用户名: 密码: 验证码:
红花对大鼠急性脊髓损伤后保护机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分红花对大鼠急性脊髓损伤后急性期水肿、组织结构的影响
     目的:
     采用重物下降打击法,制备相当于中度大鼠脊髓损伤的模型,探讨红花注射液对大鼠脊髓损伤后运动功能、组织病理学及组织含水量的影响。
     方法:
     将24只SD大鼠随机分为假手术组(A组),脊髓打击损伤组(B组)、甲基强的松龙组(C组)、红花溶液组(D组),每组6只。B、C、D组根据改良的重物撞击装置制备脊髓急性打击损伤动物模型,C、D组在脊髓打击损伤后即刻进行腹腔注射MPSS30mg/kg、红花溶液100mg/kg,观察并检测4组大鼠SCI后1h、24h、48h3个不同时间点后肢运动功能评分变化以及脊髓组织病理学、组织含水量改变。
     结果:
     1、A组大鼠功能完全恢复。C组、D组与B组相比较24h,48h2个时间点大鼠后肢运动功能均有所改善,但24h时已出现明显差异(P<0.05),48h时差异更为显著(P<0.01);C组和D组相比各时间点相差不大。
     2、大鼠脊髓组织HE染色光镜下可见A组脊髓组织结构正常,神经元轮廓清楚,核仁清晰可见,胞质均匀深染。SCI后48h B组神经组织多灶性出血并有大量神经元坏死、尼氏体溶解消失、核固缩变小。C组神经组织结构损伤轻微,细胞轻度肿胀,胞质均匀,D组与C组相似。
     3、大鼠脊髓组织透射电镜下可见A组髓鞘组织结构正常。B组髓鞘板层结构紊乱、断裂分层,轴浆外溢,甚至出现空泡。C组神经组织结构损伤轻微,轴索轻微水肿,个别神经髓鞘变薄或缺失,D组与C组相似
     4、SCI后B、C、D各组的损伤段组织含水量均与A组有明显差异(P<0.05)。SCI后24h时D组与B组相比明显较低(P<0.05),48h差异更显著(P<0.01)。
     结论:
     1、红花和MPSS可抑制SCI后神经细胞的凋亡,减轻神经元坏死,挽救部分未
     直接受损的神经元,从而为神经功能的恢复提供组织学的基础。
     2、红花可以促进运动功能的恢复,消除SCI所造成的组织水肿,减缓组织水肿引起的炎症反应,作用优于MPSS。
     第二部分红花对大鼠急性脊髓损伤后受损部位局部能量代谢的影响
     目的:
     采用重物下降打击法,制备相当于中度大鼠脊髓损伤的模型,探讨红花注射液对大鼠脊髓损伤后乳酸(LD)含量、乳酸脱氢酶(LDH)活性以及Na+/K+-ATPase活性的影响。
     方法:
     将24只SD大鼠随机分为假手术组(A组),脊髓打击损伤组(B组)、甲基强的松龙组(C组)、红花溶液组(D组),每组6只。A、B组根据改良的重物撞击装置制备脊髓急性打击损伤动物模型,C、D组在脊髓打击损伤后即刻进行腹腔注射MPSS30mg/kg、红花溶液100mg/kg,观察并检测4组大鼠SCI后1h、24h、48h3个不同时间点LD含量、LDH活性以及Na+/K+-ATPase活性改变。
     结果:
     1、B、C、D各组的LD含量均明显高于A组(P<0.01)。SCI后24h时C组、D组与B组相比明显较低(P<0.05),在48h差异更显著(P<0.01);而D组与C组相比则没有统计学意义。
     2、SCI后B组的损伤段LDH活性均明显高于A组(P<0.01)。SCI后24h时C组与B组相比明显降低(P<0.05),D组与B组相比降低更为显著(P<0.01),SCI后48h C
     组、D组与B组差异都显著(P<0.01);而D组与C组相比没有统计学意义。
     3、SCI后B组的损伤段Na+/K+-ATPase活性均明显低于A组(P<0.01)。SCI后24
     h、48h时C组、D组与B组相比明显较高(P<0.05);而D组与C组相比则没有统计学意义。
     结论:
     1、红花注射液可以有效改善SCI后脊髓组织的局部组织糖代谢,减少组织水肿,
     防止SCI进一步恶化。
     2、红花注射液可以有效改善SCI后脊髓组织的局部能量代谢,减少组织水肿,防止SCI进一步恶化。
     第三部分红花对大鼠急性脊髓损伤后受损部位Ca2+、Mg2+微环境的影响
     目的:
     采用重物下降打击法,制备相当于中度大鼠脊髓损伤的模型,探讨红花注射液对大鼠脊髓损伤后电解质Ca2+、Mg2+含量以及Ca2+-ATPase、 Mg2+-ATPase、Ca2+/Mg2+-ATPase活性影响。
     方法:
