关且有明显统计学意义(OR=0.756,95%CI=0.603~0.947,P=0.015);单独分析AG、GG基因型,未见明显相关性。胰腺癌按TNM分期分为I~Ⅳ期,将胰腺癌分期与rs1544410多态性基因型频率进行列联表分析,结果显示rs1544410基因多态性与胰腺癌分期相关性有明显统计学意义(P=0.0148,χ2=15.8179)。
     结论
     1.VDR基因多态性与个体罹患胰腺癌的风险之间存在显著相关性。rs2228570位点突变纯合子可以导致胰腺癌发病风险增加,突变位点T以及携带至少一个T位点的基因型与胰腺癌发病风险增加有关;rs1544410突变基因位点G则可以降低胰腺癌的发病风险。
     2.VDR基因多态性与胰腺癌的病理分化、疾病分期等临床特征相关,从而可能影响疾病的预后。
     第二部分乙型肝炎病毒与胰腺癌相关性的研究以及更新meta分析
     慢性HBV感染是指感染HBV超过6个月,机体未彻底清除病毒的感染状态。慢性HBV感染可以有明确的急性乙肝病史,也可能由于婴幼儿时期感染HBV,由于当时免疫系统尚未健全无法清除病毒而导致病毒潜伏于机体。近年来关于隐匿性HBV携带状态的研究逐渐增多,临床多以乙肝表面抗原阴性而乙肝核心抗体阳性为特点。我国慢性HBV流行率约为7%,相比较全球感染情况,我国所面临由HBV引起的公共卫生威胁更加严重。近年来的研究表明HBV除定植于肝组织中外,也可以定植于肝外组织比如肾脏、皮肤和胰腺组织中,既往已有数个队列研究和病例对照研究探讨HBV是否可能增加胰腺癌的发病风险,但不同研究所得的结果存在争议。本部分研究中包括胰腺癌病人与健康对照组的病例对照研究;结合病例对照研究结果并汇总以前发表的关于HBV与胰腺癌的研究结果进行的meta分析更新,以进一步探讨HBV与胰腺癌的关系。
     目的与方法
     病例对照研究中,病例组为收集的胰腺腺癌病人,对照组为健康查体人群。病例组258人、对照组385人,病例组与对照组为1:1.5。课题中收集了病例组和对照组人群的HBV携带状态、年龄、性别、吸烟史、饮酒史以及糖尿病等临床特征,进行单因素以及多因素逻辑回归分析来研究HBV与胰腺癌发病风险的关系;并结合以上分析结果同时汇总2013年6月以前关于HBV与胰腺癌的研究结果更新meta分析以进一步检验两者之间的相关性;此外,通过应用列联表分析来检验HBV与胰腺癌发生部位、分期和分化程度的关系。
     结果
     1.HBV与胰腺癌发病风险的分析
     回归分析结果显示:乙肝表面抗原阳性组胰腺癌发病风险显著增加(单因素:OR=2.380,95%CI=1.556~3.606,P=0.001;多因素:AOR=3.339,95%CI=2.081~5.358,P=0.001),根据HBV血清学标志物分层研究结果显示HBsAg+/antiHBcAb+组与胰腺癌发病风险显著相关(单因素:OR=3.375,95%CI=1.915~5.950, P=0.001;多因素:AOR=3.864,95%CI=2.057-7.255P=0.0032);多因素分析显示隐匿性HBV携带组(HBsAg-/antiHBcAb+组)胰腺癌发病风险明显增加(AOR=1.163,95%CI=0.774~1.747,P=0.031)。 meta分析结果显示HBV可以显著增加胰腺癌发病风险(OR=1.392,95%CI=1.167~1.660, P=0.00),亚组分析时队列研究meta亚组分析结果处于临界统计学意义(OR=1.307,95%CI=0.966-1.715, P=0.053)。
     2.HBV与胰腺癌部位、分期以及分化程度的关系
     将胰腺癌按高分化、中分化、低分化分组,将胰腺癌分化程度与HBV相关各组进行列联表分析,结果显示HBV与胰腺癌分化程度显著相关(P=0.001,χ2=37.4118)
     结论
     1.研究结果提示慢性HBV感染可显著增加胰腺癌的发病风险,隐匿性HBV携带与胰腺癌的发病风险明显相关。以上结论需要进一步多中心、大样本的研究以及不断更新的meta分析进行检验。
     2.HBV与胰腺癌的病理分化程度相关,从而可能影响胰腺癌疾病的预后。
Backgrounds
     As medical technology advances, the treatment and prognosis of some forms of cancer have been greatly improved while those of pancreatic cancer (PC) is still in a relatively different situation. According to the latest statistics, PC is the eighth leading cause of cancer-related death in the world and fourth in the developed countries with approximately266000deaths each year. Being one of the most lethal malignant carcinoma in digestive system, PC is characterized by a very poor prognosis due to the asymptomatic nature in early stage and rapid progression thereafter, with most patients dying within12months after diagnosis. Although for the pancreatic cancer patients in early phases, the5-year survival rate after surgery has exceeded to approximately20%, the5-year overall survival rate is only about5%. Therefore the recognition of risk factors and application of primary prevention for pancreatic cancer is of vital importance in the treatment and prognosis of the disease.
     Risk factors associated with PC can be divided into two main categories. One is the genetic factors. At present, because of the rapid developments in genomics and epidemiology, many studies have proved that some kinds of gene polymorphisms are associated with PC. It has been proved that vitamin D (VD) as a kind of hormone, can significantly inhibit the proliferative activity of many cancer cells included pancreatic cancer cell in vitro and the dietary VD or sunlight exposure may be protective from PC. However, little is known about association about vitamin D receptor (VDR) gene polymorphisms with PC.
     The other is environmental factors and modifying factors, such as smoking, alcohol, obesity and chronic pancreatitis (CP). In the last5years, some cohort and case-control studies have been conducted to estimate the relationship of hepatitis B virus (HBV) status and PC. The results were controversial.
     This study is divided into two parts, respectively. In part one, we investigate the relationship of VDR gene rs2228570、rs1544410polymorphisms and PC; in part two, a case control study and an updated meta analysis are performed to discuss the relationship of HBV status and PC.
     Part1The association of vitamin D receptor gene rs2228570、rs1544410polymorphisms with pancreatic cancer
     As one kind of nuclear receptor protein, VDR is widely distributed in different body cells. The first and classical function of VDR is to adjust the calcium-phosphorus balance in blood. As the recently studies, VD and VDR also can regulates cell cycle, inhibit cell proliferation and promote cell differentiation and apoptosis. So many researches have focused on the association of the expression of VDR and VDR gene polymorphisms with different tumors. We conduct the case control study to investigate the relationship between VDR gene polymorphisms and the onset risk, location, TNM classification and pathological differentiation of PC separately.
     Objective and methods
     In this part, we perform a case control study to value the relationship of VDR gene rs2228570、rs1544410polymorphisms and PC respectively. In this study,258PC patients and385healthy controls were enrolled. The genotypes of rs2228570and rs1544410were assayed using the method of polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Univariate and multivariate logistic regression analysis was done to determine the association of onset risk with gene polymorphisms. Contingency table analysis was done to value the relationship between gene polymorphisms and the location, the TNM classification and pathological differentiation of PC.