     将24只SD大鼠随机分为假手术组(A组),脊髓打击损伤组(B组)、甲基强的松龙组(C组)、红花溶液组(D组),每组6只。A、B组根据改良的重物撞击装置制备脊髓急性打击损伤动物模型,C、D组在脊髓打击损伤后即刻进行腹腔注射MPSS30mg/kg、红花溶液100mg/kg,观察并检测4组大鼠SCI后1h、24h、48h3个不同时间点Ca2+、Mg2+含量以及Ca2+-ATPase、Mg2+-ATPase、Ca2+/Mg2+-ATPase活性改变。
     结果:
     1、SCI后B组的损伤段Ca2+含量均明显高于A组(P<0.01)。SCI后24h、48h时C组、D组与B组相比明显较低(P<0.01);而D组与C组相比则没有统计学意义。
     2、SCI后B组的损伤段Mg2+含量均明显低于A组(P<0.01)。SCI后24h、48h时C组、D组与B组相比明显较高(P<0.01);而D组与C组相比则没有统计学意义。
     3、SCI后B组的损伤段Ca2+-ATPase活性均明显低于A组(P<0.01)。SCI后1h、24h时C、D组与B组相比明显升高,差异显著(P<0.01), SCI后48h时C组与B组相比无差异;而D组与B组相比仍有明显升高(P<0.05)。
     4、SCI后B组的损伤段Mg2+-ATPase活性均明显低于A组(P<0.01)。SCI后1h、24h时C、D组与B组相比明显升高(P<0.05), SCI后48h时C组、D组与B组相比仍有明显升高(P<0.05),且D组优于C组。
     5、SCI后B组的损伤段Ca2+/Mg2+-ATPase活性均明显低于A组(P<0.01)。SCI后1h、24h时C组、D组与B组相比明显较高(P<0.05);而48h时D组差异更明显(P<0.01)。
     结论:
     1、红花注射液可有效抑制SCI后的Ca2+-ATPase、Ca2+/Mg2+-ATPase活性下降,从而可阻止Ca2+局部集聚致超载引起的SCI对神经细胞继发性损伤。
     2、红花注射液可有效抑制SCI后的Mg2+-ATP酶活性下降,从而可阻止Mg2+浓度下降,有效改善局部Ca2+超载以及能量代谢状态,延缓SCI后神经细胞继发性损伤的发生。
     第四部分红花对大鼠急性脊髓损伤后受损部位脂质过氧化反应和活性氧影响
     目的:
     采用重物下降打击法,制备相当于中度大鼠脊髓损伤的模型,探讨红花注射液对大鼠脊髓损伤后丙二醛(MDA)、超氧化物歧化酶(SOD)和活性氧(ROS)的影响。
     方法:
     将24只SD大鼠随机分为假手术组(A组),脊髓打击损伤组(B组)、甲基强的松龙组(C组)、红花溶液组(D组),每组6只。A、B组根据改良的重物撞击装置制备脊髓急性打击损伤动物模型,C、D组在脊髓打击损伤后即刻进行腹腔注射MPSS30mg/kg、红花溶液100mg/kg,观察并检测4组大鼠SCI后1h、24h、48h3个不同时间点MDA、SOD和ROS改变。
     结果:
     1、SCI后B组的损伤段MDA含量均明显高于A组(P<0.01)。SCI后1h、24h时C组、D组与B组相比明显较低(P<0.05),D组在48h差异更显著(P<0.01);而D组与C组相比则没有统计学意义。
     2、SCI后B组的损伤段ROS含量均明显高于A组(P<0.01)。SCI后1h、24h时C组、D组与B组相比明显较低(P<0.05),D组在48h差异更显著(P<0.01);而D组与C组相比则没有统计学意义。
     3、SCI后B组的损伤段SOD活性均明显低于A组(P<0.01)。SCI后1h D组与B组相比已有明显升高(P<0.05),24h时C组、D组与B组相比明显升高(P<0.05),在48h差异更显著(P<0.01);而D组与C组相比则没有统计学意义。
     结论:
     1、红花注射液可以明显降低MDA、ROS含量,提高SOD活性,从而抑制SCI后受损部位氧自由基生成,同时有效清除氧自由基等,从而阻断脂质过氧化反应。
     2、红花注射液抑制MDA、ROS生成的能力优于MPSS。
Part Ⅰ The effectsof Safflower injection on the acute edema andorganizational structure after acute spinal cord injury in adult rats
     Objective:
     To study the effects of safflower on locomotor function, histopathology and tissuewater content of the experimental spinal cord injury model with weight-dropping methodin adult rats.