     Result
     1. rs2228570polymorphisms and PC
     In the univariate regression analysis and multivariate logistic regression analysis adjusted by age, gender, history of tobacco, history of alcohol and diabetes, the genotype TT can increase the risk of PC significantly (univariate: OR=3.024,95%CI=1.919-4.764, P=0.005; multivariate:AOR=2.978,95%CI=1.844-4.81, P=0.0006); the genotype with at least one T gene loci can increase the risk of PC significantly (univariate:OR=2.424,95%CI-1.718-3.420, P=0.001; multivariate:AOR=1.995,95%CI=1.311-3.035, P=0.0013); the frequencies of T allele in PC group was significantly higher than in controls (OR=1.869,95%CI=1.489-2.347, P=0.0001). In the contingency table analysis, the rs2228570polymorphisms were correlated with pathological differentiation of PC significantly.
     2. rs1544410polymorphisms and PC
     In the univariate regression analysis and multivariate logistic regression analysis adjusted by age, gender, history of tobacco, history of alcohol and diabetes, the genotype with at least one G gene loci could decrease the risk of PC significantly (univariate:OR=0.631,95%CI=0.449-0.887, P=0.008; multivariate: AOR=0.648,95%CI=0.453-0.928, P=0.0179); the frequencies of G allele can decrease the risk of PC significantly (OR=0.756,95%CI=0.603-0.947, P=0.015). In the contingency table analysis, the rs1544410polymorphisms were correlated with TNM classification of PC significantly.
     Conclusion
     1.In this study, the VDR gene polymorphisms were significantly correlated to with the onset risk of PC. In rs2228570, the T loci and genotype with T allele could increase the risk of PC; in rs1544410, the G loci and genotypes AG+GG could decrease the onset risk of PC significantly.
     2.The VDR gene polymorphisms were correlated with pathological differentiation and TNM classification of PC significantly. So these polymorphisms might affect the prognosis of this disease.
     Part2The association of hepatitis B virus status with pancreatic cancer including a case control study and an updated meta analysis.
     HBV is still responsible for heavy disease burdens in China. Chronic HBV status refers to the infection of HBV for more than6months, this infection status could attribute to a history of acute HBV infection or infant period HBV infection in which the hepatitis B virus are not completely cleaned up due to the imperfect development of the immune system. In2006, according to the Ministry of Health of China, the national prevalence of HBV was about7%. And today, more and more researches were focused on the occult HBV status which is significantly associated with simply presence of anti-HBc antibody. Several studies found that HBV could replicate in human pancreatic tissue and that patients with HBV infection have impairments of pancreatic function. Some cohort and case-control studies have been conducted to estimate the relationship between HBV status and PC, providing somewhat conflicting results. In this part, we conducted a case control study and update the meta analysis to investigate the relationship of HBVstatus and PC.
     Objective and methods
     In this part, we perform a case control study and a meta analysis to further value the relationship of HBV status and PC. In the case control study,258PC patients and385healthy controls were enrolled. Nine studies were included to perform the meta analysis together with the result of our case control study. The characteristics of the patients and controls were collected such as age, gender, history of tobacco and alcohol exposure and diabetes. Univariate and multivariate logistic regression analysis was done to determine the association of PC onset risk and HBV; contingency table analysis was done to value the relationship between HBV and the location, the TNM classification and the pathological differentiation of PC. The adjusted RRs, HRs or ORs were collected to compute a summary OR and95%CI. HRs, RRs were directly considered as ORs. Heterogeneity across studies was tested using the Q and I2statistic. Stratified meta analysis was conduct according to region and study design.
     Result
     In the univariate regression analysis and multivariate logistic regression analysis adjusted by age, gender, history of tobacco, history of alcohol and diabetes, the chronic HBV infection can increase the risk of PC significantly (univariate:OR=2.380,95%CI=1.556-3.606, P=0.001; multivariate: AOR=3.339,95%CI=2.081-5.358, P=0.001), in the the stratified analysis according to HBV serological markers, the group HBsAg+/anti-HBcAb+can increase the risk of PC significantly; the occult HBV carrier status also can increase the risk of PC significantly, the AOR was1.163(95%CI=0.774-1.747, P^O.031). In the meta analysis, the overall OR was1.392(95%CI=4.167-1.660, P=0.00) assembly to the result of submeta analysis according to region. Only a borderline significant association was observed when combining all cohort studies (OR-1.307,95%CI=0.966-1.715, P=0.053). Given cohort study was more powerful to detect a causal relationship than case-control one, this result should be interpreted with caution. In the contingency table analysis, the HBV status was correlated with pathological differentiation of PC significantly.
     Conclusion
     1.The chronic HBV infection and occult HBV carrier might increase the onset risk of PC significantly, but further multi-center large sample clinical studies especially cohort studies are required to investigate the relationship.
     2. The HBV status was correlated with pathological differentiation of PC significantly. So hepatitis B virus might affect the prognosis of the disease.
引文
1. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin 2011;61(2):69-90.
    2. Wolfgang CL, Herman JM, Laheru DA, et al. Recent progress in pancreatic cancer. CA Cancer J Clin 2013;63(5):318-48.
    3. Greer JB, Brand RE. New developments in pancreatic cancer. Curr Gastroenterol Rep 2011; 13(2):131-9.
    4. Axilbund JE, Wiley EA. Genetic testing by cancer site:pancreas. Cancer J 2012;18(4):350-4.
    5. Iodice S, Gandini S, Maisonneuve P, et al. Tobacco and the risk of pancreatic cancer:a review and meta-analysis. Langenbecks Arch Surg 2008;393(4):535-45.
    6. Jiao L, Berrington de Gonzalez A, Hartge P, et al. Body mass index, effect modifiers, and risk of pancreatic cancer:a pooled study of seven prospective cohorts. Cancer Causes Control 2010;21(8):1305-14.
    7. Zhou J, Wellenius GA, Michaud DS. Environmental tobacco smoke and the risk of pancreatic cancer among non-smokers:a meta-analysis. Occup Environ Med 2012;69(12):853-7.
    8. Duell EJ, Lucenteforte E, Olson SH, et al. Pancreatitis and pancreatic cancer risk:a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol 2012;23(11):2964-70.
    9. Haas SL, Ye W, Lohr JM. Alcohol consumption and digestive tract cancer. Curr Opin ClinNutr Metab Care 2012;15(5):457-67.
    10. Norell SE, Ahlbom A, Erwald R, et al. Diet and pancreatic cancer:a case-control study. Am J Epidemiol 1986;124(6):894-902.
    11. Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 2013;144(6):1252-61.
    12. Lebedeva AN, Kubyshkin VA, Demidova VS. The diabetes mellitus and pancreatic cancer. Khirurgiia (Mosk) 2013(4):82-5.
    13. McAuliffe JC, Christein JD. Type 2 diabetes mellitus and pancreatic cancer. Surg Clin North Am 2013;93(3):619-27.
    14. Sanchez GV, Weinstein SJ, Stolzenberg-Solomon RZ. Is dietary fat, vitamin D, or folate associated with pancreatic cancer? Mol Carcinog 2012;51(1):119-27.
    15. Jacobs EJ, Chanock SJ, Fuchs CS, et al. Family history of cancer and risk of pancreatic cancer:a pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). Int J Cancer 2010;127(6):1421-8.
    16. Olson SH, Kurtz RC. Epidemiology of pancreatic cancer and the role of family history. J Surg Oncol 2013;107(1):1-7.
    17. Chen Y, Segers S, Blaser MJ. Association between Helicobacter pylori and mortality in the NHANES Ⅲ study. Gut 2013;62(9):1262-9.
    18. de Martel C, Llosa AE, Friedman GD, et al. Helicobacter pylori infection and development of pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2008;17(5):1188-94.
    19. Zhou D, Zhang Y, Gong W, et al. Are Helicobacter pylori and other Helicobacter species infection associated with human biliary lithiasis? A meta-analysis. PLoS One 2011;6(11):e27390.