     Methods:
     Twenty-four SD rats were randomly divided into4groups: Sham-operationgroup(group A), spinal cord injury group(group B), Methylprednisolone SodiumSuccinate(MPSS) group(group C), and safflower group(group D). Animal models of spinalcord injury were induced with weight-dropping method. In C and D group, MPSS of30mg/kg and safflower of100mg/kg was respectively injected by intraperitonealimmediately after modeling. The locomotor function of the hind limbs were evaluated at1h,24h,48h after SCI, and the histopathological study, tissue water content changes in thespinal cord were observed at the1h,24h and48h after modeling.
     Results:
     1. The hind limb locomotor function of the rats in group A was completely recovered.Compared with that in group B, the hind limb locomotor function of rats in group C andgroup D all improved at24h and48h, with a little significant improvement at24h(P<0.05)and more significant difference at48h (P<0.01).
     2. Spinal cord tissues after rat spinal cord injury were observed by HE staining andlight microscopy. In group A, the tissue structure was well preserved, and some neurons were clear, in which cytoplasm is homogeneous and nucleoli were evident. In group B, thenerve tissue showed multifocal leukoencephalopathy bleeding and a number of nerve cellsand nissl bodies disappeared. The nucleus became small because of pycnosis. In group C,the injury of the nerve tissue was mild, the cells appeared swelling and the cytoplasm washomogeneous. The tissue situation in group D is similar to those in group C.
     3. Spinal cord tissues after rat spinal cord injury were observed by transmissionelectron microscopy. In group A, the structure of myelin sheath was in integrity. In group B,lamellar structures were disordered with fractured layers, axoplasms were out of axilemmaand even some vacuoles appeared in myelin sheath. In group C, the injury of the nervetissue was mild, the axons appeared swelling and individual myelin sheath was thinningand missing. The tissue situation in group D is similar to those in group C.
     4. Tissue water content in group B,C and D all are significantly higher than that ingroup A(P<0.05) after modeling. And tissue water content in group D is lower than that ingroup B at24h(P<0.05), even more significantly lower at48h(P<0.01)。
     Conclusions:
     1. Safflower injection and MPSS inhibits apoptosis and alleviate necrosis on nervecell after SCI, even protect the parts of directly undamaged neurons, which providehistological basis for recovery of neurological function.
     2. Safflower injection can promote the recovery of locomotor function, eliminatetissue edema from SCI, and reduce inflammation caused by tissue edema, better than thatof MPSS.
     Part Ⅱ The effectsof Safflower injection on energy metabolism ofdamaged section after acute spinal cord injury in adult rats
     Objective:
     To study the effects of safflower on lactic acid(LD), lactic dehydrogenase(LDH) andNa+/K+-ATPase of the experimental spinal cord injury model with weight-dropping methodin adult rats.
     Methods:
     Twenty-four SD rats were randomly divided into4groups: Sham-operationgroup(group A), spinal cord injury group(group B), Methylprednisolone SodiumSuccinate(MPSS) group(group C), and safflower group(group D). Animal models of spinalcord injury were induced with weight-dropping method. In C and D group, MPSS of30mg/kg and safflower of100mg/kg was respectively injected by intraperitonealimmediately after modeling. Changes on lactic acid, lactic dehydrogenase andNa+/K+-ATPase in the spinal cord were observed at the1h,24h and48h after modeling.