    20. Segura PP, Ponce CG, Ramon YCT, et al. Hereditary pancreatic cancer: molecular bases and their application in diagnosis and clinical management: a guideline of the TTD group. Clin Transl Oncol 2012;14(8):553-63.
    21. Campa D, Rizzato C, Capurso G, et al. Genetic susceptibility to pancreatic cancer and its functional characterisation:the PANcreatic Disease ReseArch (PANDo RA) consortium. Dig Liver Dis 2013;45(2):95-9.
    22. Petersen GM, de Andrade M, Goggins M, et al. Pancreatic cancer genetic epidemiology consortium. Cancer Epidemiol Biomarkers Prev 2006;15(4):704-10.
    23. Wang W, Chen S, Brune KA, et al. PancPRO:risk assessment for individuals with a family history of pancreatic cancer. J Clin Oncol 2007;25(11):1417-22.
    24. Hahn SA, Greenhalf B, Ellis I, et al. BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst 2003;95(3):214-21.
    25. Hartenbach EM, Becker JM, Grosen EA, et al. Progress of a Comprehensive Familial Cancer Genetic Counseling Program in the Era of BRCA1 and BRCA2. Genet Test 2002;6(2):75-8.
    26. Blanco A, de la Hoya M, Osorio A, et al. Analysis of PALB2 gene in BRCA1/BRCA2 negative Spanish hereditary breast/ovarian cancer families with pancreatic cancer cases. PLoS One 2013;8(7):e67538.
    27. Fendrich V, Langer P, Bartsch DK. Familial pancreatic cancer-status quo. Int J Colorectal Dis 2013.
    28. Grant RC, Al-Sukhni W, Borgida AE, et al. Exome sequencing identifies nonsegregating nonsense ATM and PALB2 variants in familial pancreatic cancer. Hum Genomics 2013;7:11.
    29. Hamoir C, Pepermans X, Piessevaux H, et al. Clinical and morphological characteristics of sporadic genetically determined pancreatitis as compared to idiopathic pancreatitis:higher risk of pancreatic cancer in CFTR variants. Digestion 2013;87(4):229-39.
    30. Mastoraki A, Tzortzopoulou A, Tsela S, et al. Hereditary Pancreatitis: Dilemmas in Differential Diagnosis and Therapeutic Approach. J Gastrointest Cancer 2013.
    31. Solomon S, Das S, Brand R, et al. Inherited pancreatic cancer syndromes. Cancer J 2012;18(6):485-91.
    32. Albrechtsson E, Jonsson T, Moller S, et al. Vitamin D receptor is expressed in pancreatic cancer cells and a vitamin D3 analogue decreases cell number. Pancreatology 2003;3(1):41-6.
    33. Kanemaru M, Maehara N, Chijiiwa K. Antiproliferative Effect of lalpha,25-dihydroxyvitamin D3 Involves Upregulation of Cyclin-Dependent Kinase Inhibitor p21 in Human Pancreatic Cancer Cells. Hepatogastroenterology 2013;60(125):1199-205.
    34. Biesecker LG, Spinner NB. A genomic view of mosaicism and human disease. Nat Rev Genet 2013;14(5):307-20.
    35. Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer:an update. Dig Dis 2010;28(4-5):645-56.
    36. Arjumand W, Ahmad ST, Seth A, et al. Vitamin D receptor FokI and BsmI gene polymorphism and its association with grade and stage of renal cell carcinoma in North Indian population. Tumour Biol 2012;33(1):23-31.
    37. Jamali Z, Asadikaram G, Mahmoodi M, et al. Vitamin D status in female students and its relation to calcium metabolism markers, lifestyles, and polymorphism in vitamin D receptor. Clin Lab 2013;59(3-4):407-13.
    38. Yamaji T, Iwasaki M, Sasazuki S, et al. Association between plasma 25-hydroxyvitamin D and colorectal adenoma according to dietary calcium intake and vitamin D receptor polymorphism. Am J Epidemiol 2012;175(3):236-44.
    39. Heyn C, Sue-Chue-Lam D, Jhaveri K, et al. MRI of the pancreas:problem solving tool. J Magn Reson Imaging 2012;36(5):1037-51.
    40. SB E. American Joint Committee on Cancer:AJCC Cancer Staging Manual. 7th ed.2009.
    41. Raimondi S, Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer:an overview. Nat Rev Gastroenterol Hepatol 2009;6(12):699-708.
    42. Stan SD, Singh SV, Brand RE. Chemoprevention strategies for pancreatic cancer. Nat Rev Gastroenterol Hepatol 2010;7(6):347-56.
    43. Andreotti G, Silverman DT. Occupational risk factors and pancreatic cancer: a review of recent findings. Mol Carcinog 2012;51(1):98-108.
    44. Luckett BG, Su LJ, Rood JC, et al. Cadmium exposure and pancreatic cancer in south Louisiana. J Environ Public Health 2012;2012:180186.
    45. Hossain MZ, Kleve MG. Nickel nanowires induced and reactive oxygen species mediated apoptosis in human pancreatic adenocarcinoma cells. Int J Nanomedicine 2011;6:1475-85.
    46. Risch HA, Yu H, Lu L, et al. ABO blood group, Helicobacter pylori seropositivity, and risk of pancreatic cancer:a case-control study. J Natl Cancer Inst 2010;102(7):502-5.
    47. Wang DS, Wang ZQ, Zhang L, et al. Are risk factors associated with outcomes in pancreatic cancer? PLoS One 2012;7(7):e41984.
    48. Woo SM, Joo J, Lee WJ, et al. Risk of pancreatic cancer in relation to ABO blood group and hepatitis C virus infection in Korea:a case-control study. J Korean Med Sci 2013;28(2):247-51.
    49. Hassan MM, Li D, El-Deeb AS, et al. Association between hepatitis B virus and pancreatic cancer. J Clin Oncol 2008;26(28):4557-62.
    50. Wang DS, Chen DL, Ren C, et al. ABO blood group, hepatitis B viral infection and risk of pancreatic cancer. Int J Cancer 2012;131(2):461-8.
    51. Wang Y, Yang S, Song F, et al. Hepatitis B virus status and the risk of pancreatic cancer:a meta-analysis. Eur J Cancer Prev 2013;22(4):328-34.
    52. Paluszkiewicz P, Smolinska K, Debinska I, et al. Main dietary compounds and pancreatic cancer risk. The quantitative analysis of case-control and cohort studies. Cancer Epidemiol 2012;36(1):60-7.
    53. Polesel J, Talamini R, Negri E, et al. Dietary habits and risk of pancreatic cancer:an Italian case-control study. Cancer Causes Control 2010;21(4):493-500.
    54. Xiao M, Wang Y, Gao Y. Association between Helicobacter pylori Infection and Pancreatic Cancer Development:A Meta-Analysis. PLoS One 2013;8(9):e75559.
    55. Yu G, Murphy G, Michel A, et al. Seropositivity to Helicobacter pylori and risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2013; 22(12):2416-9.
    56. Yeo TP, Lowenfels AB. Demographics and epidemiology of pancreatic cancer. Cancer J 2012;18(6):477-84.
    57. Strugnell SA, Deluca HE The vitamin D receptor--structure and transcriptional activation. Proc Soc Exp Biol Med 1997;215(3):223-8.
    58. Chiang KC, Chen TC. The anti-cancer actions of vitamin D. Anticancer Agents Med Chem 2013;13(1):126-39.
    59. Milczarek M, Chodynski M, Filip-Psurska B, et al. Synthesis and Biological Activity of Diastereomeric and Geometric Analogs of Calcipotriol, PRI-2202 and PRI-2205, Against Human HL-60 Leukemia and MCF-7 Breast Cancer Cells. Cancers (Basel) 2013;5(4):1355-78.