     Results:
     1. LD content in group B,C and D all are significantly higher than that in group A(P<0.01) after modeling. LD content in group C and D are lower than those in group B at24h(P<0.05), even more significantly lower at48h(P<0.01). There are no significantdifference between group C and D.
     2. Compared with those in group A, LDH activity at1h,24h,48h are obviouslyhigher in group B after SCI(P<0.01). LDH activity in group C are lower than those ingroup B(P<0.05), even more significantly lower in group D at24h(P<0.01). LDHactivity in group C and D are both significantly lower than those in group B(P<0.01),while no significant difference between group C and D.
     3. Compared with those in group A, Na+/K+-ATPase activity at1h,24h,48h areobviously lower in group B after SCI(P<0.01). Na+/K+-ATPase activity in group C and D are higher than those in group B at24h and48h(P<0.05), while no significant differencbetween group C and D.
     Conclusions:
     1. Safflower injection can effectively improve glucose metabolism and reduce edemin damadged section of the spinal cord tissue after SCI, which prevent further deterioratioof SCI.
     2. Safflower injection can effectively improve energy metabolism and reduce edemin damadged section of the spinal cord tissue after SCI, which prevent further deterioratioof SCI.
     Part Ⅲ The effects of Safflower injection on energy metabolism ofdamaged section after acute spinal cord injury in adult rats
     Objective:
     To study the effects of safflower on Ca2+, Mg2+and Ca2+-ATPase, Mg2+-ATPase,Ca2+/Mg2+-ATPase of the experimental spinal cord injury model with weight-droppingmethod in adult rats.
     Methods:
     Twenty-four SD rats were randomly divided into4groups: Sham-operationgroup(group A), spinal cord injury group(group B), Methylprednisolone SodiumSuccinate(MPSS) group(group C), and safflower group(group D). Animal models of spinalcord injury were induced with weight-dropping method. In C and D group, MPSS of30mg/kg and safflower of100mg/kg was respectively injected by intraperitonealimmediately after modeling. Changes on Ca2+, Mg2+and Ca2+-ATPase, Mg2+-ATPase, Ca2+/Mg2+-ATPase in the spinal cord were observed at the1h,24h and48h aftermodeling.
     Results:
     1. Compared with those in group A, Ca2+content at1h,24h,48h are obviouslyhigher in group B after SCI(P<0.01). Ca2+content in group C and D are lower than thosein group B at24h and48h (P<0.01). There are no significant difference between group Cand D.
     2. Compared with those in group A, Mg2+content at1h,24h,48h are obviouslylower in group B after SCI(P<0.01). Mg2+content in group C and D are higher than thosein group B at24h and48h (P<0.01), while no significant difference between group C andD.
     3. Compared with those in group A, Ca2+-ATPase activity at1h,24h,48h areobviously lower in group B after SCI(P<0.01). Ca2+-ATPase activity in group C and D arehigher than those in group B at24h after SCI (P<0.01), while compared with those ingroup B at48h, Ca2+-ATPase activity only are higher in group D(P<0.05) and notsignificantly different in group C.
     4. Compared with those in group A, Mg2+-ATPase activity at1h,24h,48h areobviously lower in group B after SCI(P<0.01). Compared with those in group B,Mg2+-ATPase activity are higher in group C and D at1h and24h (P<0.05), while evenmore significantly higher at48h(P<0.01) and those in group D are better than in group C.
     5. Compared with those in group A, Ca2+/Mg2+-ATPase activity at1h,24h,48h areobviously lower in group B after SCI(P<0.01). Compared with those in group B,Mg2+-ATPase activity are higher in group C and D at1h and24h (P<0.05), while evenmore significantly higher in group D at48h(P<0.01).
     Conclusions:
     1. Safflower injection can effectively inhibit the decrease of Ca2+-ATPase, Ca2+Mg2+-ATPase activity after SCI, which prevent the secondary damage caused by calciumoverload in nerve cells.
     2. Safflower injection can effectively inhibit the decrease of Mg2+-ATPase after SCI, which prevent Mg2+concentration decrease. Consequently,these effectively improvedlocal calcium overload as well as the state of energy metabolism, and delayed theoccurrence of the secondary damage in nerve cells after SCI.
     Part Ⅳ The effects of Safflower injection on Lipid peroxidation andand ROS after acute spinal cord injury in adult rats
     Objective:
     To study the effects of safflower on malondialdehyde(MDA), superoxidedismutase(SOD) and reactive oxygen species(ROS) of the experimental spinal cord injurymodel with weight-dropping method in adult rats.
     Methods:
     Twenty-four SD rats were randomly divided into4groups: Sham-operationgroup(group A), spinal cord injury group(group B), Methylprednisolone SodiumSuccinate(MPSS) group(group C), and safflower group(group D). Animal models of spinalcord injury were induced with weight-dropping method. In C and D group, MPSS of30mg/kg and safflower of100mg/kg was respectively injected by intraperitonealimmediately after modeling. Changes on MDA, SOD and ROS in the spinal cord wereobserved at the1h,24h and48h after modeling.
     Results:
     1. Compared with those in group A, MDA content at1h,24h,48h are obviouslyhigher in group B after SCI(P<0.01). Compared with those in group B, MDA are lower ingroup C and D at1h and24h (P<0.05), while even more significantly higher in group Dat48h(P<0.01).There are no significant difference between group C and D.
     2. Compared with those in group A, ROS content at1h,24h,48h are obviouslyhigher in group B after SCI(P<0.01). Compared with those in group B, ROS are lower ingroup C and D at1h and24h (P<0.05), while even more significantly higher in group Dat48h(P<0.01).There are no significant difference between group C and D.
     3. Compared with those in group A, SOD activity at1h,24h,48h are obviouslylower in group B after SCI(P<0.01). Compared with those in group B, SOD activity arehigher in group D at1h, then higher in group C and D at24h (P<0.05), and even moresignificantly higher in group C and D at48h(P<0.01). There are no significant differencebetween group C and D.
     Conclusions:
     1. Safflower injection can obviously reduce the content of MDA and ROS and raiseSOD activity, which inhibited oxygen free radicals in damage section after SCI andeffective removed oxygen free radicals and so on, consequently blocked lipid peroxidation.
     2. Safflower injection can inhibit MDA and ROS, better than that of MPSS.
引文
1. Khan T, Havey RM, Sayers ST, et al. Animal models of spinal cord contusion injuries.Laboratory Animal Science,1999,49:161-72.
    2. Smith W, Simmonds JO, Alam ZS, et al. Spinal cord injury caused.by gunshot wounds:the cost of rehabilitation. Clin Orthop,2003,408:145-51.
    3. Tator CH, Duncan EG, Edmonds VE, et al. Complications and costs of management ofacute spinal cord injury. Paraplegia,1993,31:700-14.
    4. Burnett DM, Kolakowsky-Hayner SA, Gourley EV, et al. Spinal cord injury "outliers":an analysis of etiology, outcomes, and length of stay. J Neurotrauma,2000,17:765-72.
    5. Harvey C, Wilson SE, Greene CG, et al. New estimates of the direct costs of traumaticspinal cord injuries: results of a nationwide survey. Paraplegia,1992,30:834-50.
    6. anan A, Rengachary SS. The history of spinal biomechanics. Neurosurgery,1996,39:657-69.
    7. Schwartz G, Fehlings MG. Secondary injury mechanisms of spinal cord trauma: a noveltherapeutic approach for the management of secondary pathophysiology with thesodium channel Mocker riluzole. Prog Brain Res,2002,137:177-90.
    8. Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acutespinal cord injury. Spine,2001,26(24Supply):52-12.
    9. Dumont RJ, Okonkwo DO, Verma S, et al. Acute spinal cord injury, part I:pathophysiologic mechanisms. Clin Neuropharmacol,2001,24:254-64.
    10.安熙强,李艳虹,陈杰等.红花中黄色素和红色素的分离鉴定.中草药,1990,21(4):44-45
    11.柏蕙英,Labruyere J,秦月琴.红花对脑减压缺氧缺血幼鼠脑神经原的保护作用.中草药1992,23(10):531-5330
    12.郑虎占,董泽宏.中药现代研究与应用第三卷[M]北京学苑出版社1998:2069
    1. Khan T, Havey RM, Sayers ST, et al. Animal models of spinal cord contusion injuries.Laboratory Animal Science,1999,49:161-172.