    60. Slominski AT, Kim TK, Li W, et al. The role of CYP11A1 in the production of vitamin D metabolites and their role in the regulation of epidermal functions. J Steroid Biochem Mol Biol 2013; pii:S0960-0760(13)00205-7.
    61. Upadhyay SK, Verone A, Shoemaker S, et al.1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) Signaling Capacity and the Epithelial-Mesenchymal Transition in Non-Small Cell Lung Cancer (NSCLC):Implications for Use of 1,25(OH)2D3 in NSCLC Treatment. Cancers (Basel) 2013;5(4):1504-21.
    62. Miyamoto K, Kesterson RA, Yamamoto H, et al. Structural organization of the human vitamin D receptor chromosomal gene and its promoter. Mol Endocrinol 1997; 11 (8):1165-79.
    63. Jehan F, d'Alesio A, Garabedian M. Exons and functional regions of the human vitamin D receptor gene around and within the main 1 a promoter are well conserved among mammals. J Steroid Biochem Mol Biol 2007;103(3-5):361-7.
    64. Uitterlinden AG, Fang Y, Bergink AP, et al. The role of vitamin D receptor gene polymorphisms in bone biology. Mol Cell Endocrinol 2002; 197(1-2):15-21.
    65. Gonzalez MM, Samenfeld P, Perakyla M, et al. Corepressor excess shifts the two-side chain vitamin D analog Gemini from an agonist to an inverse agonist of the vitamin D receptor. Mol Endocrinol 2003;17(10):2028-38.
    66. Norman AW, Adams D, Collins ED, et al. Three-dimensional model of the ligand binding domain of the nuclear receptor for lalpha,25-dihydroxy-vitamin D(3). J Cell Biochem 1999;74(3):323-33.
    67. Nemazannikova N, Antonas K, Dass CR. Role of vitamin D metabolism in cutaneous tumour formation and progression. J Pharm Pharmacol 2013;65(1):2-10.
    68. Verlinden L, Verstuyf A, Van Camp M, et al. Two novel 14-Epi-analogues of 1,25-dihydroxyvitamin D3 inhibit the growth of human breast cancer cells in vitro and in vivo. Cancer Res 2000;60(10):2673-9.
    69. Campbell MJ, Elstner E, Holden S, et al. Inhibition of proliferation of prostate cancer cells by a 19-nor-hexafluoride vitamin D3 analogue involves the induction of p21wafl, p27kip1 and E-cadherin. J Mol Endocrinol 1997;19(1):15-27.
    70. Paulin R, Meloche J, Bonnet S. STAT3 signaling in pulmonary arterial hypertension. Jakstat 2012;1(4):223-33.
    71. Xie J, Bartels CM, Barton SW, et al. Targeting hedgehog signaling in cancer: research and clinical developments. Onco Targets Ther 2013;6:1425-35.
    72. Jiang YJ, Teichert AE, Fong F, et al. 1alpha,25(OH)2-dihydroxyvitamin D3/VDR protects the skin from UVB-induced tumor formation by interacting with the beta-catenin pathway. J Steroid Biochem Mol Biol 2013;136:229-32.
    73. Rosli SN, Shintani T, Hayashido Y, et al.1 alpha,25OH2D3 down-regulates HBp17/FGFBP-1 expression via NF-kappaB pathway. J Steroid Biochem Mol Biol 2013;136:98-101.
    74. DeBerardinis AM, Banerjee U, Miller M, et al. Probing the structural requirements for vitamin D3 inhibition of the hedgehog signaling pathway. Bioorg Med Chem Lett 2012;22(14):4859-63.
    75. Chiang KC, Yeh CN, Hsu JT, et al. MART-10, a novel vitamin D analog, inhibits head and neck squamous carcinoma cells growth through cell cycle arrest at G0/G1 with upregulation of p21 and p27 and downregulation of telomerase. J Steroid Biochem Mol Biol 2013;138:427-34.
    76. Wang W, Zhao CH, Zhang N, et al. Vitamin D Analog EB1089 Induces Apoptosis in a Subpopulation of SGC-7901 Gastric Cancer Cells Through a Mitochondrial-Dependent Apoptotic Pathway. Nutr Cancer 2013;65(7):1067-75.
    77. Jurutka PW, Remus LS, Whitfield GK, et al. The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor ⅡB. Mol Endocrinol 2000;14(3):401-20.
    78. Whitfield GK, Remus LS, Jurutka PW, et al. Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene. Mol Cell Endocrinol 2001;177(1-2):145-59.
    79. Huerta S, Irwin RW, Heber D, et al. 1alpha,25-(OH)(2)-D(3) and its synthetic analogue decrease tumor load in the Apc(min) Mouse. Cancer Res 2002;62(3):741-6.
    80. Bai YH, Lu H, Hong D, et al. Vitamin D receptor gene polymorphisms and colorectal cancer risk:a systematic meta-analysis. World J Gastroenterol 2012;18(14):1672-9.
    81. Chen W, Dawsey SM, Qiao YL, et al. Prospective study of serum 25(OH)-vitamin D concentration and risk of oesophageal and gastric cancers. Br J Cancer 2007;97(1):123-8,
    82. Abnet CC, Chen Y, Chow WH, et al. Circulating 25-hydroxyvitamin D and risk of esophageal and gastric cancer:Cohort Consortium Vitamin D Pooling Project of Rarer Cancers. Am J Epidemiol 2010;172(1):94-106.
    83. Valdivielso JM, Fernandez E. Vitamin D receptor polymorphisms and diseases. Clin Chim Acta 2006;371(1-2):1-12.
    84. Ludbrook J. Analysing 2×2 contingency tables:which test is best? Clin Exp Pharmacol Physiol 2013;40(3):177-80.
    85. Liu Y, Chen W, Hu ZB, et al. Plasma Vitamin D Levels And Vitamin D Receptor Polymorphisms Are Associated with Survival of Non-small Cell Lung Cancer. Chin J Cancer Res 2011;23(1):33-7.
    86. Ntais C, Polycarpou A, Ioannidis JP. Vitamin D receptor gene polymorphisms and risk of prostate cancer:a meta-analysis. Cancer Epidemiol Biomarkers Prev 2003;12(12):1395-402.
    87. Raimondi S, Johansson H, Maisonneuve P, et al. Review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Carcinogenesis 2009;30(7):1170-80.
    88. Oh JJ, Byun SS, Lee SE, et al. Genetic variations in VDR associated with prostate cancer risk and progression in a Korean population. Gene 2014;533(1):86-93.
    89. Alimirah F, Peng X, Murillo G, et al. Functional significance of vitamin D receptor Fokl polymorphism in human breast cancer cells. PLoS One 2011;6(1):e16024.
    90. Speer G. The role of vitamin D in the prevention and the additional therapy of cancers. Magy Onkol 2010;54(4):303-14.
    1. Alexander GJ, Williams R. Natural history and therapy of chronic hepatitis B virus infection. Am J Med 1988;85(2a):143-6.
    2. Arevalo JA. Hepatitis B in pregnancy. West J Med 1989; 150(6):668-74.
    3. Liang X, Bi S, Yang W, et al. Reprint of:Epidemiological serosurvey of Hepatitis B in China-Declining HBV prevalence due to Hepatitis B vaccination. Vaccine 2013.
    4. Dorsey KA, Moritz ED, Steele WR, et al. A comparison of human immunodeficiency virus, hepatitis C virus, hepatitis B virus, and human T-lymphotropic virus marker rates for directed versus volunteer blood donations to the American Red Cross during 2005 to 2010. Transfusion 2013;53(6):1250-6.