    2. Smith W, Simmonds JO, Alam ZS, et al. Spinal cord injury caused.by gunshot wounds:the cost of rehabilitation. Clin Orthop,2003,408:145-151.
    3. Tator CH, Duncan EG, Edmonds VE, et al. Complications and costs of management ofacute spinal cord injury. Paraplegia,1993,31:700-714.
    4. Burnett DM, Kolakowsky-Hayner SA, Gourley EV, et al. Spinal cord injury "outliers":an analysis of etiology, outcomes, and length of stay. J Neurotrauma,2000,17:765-772.
    5. Harvey C, Wilson SE, Greene CG, et al. New estimates of the direct costs of traumaticspinal cord injuries: results of a nationwide survey. Paraplegia,1992,30:834-850.
    6.周玉枝,陈欢,乔莉,等.红花化学成分研究[J].中国药物化学杂志,2005,17(6):380-382.
    7.郑为超,陈铎葆,张雷,等.红花黄色素对缺血心肌的影响及机制研究[J].中国药理学通报,2005,21(8):978-980.
    8.夏玉叶,闵畅,盛雨辰,等.羟基红花黄色素A对大鼠脑缺血损伤的神经保护作用[J].中国医药工业杂志,2005,36(12):760-762.
    9. Fan lihong,Wang kunzheng,Chen bing.Effects of buyang huanwu decoction on apoptosisof nervous cells and expressions of Bcl-2and Bax in the Spinal Cord ofischemia-reperfusion injury in rabbits[J]. Journal of Traditional ChineseMedicine,2006,(02):153-156.
    10.马勇,吴健,袁冬平,等.中药脊髓康抗脊髓损伤作用实验[J].中国临床康复,2005,(45):62-63.
    11.王兴盛.红花注射液联合多西环素对兔急性脊髓损伤后MMP-2、12表达及神经功能的影响[J].甘肃中医,2010,23(3):31-33
    12.刘汝专,潘汉升,唐晓菊,等.血府逐瘀汤对兔颈髓急性损伤减压术后神经元及血管灌注的干预效果[J].中国临床康复,2006,(19):53-55.
    13.李立钧,张键,陈统一.脊髓损伤与修复[J].脊柱外科杂志,2010,1(6):350-353.
    14. Crowe MJ, Bresnahan JC, Shuman SL. Apoptosis and delayed degeneration after spinalcord injury in rats and monkeys[J]. Nat-Med,1997,3:73-76.
    1. Amar AP, Levy ML. Pathogenesis and pharmacological strategies for mitigatingsecondary damage in acute spinal cord injury.Neurosurgery,1999,44(5):1027~1040
    2. Brackedn MB, Holford TR. Effect of timing on recovery of segmental and longtractneurologic function in NASCI2. Neurosurgery,1993,79(4):500~507
    3. Farooque M, Hillered L, Holtz A, et al. Effects of moderate hypothermia on extracellularlactic acid and amino acids after severe compression injury of rat spinalcord.Neurotrauma,1997;14(1):63-69.
    4. Agrawal SK, Fehlings MG. The effect of the sodium channel blocker QX-314onrecovery after acute spinal cord injury. Neurotrauma,1997,14:81-88.
    5. Hall E D, Braughler J M. Glucocorticoid mechanisms in acute spinal cord injury: areview and therapeutic rationale. Neurosurgery,1982,18(5):320-327.