    5. Raimondo G, Caccmo G, Filoma R, et al. Occult HBV infection. Semin Immunopathol 2013;35(1):39-52.
    6. Dejean A, Lugassy C, Zafrani S, et al. Detection of hepatitis B virus DNA in pancreas, kidney and skin of two human carriers of the virus. J Gen Virol 1984;65(Pt3):651-5.
    7. Hohenberger P. The pancreas as target organ for hepatitis B virus--immunohistological detection of HBsAg in pancreatic carcinoma and chronic pancreatitis. Leber Magen Darm 1985;15(2):58-63.
    8. Yan HP, Lang ZW, Huang DZ. Preparation of digoxigenin labelled probe and detection of HBV DNA in liver and extrahepatic tissue with in situ hybridization. Zhonghua Nei Ke Za Zhi 1994;33(3):168-71.
    9. Jain P, Nijhawan S, Rai RR, et al. Acute pancreatitis in acute viral hepatitis. World journal of gastroenterology:WJG 2007;13(43):5741-4.
    10. Yoo KS, Lee KH, Huh KR, et al. Acute pancreatitis complicating spontaneous acute exacerbation of chronic hepatitis B virus infection:case report and review of the literature. Gut Liver 2009;3(1):64-6.
    11. Hassan MM, Li D, El-Deeb AS, et al. Association between hepatitis B virus and pancreatic cancer. J Clin Oncol 2008;26(28):4557-62.
    12. Wang DS, Chen DL, Ren C, et al. ABO blood group, hepatitis B viral infection and risk of pancreatic cancer. Int J Cancer 2012;131(2):461-8.
    13. Zhu F, Li HR, Du GN, et al. Chronic hepatitis B virus infection and pancreatic cancer:a case-control study in southern China. Asian Pac J Cancer Prev 2011;12(6):1405-8.
    14. Ben Q, Li Z, Liu C, et al. Hepatitis B virus status and risk of pancreatic ductal adenocarcinoma:a case-control study from China. Pancreas 2012;41(3):435-40.
    15. Iloeje UH, Yang HI, Jen CL, et al. Risk of pancreatic cancer in chronic hepatitis B virus infection:data from the REVEAL-HBV cohort study. Liver Int 2010;30(3):423-9.
    16. Woo SM, Joo J, Lee WJ, et al. Risk of pancreatic cancer in relation to ABO blood group and hepatitis C virus infection in Korea:a case-control study. J Korean Med Sci 2013;28(2):247-51.
    17. Fiorino S, Chili E, Bacchi-Reggiani L, et al. Association between hepatitis B or hepatitis C virus infection and risk of pancreatic adenocarcinoma development:a systematic review and meta-analysis. Pancreatology 2013;13(2):147-60.
    18. Luo G, Hao NB, Hu CJ, et al. HBV infection increases the risk of pancreatic cancer:a meta-analysis. Cancer causes & control.2013;24(3):529-37.
    19. Wang Y, Yang S, Song F, et al. Hepatitis B virus status and the risk of pancreatic cancer:a meta-analysis. European journal of cancer prevention: the official journal of the European Cancer Prevention Organisation (ECP) 2013;22(4):328-34.
    20. Xing S, Li ZW, Tian YF, et al. Chronic hepatitis virus infection increases the risk of pancreatic cancer:a meta-analysis. HBPD INT 2013;12(6):575-83.
    21. Xu JH, Fu JJ, Wang XL, et al. Hepatitis B or C viral infection and risk of pancreatic cancer:a meta-analysis of observational studies. WJG 2013;19(26):4234-41.
    22. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology:a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. Jama 2000;283(15):2008-12.
    23. Haas SL, Ye W, Lohr JM. Alcohol consumption and digestive tract cancer. Curr Opin Clin Nutr Metab Care 2012;15(5):457-67.
    24. SB E. American Joint Committee on Cancer:AJCC Cancer Staging Manual. 7th ed.2009.
    25. Greenland S. Quantitative methods in the review of epidemiologic literature. Epidemiol Rev 1987;9:1-30.
    26. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994;50(4):1088-101.
    27. Heyn C, Sue-Chue-Lam D, Jhaveri K, et al. MRI of the pancreas:problem solving tool. J Magn Reson Imaging 2012;36(5):1037-51.
    28. Berrington de Gonzalez A, Yun JE, Lee SY, et al. Pancreatic cancer and factors associated with the insulin resistance syndrome in the Korean cancer prevention study. Cancer Epidemiol Biomarkers Prev 2008;17(2):359-64.
    29. Hong SG, Kim JH, Lee YS, et al. The relationship between hepatitis B virus infection and the incidence of pancreatic cancer:a retrospective case-control study. Korean J Hepatol 2010;16(1):49-56.
    30. Gordon SC GR. Hepatitis B not a player in Pancreatic Cancer. American Association for the Study of Liver Diseases(AASLD) 60th Annual Meeting Poster 1486 2009.
    31. Wells GA SB OCD, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.
    32. Zou L, Zhong R, Shen N, et al. Non-linear dose-response relationship between cigarette smoking and pancreatic cancer risk:Evidence from a meta-analysis of 42 observational studies. Eur J Cancer 2013.
    33. Duell EJ. Epidemiology and potential mechanisms of tobacco smoking and heavy alcohol consumption in pancreatic cancer. Mol Carcinog 2012;51(1):40-52.
    34. Herreros-Villanueva M, Hijona E, Banales JM, et al. Alcohol consumption on pancreatic diseases. World journal of gastroenterology:WJG 2013;19(5):638-47.
    35. Klein AP, Lindstrom S, Mendelsohn JB, et al. An absolute risk model to identify individuals at elevated risk for pancreatic cancer in the general population. PLoS One 2013;8(9):e72311.
    36. Grote VA, Becker S, Kaaks R. Diabetes mellitus type 2-an independent risk factor for cancer? Exp Clin Endocrinol Diabetes 2010;118(1):4-8.
    37. Inoue M, Tsugane S. Insulin resistance and cancer:epidemiological evidence. Endocr Relat Cancer 2012;19(5):F1-8.
    38. Sarue M, Karaarslan M, Rasa K, et al. Pancreatic cancer and glucose metabolism. Turk J Gastroenterol 2009;20(4):257-60.
    39. Feng Y BN, Yeung S. Differential impact of anti-diabetic treatment on pancreatic cancer cell growth in cell culture conditions mimicking different stages in the natural history of diabetes mellitus type 2. J Clin Oncol 2008;26((15 Suppl)):4640.
    40. Maynard JE. World-wide control of hepatitis B. Int J Epidemiol 1984;13(4):406-7.
    41. Xia GL LC, Cao HL, Bi SL, Zhan MY, Su CA. Prevalence of hepatitis B and C virus infections in the general Chinese population:Results from a nationwide cross-sectional seroepidemiologic study of hepatitis A, B, C, D, and E virus infections in China,1992. Int Hepatol Commun 1996;5."62-73.
    42. Custer B, Sullivan SD, Hazlet TK, et al. Global epidemiology of hepatitis B virus. J Clin Gastroenterol 2004;38(10 Suppl 3):S158-68.
    43. Cui F, Li L, Hadler SC, et al. Factors associated with effectiveness of the first dose of hepatitis B vaccine in China:1992-2005. Vaccine 2010;28(37):5973-8.
    44. Ministry of Health C. National Plan for Prevention and Treatment against Hepatitis B for 2006-10.
    45. Zerbini A1, Pilli M, Boni C, et al. The characteristic of the cell-mediated immune response indentify different profiles of occult hepatitis B virus infection. Gastroenterology 2008;134(5):1470-81.
    46. Ott JJ, Stevens GA, Groeger J, et al. Global epidemiology of hepatitis B virus infection:new estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine 2012;30(12):2212-9.
    47. Zhang AM, Wang HF, Wang HB, et al. Distribution and clinical significance of HBV genotypes in patients with HBV infection in 30 regions of China. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 2011;25(2):126-8.
    48. Chan HL, Tse CH, Mo F, et al. High viral load and hepatitis B virus subgenotype ce are associated with increased risk of hepatocellular carcinoma. J Clin Oncol 2008;26(2):177-82.
    49. Yoffe B, Noonan CA, Melnick JL, et al. Hepatitis B virus DNA in mononuclear cells and analysis of cell subsets for the presence of replicative intermediates of viral DNA. J Infect Dis 1986;153(3):471-7.
    50. Mason A, Wick M, White H, et al. Hepatitis B virus replication in diverse cell types during chronic hepatitis B virus infection. Hepatology 1993;18(4):781-9.
    51. Yoshimura M, Sakurai I, Shimoda T, et al. Detection of HBsAg in the pancreas. Acta Pathol Jpn 1981;31 (4):711-7.
    52. Hoefs JC, Renner IG, Askhcavai M, et al. Hepatitis B surface antigen in pancreatic and biliary secretions. Gastroenterology 1980;79(2):191-4.
    53. Jin Y, Gao H, Chen H, et al. Identification and impact of hepatitis B virus DNA and antigens in pancreatic cancer tissues and adjacent non-cancerous tissues. Cancer Lett 2013;335(2):447-54.
    54. Yuen MF, Chan TM, Hui CK, et al. Acute pancreatitis complicating acute exacerbation of chronic hepatitis B infection carries a poor prognosis. J Viral Hepat 2001;8(6):459-64.
    55. Jiang Z, Jhunjhunwala S, Liu J, et al. The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Res 2012;22(4):593-601.
    56. Tamori A, Yamanishi Y, Kawashima S, et al. Alteration of gene expression in human hepatocellular carcinoma with integrated hepatitis B virus DNA. Clin Cancer Res 2005;11(16):5821-6.
    57. Pollicino T, Squadrito G, Cerenzia G, et al. Hepatitis B virus maintains its pro-oncogenic properties in the case of occult HBV infection. Gastroenterology 2004; 126(1):102-10.
    58. Torbenson M, Thomas DL. Occult hepatitis B. Lancent Infect Dis 2002;2(8)479-486.
    59. Jiao L, Berrington de Gonzalez A, Hartge P, et al. Body mass index, effect modifiers, and risk of pancreatic cancer:a pooled study of seven prospective cohorts. Cancer causes & control:CCC 2010;21(8):1305-14.
    60. Lucenteforte E, La Vecchia C, Silverman D, et al. Alcohol consumption and pancreatic cancer:a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol 2012;23(2):374-82.
    61. Norell SE, Ahlbom A, Erwald R, et al. Diet and pancreatic cancer:a case-control study. Am J Epidemiol 1986;124(6):894-902.
    62. Brechot C. Pathogenesis of hepatitis B virus-related hepatocellular carcinoma:old and new paradigms. Gastroenterology 2004; 127(5 Suppl 1):S56-61.
    63. Stroup DF, Thacker SB, Olson CM, et al. Characteristics of meta-analyses related to acceptance for publication in a medical journal. Journal of clinical epidemiology 2001;54(7):655-60.
    64. Moher D, Cook DJ, Eastwood S, et al. Improving the quality of reports of meta-analyses of randomized controlled trials:the QUOROM Statement. Revista espanola de salud publica 2000;74(2):107-18.
    65. Harbord RM, Egger M, Sterne JA. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 2006;25(20):3443-57.
    1. Maisonneuve P, Lowenfels AB. Epidemiology of pancreatic cancer:an update. Dig Dis 2010;28(4-5):645-56.
    2. Siegel R, Naishadham D, Jemal A. Cancer statistics,2013. CA Cancer J Clin 2013;63(1):11-30.
    3. Wolfgang CL, Herman JM, Laheru DA, et al. Recent progress in pancreatic cancer. CA Cancer J Clin 2013;63(5):318-48.
    4. Muller SA, Tarantino I, Martin DJ, et al. Pancreatic surgery:beyond the traditional limits. Recent Results Cancer Res 2012;196:53-64.
    5. Steward WP, Brown K. Cancer chemoprevention:a rapidly evolving field. Br J Cancer 2013;109(1):1-7.
    6. Strijker M, van Santvoort HC, Besselink MG, et al. Robot-assisted pancreatic surgery:a systematic review of the literature. HPB (Oxford) 2013;15(1):1-10.
    7. Axilbund JE, Wiley EA. Genetic testing by cancer site:pancreas. Cancer J 2012;18(4):350-4.
    8. Johnson J, de Mejia EG. Dietary factors and pancreatic cancer:the role of food bioactive compounds. Mol Nutr Food Res 2011;55(1):58-73.
    9. Li Y, Wicha MS, Schwartz SJ, et al. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. J Nutr Biochem 2011;22(9):799-806.
    10. Iodice S, Gandini S, Maisonneuve P, et al. Tobacco and the risk of pancreatic cancer:a review and meta-analysis. Langenbecks Arch Surg 2008;393(4):535-45.
    11. Haas SL, Ye W, Lohr JM. Alcohol consumption and digestive tract cancer. Curr Opin Clin Nutr Metab Care 2012;15(5):457-67.
    12. Lucenteforte E, La Vecchia C, Silverman D, et al. Alcohol consumption and pancreatic cancer:a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol 2012;23(2):374-82.
    13. Suzuki T, Matsuo K, Sawaki A, et al. Alcohol drinking and one-carbon metabolism-related gene polymorphisms on pancreatic cancer risk. Cancer Epidemiol Biomarkers Prev 2008;17(10):2742-7.
    14. Lebedeva AN, Kubyshkin VA, Demidova VS. The diabetes mellitus and pancreatic cancer. Khirurgiia (Mosk) 2013(4):82-5.
    15. Olson SH, Kurtz RC. Epidemiology of pancreatic cancer and the role of family history. J Surg Oncol 2013; 107(1):1-7.
    16. Larsson SC, Wolk A. Red and processed meat consumption and risk of pancreatic cancer:meta-analysis of prospective studies. Br J Cancer 2012;106(3):603-7.
    17. Paluszkiewicz P, Smolinska K, Debinska I, et al. Main dietary compounds and pancreatic cancer risk. The quantitative analysis of case-control and cohort studies. Cancer Epidemiol 2012;36(1):60-7.
    18. Chan JM, Wang F, Holly EA. Vegetable and fruit intake and pancreatic cancer in a population-based case-control study in the San Francisco bay area. Cancer Epidemiol Biomarkers Prev 2005;14(9):2093-7.
    19. Jansen RJ, Robinson DP, Stolzenberg-Solomon RZ, et al. Fruit and vegetable consumption is inversely associated with having pancreatic cancer. Cancer causes & control.2011;22(12):1613-25.
    20. Li WQ, Kuriyama S, Li Q, et al. Citrus consumption and cancer incidence: the Ohsaki cohort study. Int J Cancer 2010;127(8):1913-22.
    21. Norell SE, Ahlbom A, Erwald R, et al. Diet and pancreatic cancer:a case-control study. Am J Epidemiol 1986;124(6):894-902.
    22. Olsen GW, Mandel JS, Gibson RW, et al. Nutrients and pancreatic cancer:a population-based case-control study. Cancer causes & control 1991;2(5):291-7.
    23. Patil JR, Chidambara Murthy KN, Jayaprakasha GK, et al. Bioactive compounds from Mexican lime (Citrus aurantifolia) juice induce apoptosis in human pancreatic cells. J Agric Food Chem 2009;57(22):10933-42.
    24. Polesel J, Talamini R, Negri E, et al. Dietary habits and risk of pancreatic cancer:an Italian case-control study. Cancer causes & control 2010;21(4):493-500.
    25. Larsson SC, Giovannucci E, Wolk A. Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer:a meta-analysis. Gastroenterology 2006; 131 (4):1271-83.
    26. Bao Y, Michaud DS, Spiegelman D, et al. Folate intake and risk of pancreatic cancer:pooled analysis of prospective cohort studies. J Natl Cancer Inst 2011;103(24):1840-50.
    27. Lin HL, An QZ, Wang QZ, et al. Folate intake and pancreatic cancer risk:an overall and dose-response meta-analysis. Public Health 2013;127(7):607-13.
    28. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984; 1 (8390):1311-5.
    29. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon,7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum 1994;61:1-241.
    30. Tsimmerman Ia S. Helicobacter pylori infection:extragastric effects and diseases (a critical analysis). Klin Med (Mosk) 2006;84(4):63-7.
    31. Xiao M, Wang Y, Gao Y. Association between Helicobacter pylori Infection and Pancreatic Cancer Development:A Meta-Analysis. PLoS One 2013;8(9):e75559.
    32. Dejean A, Lugassy C, Zafrani S, et al. Detection of hepatitis B virus DNA in pancreas, kidney and skin of two human carriers of the virus. J Gen Virol 1984;65(Pt 3):651-5.
    33. Hong SG, Kim JH, Lee YS, et al. The relationship between hepatitis B virus infection and the incidence of pancreatic cancer:a retrospective case-control study. Korean J Hepatol 2010;16(1):49-56.
    34. Soylu AR, Dokmeci G, Tezel A, et al. Lamivudine-induced acute pancreatitis in a patient with decompensated Hbv-related chronic liver disease. J Clin Gastroenterol 2004;38(2):134.
    35. Yan HP, Lang ZW, Huang DZ. Preparation of digoxigenin labelled probe and detection of HBV DNA in liver and extrahepatic tissue with in situ hybridization. Zhonghua Nei Ke Za Zhi 1994;33(3):168-71.
    36. Li L, Wu B, Yang LB, et al. Chronic hepatitis B virus infection and risk of pancreatic cancer:a meta-analysis. Asian Pac J Cancer Prev 2013;14(1):275-9.
    37. Wang Y, Yang S, Song F, et al. Hepatitis B virus status and the risk of pancreatic cancer:a meta-analysis. European journal of cancer prevention 2013;22(4):328-34.
    38. Xu JH, Fu JJ, Wang XL, et al. Hepatitis B or C viral infection and risk of pancreatic cancer:a meta-analysis of observational studies. World journal of gastroenterology 2013; 19(26):4234-41.
    39. Huang J, Magnusson M, Torner A, et al. Risk of pancreatic cancer among individuals with hepatitis C or hepatitis B virus infection:a nationwide study in Sweden. Br J Cancer 2013 doi:10.1038/bjc.2013.689[published Online First:Epub Date].
    40. Kreiger N, Lacroix J, Sloan M. Hormonal factors and pancreatic cancer in women. Ann Epidemiol 2001;11(8):563-7.
    41. Lucenteforte E, Zucchetto A, Bosetti C, et al. Reproductive and hormonal factors and pancreatic cancer risk in women. Pancreas 2011;40(3):460-3.
    42. Duell EJ, Holly EA. Reproductive and menstrual risk factors for pancreatic cancer:a population-based study of San Francisco Bay Area women. Am J Epidemiol 2005;161(8):741-7.
    43. Wahi MM, Shah N, Schrock CE, et al. Reproductive factors and risk of pancreatic cancer in women:a review of the literature. Ann Epidemiol 2009;19(2):103-11.
    44. Mantha AK, Sarkar B, Tell G. A Short Review on the Implications of Base Excision Repair Pathway for Neurons:Relevance to Neurodegenerative Diseases. Mitochondrion 2013 doi:10.1016/j.mito.2013.10.007[published Online First:Epub Date].
    45. Mc Williams RR, Bamlet WR, Cunningham JM, et al. Polymorphisms in DNA repair genes, smoking, and pancreatic adenocarcinoma risk. Cancer Res 2008;68(12):4928-35.
    46. Nakao M, Hosono S, Ito H, et al. Selected polymorphisms of base excision repair genes and pancreatic cancer risk in Japanese. J Epidemiol 2012;22(6):477-83.
    47. Chen H, Zhou B, Lan X, et al. Association between single-nucleotide polymorphisms of OGG1 gene and pancreatic cancer risk in Chinese Han population. Tumour Biol 2013 doi:10.1007/s13277-013-1111-6[published Online First:Epub Date].
    48. Yan Y, Chen X, Li T, et al. Association of OGG1 Ser326Cys polymorphism and pancreatic cancer susceptibility:evidence from a meta-analysis. Tumour Biol 2013 doi:10.1007/s13277-013-1317-7[published Online First:Epub Date].
    49. Qiu L, Wang Z, Shi X, et al. Associations between XPC polymorphisms and risk of cancers:A meta-analysis. Eur J Cancer 2008;44(15):2241-53.
    50. Fisher SB, Patel SH, Bagci P, et al. An analysis of human equilibrative nucleoside transporter-1, ribonucleoside reductase subunit M1, ribonucleoside reductase subunit M2, and excision repair cross-complementing gene-1 expression in patients with resected pancreas adenocarcinoma:implications for adjuvant treatment. Cancer 2013;119(2):445-53.
    51. Karahalil B, Bohr VA, Wilson DM,3rd. Impact of DNA polymorphisms in key DNA base excision repair proteins on cancer risk. Hum Exp Toxicol 2012;31(10):981-1005.
    52. Luo M, Delaplane S, Jiang A, et al. Role of the multifunctional DNA repair and redox signaling protein Apel/Ref-1 in cancer and endothelial cells: small-molecule inhibition of the redox function of Ape 1. Antioxid Redox Signal 2008; 10(11):1853-67.
    53. Jiao L, Bondy ML, Hassan MM, et al. Selected polymorphisms of DNA repair genes and risk of pancreatic cancer. Cancer Detect Prev 2006;30(3):284-91.
    54. Tobias F, Durante M, Taucher-Scholz G, et al. Spatiotemporal analysis of DNA repair using charged particle radiation. Mutat Res 2010;704(1-3):54-60.
    55. Giovannetti E, Pacetti P, Reni M, et al. Association between DNA-repair polymorphisms and survival in pancreatic cancer patients treated with combination chemotherapy. Pharmacogenomics 2011;12(12):1641-52.
    56. Jiang H, Wu D, Ma D, et al. Association between X-ray repair cross-complementation group 1 rs25487 polymorphism and pancreatic cancer risk. Tumour Biol 2013 doi:10.1007/s13277-013-0914-9[published Online First:Epub Date].
    57. Chen H, Tang C, Liu M, et al. Association of XRCC1 gene single nucleotide polymorphisms and susceptibility to pancreatic cancer in Chinese. Tumour Biol 2013 doi:10.1007/s13277-013-1001-y[published Online First:Epub Date].
    58. Basso D, Navaglia F, Fogar P, et al. DNA repair pathways and mitochondrial DNA mutations in gastrointestinal carcinogenesis. Clin Chim Acta 2007;381(1):50-5.
    59. Li D, Li Y, Jiao L, et al. Effects of base excision repair gene polymorphisms on pancreatic cancer survival. Int J Cancer 2007;120(8):1748-54 doi: 10.1002/ijc.22301 [published Online First:Epub Date].
    60. Li J, Li Z, Feng L, et al. Polymorphisms of DNA repair gene XRCC1 and hepatocellular carcinoma risk among East Asians:a meta-analysis. Tumour Biol 2013;34(1):261-9.
    61. Wang L, Lin DX, Lu XH, et al. Polymorphisms of the DNA repair genes XRCC1 and XPC:relationship to pancreatic cancer risk. Wei Sheng Yan Jiu 2006;35(5):534-6
    62. Duell EJ, Holly EA, Bracci PM, et al. A population-based study of the Arg399Gln polymorphism in X-ray repair cross-complementing group 1 (XRCC1) and risk of pancreatic adenocarcinoma. Cancer Res 2002;62(16):4630-6.
    63. Li D, Frazier M, Evans DB, et al. Single nucleotide polymorphisms of RecQ1, RAD54L, and ATM genes are associated with reduced survival of pancreatic cancer. J Clin Oncol 2006;24(11):1720-8.
    64. Shen WD, Chen HL, Liu PF. XRCC1 Polymorphisms and Pancreatic Cancer:A Meta-Analysis. Chin J Cancer Res 2011;23(3):165-70.
    65. Mason JB, Choi SW. The mechanisms by which folate depletion enhances colorectal carcinogenesis:a unified scheme. Nestle Nutr Workshop Ser Clin Perform Programme 2000;4:87-99; discussion 99-101.
    66. Trimmer EE. Methylenetetrahydrofolate reductase:biochemical characterization and medical significance. Curr Pharm Des 2013;19(14):2574-93.
    67. Matsubayashi H, Skinner HG, Iacobuzio-Donahue C, et al. Pancreaticobiliary cancers with deficient methylenetetrahydrofolate reductase genotypes. Clin Gastroenterol Hepatol 2005;3(8):752-60.
    68. Wang L, Miao X, Tan W, et al. Genetic polymorphisms in methylenetetrahydrofolate reductase and thymidylate synthase and risk of pancreatic cancer. Clin Gastroenterol Hepatol 2005;3(8):743-51.
    69. Singh S, Choudhuri G, Kumar R, et al. Association of 5,10-methylenetetrahydrofolate reductase C677T polymorphism in susceptibility to tropical chronic pancreatitis in north Indian population. Cell Mol Biol (Noisy-le-grand) 2012;58(1):122-7.
    70. Ohnami S, Sato Y, Yoshimura K, et al. His595Tyr polymorphism in the methionine synthase reductase (MTRR) gene is associated with pancreatic cancer risk. Gastroenterology 2008;135(2):477-88.
    71. Li L, Wu SD, Wang JY, et al. MTHFR polymorphisms and pancreatic cancer risk:lack of evidence from a meta-analysis. Asian Pac J Cancer Prev 2012;13(5):2249-52.
    72. Tu YL, Wang SB, Tan XL. MTHFR gene polymorphisms are not involved in pancreatic cancer risk:a meta-analysis. Asian Pac J Cancer Prev 2012;13(9):4627-30.
    73. Valdivielso JM, Fernandez E. Vitamin D receptor polymorphisms and diseases. Clin Chim Acta 2006;371(1-2):1-12.
    74. Chiang KC, Chen TC. The anti-cancer actions of vitamin D. Anticancer Agents Med Chem 2013;13(1):126-39.
    75. Kostner K, Denzer N, Muller CS, et al. The relevance of vitamin D receptor (VDR) gene polymorphisms for cancer:a review of the literature. Anticancer Res 2009;29(9):3511-36.
    76. McCullough ML, Bostick RM, Mayo TL. Vitamin D gene pathway polymorphisms and risk of colorectal, breast, and prostate cancer. Annu Rev Nutr 2009;29:111-32.
    77. Li L, Wu B, Yang L, et al. Association of vitamin D receptor gene polymorphisms with pancreatic cancer:A pilot study in a North China Population. Oncol Lett 2013;5(5):1731-35.
    78. Mencoboni M, Lerza R, Bogliolo G. Tumor necrosis factor:a cytokine with multiple actions. Recenti Prog Med 1992;83(1):15-7.
    79. Folkman J, Ingber D. Inhibition of angiogenesis. Semin Cancer Biol 1992;3(2):89-96.
    80. Rautenberg T, Siebert U, Arnold D, et al. Economic outcomes of sequences which include monoclonal antibodies against vascular endothelial growth factor and/or epidermal growth factor receptor for the treatment of unresectable metastatic colorectal cancer. J Med Econ 2013.
    81. Sivaprasad S, Govardhan B, Harithakrishna R, et al. Association of vascular endothelial growth factor (VEGF) gene polymorphism and increased serum VEGF concentration with pancreatic adenocarcinoma. Pancreatology 2013;13(3):267-72.
    82. Talar-Wojnarowska R, Gasiorowska A, Olakowski M, et al. Vascular endothelial growth factor (VEGF) genotype and serum concentration in patients with pancreatic adenocarcinoma and chronic pancreatitis. J Physiol Pharmacol 2010;61(6):711-6.
    83. Beckmann MW, Niederacher D, Bodden-Heidrich R, et al. [Tumor risk consultation for predisposed women from high risk cancer families]. Praxis (Bern 1994) 1998;87(15):511-5.
    84. Naderi A, Couch FJ. BRCA2 and pancreatic cancer. Int J Gastrointest Cancer 2002;31(1-3):99-106.
    85. Murphy KM, Brune KA, Griffin C, et al. Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: deleterious BRCA2 mutations in 17%. Cancer Res 2002;62(13):3789-93.
    86. Hahn SA, Greenhalf B, Ellis I, et al. BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst 2003;95(3):214-21.
    87. Cho JH, Bang S, Park SW, et al. BRCA2 mutations as a universal risk factor for pancreatic cancer has a limited role in Korean ethnic group. Pancreas 2008;36(4):337-40..
    88. Huang L, Wu C, Yu D, et al. Identification of common variants in BRCA2 and MAP2K4 for susceptibility to sporadic pancreatic cancer. Carcinogenesis 2013;34(5):1001-5.
    89. Barlow M, Edelman M, Glick RD, et al. Celecoxib inhibits invasion and metastasis via a cyclooxygenase 2-independent mechanism in an in vitro model of Ewing sarcoma. J Pediatr Surg 2012;47(6):1223-7.
    90. Gao M, Wang M, Miller KD, et al. Synthesis and preliminary in vitro biological evaluation of new carbon-11-labeled celecoxib derivatives as candidate PET tracers for imaging of COX-2 expression in cancer. Eur J Med Chem 2011;46(9):4760-7.
    91. Hamsa TP, Kuttan G. Evaluation of the anti-inflammatory and anti-tumor effect of Ipomoea obscura (L) and its mode of action through the inhibition of proinflammatory cytokines, nitric oxide and COX-2. Inflammation 2011;34(3):171-83.
    92. Lee KM, Lee KW, Jung SK, et al. Kaempferol inhibits UVB-induced COX-2 expression by suppressing Src kinase activity. Biochem Pharmacol 2010;80(12):2042-9.
    93. Wang XF, Huang MZ, Zhang XW, et al. COX-2-765G>C polymorphism increases the risk of cancer:a meta-analysis. PLoS One 2013;8(9):e73213.
    94. Talar-Wojnarowska R, Gasiorowska A, Olakowski M, et al. Role of cyclooxygenase-2 gene polymorphisms in pancreatic carcinogenesis. World journal of gastroenterology 2011;17(36):4113-7.
    95. Zhao D, Xu D, Zhang X, et al. Interaction of cyclooxygenase-2 variants and smoking in pancreatic cancer:a possible role of nucleophosmin. Gastroenterology 2009; 136(5):1659-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700