    6. Hayashi NJ, De La Torre JC, Green BA. Regional spinal cord blood flow and tissueoxygen content after spinal cord trauma. Surg Forum,1980;31:461-463
    7. Glulian D, Corpuz M, Chapman S, et al. Reactive mononuclear phagocytes releaseneurotoxins after ischemic and traumatic injury to the central nervous system.Neurosci Res,1993;36:681-693
    8. Anderson DK, Means ED, Waters TRet al. Spinal cords energy metabolism followingcompression trauma to the feline spinal cord.Neurosurg,1980;53(3):375~380
    9. Boulard G. Plasma osmolarity and cerebral volume. Ann Fr Anesth Reanim.2001;20(2):196-202
    10. Short DJ, El Masry WS, Jones PW. High dose methylprednisolone in the managementof acute spinal cord injury-a systematic review from a clinical perspective. SpinalCord,2000;38(5):273-286
    1. Yong J,Robak G,Liu D,et al.A sampling artifact in the microdialysis study of changes inextracellular [Mg2+] upon apinal cord injury.Anal Biochem,1997,245(2):203-206
    2.耿进东.钾,钠,钙与缺血性脑细胞损害.国外医学生理病理科学与临床分册,1992,12:84-86
    3. VinkR, Yun SW, Lemke M,et al. Traumatic spinal cord injury in rahbits decreasesuntracellular free magnesium concentration as measured by31P MRS. BrainRes,1989,490(1):144-147
    4. Lemke M, Demediuk P, Mclntosh TK, et al. Altertions in tissue Ca2+、Mg2+and spinalcords edema following impact trauma in rats. Biochem Biophys ResCommun,1987,147(3):1170-1175
    5. Choi DW. Calcium-mediated neurotoxicity: Relationship to specific channel types androle in ischeme damage. Trends Neurosci, Trends Neurosci,1988,11:465-469
    6. Vink R, McIntosh TK, Demediuk P,et al. Decline in intracellular free Mg2+is associatedwith irreversible tissue injury after brain trauma. BiologicChemistry,1988,263(2):757-761.
    7. Anderson DK, Means ED, Water TR, et al. Spinal cords energy metabolism followingcompression trauma to the feline spinal cord. Neurosurg,1980,53(3):375-380.
    8. Chan KM, Delfert D, Junger KD. A direct colorimetric assay for Ca2+-stimulatedATPase activity. Anal Biochem.1986,157(2):375-380.
    9. Schanne FA, Kame AB,Young EE. Calcium dependence of toxic cell death:a finalcommon pathway. Science,1979,206(4419):700-702.
    10. Young W. Role of calcium in central nervous system injuries. Neurotrauma,1992,9(Suppl1):s9-25.
    11.耿进东,等.钾,钠,钙与缺血性脑细胞损害.国外医学生理病理科学与临床分册,1992,12:84.
    12. Ram Z, Sden M, Shacked I, et al. Magnesium sulfate reverses experimental delayedcerebral vasospasm after subaracnoid hemorrhage in rats. Stroke,1991,22(7):922-927.
    13. van deGraaf SF, Bindels RJ, Hoenderop JG. Physiology ofepithelial Ca2+and Mg2+transport. Rev Physiol Biochem Pharmacol,2007,158:77-160.
    14. FeldmanZ, Gurevitch B, Artru AA, et al. Effect of magnesium given1hour after headtrauma on brain edema and neurological outcome. Neurosurg,1996,85(1):131-137.
    15. Lemke MR. Magnesium in neurology. Nervenarzt,1990,61(9):573-575.
    16. Lemke M, Faden AI. Edema development and ion changes in rat spinal cord afterimpact trauma: injury dose-response studies. Neurotrauma,1990,7(1):41-54.
    17. Vink R, McIntosh TK, Demediuk P, et al. Decline in intracellular free Mg2+isassociated with irreversible tissue injury after brain trauma. Biol Chem,1988,263(2):757-761.
    1. Milvy P, Kakari S, Campbell JB, et al. Paramagnetic species and radical products in catspinal cord. Ann N Y Acad Sci,1973,222:1102-1011.
    2.戴力扬,徐印坎.脊髓损伤与脂质过氧化.国外医学创伤与外科基本问题分册,1989,3:160.
    3. Liu J, Tang T, Yang H. Protective effect of deferoxamine on experimental spinal cordinjury in rat. Injury,2011,42(8):742-745.
    4.刘景臣,赵刚,袁绍辉,等.人参皂甙对急性脊髓损伤猫脊髓组织及血中MDA含量的影响.白求恩医科大学学报,2000,26(4):339.
    5.许翔,江曙.脊髓损伤后自由基变化及丹参对自由基影响的实验研究.中国骨伤,1999,12(5):16-18.
    6. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues bythiobarbituric acid reaction.Anal Biochem,1979,95(2):351-358
    7. Minami M, Yoshikawa H. A simplified assay method of superoxide dismutase activityfor clinical use. Clin Chim Acta,1979,92(3):337-342.
    8. Hall ED. Lipid antioxidants in acute central nervous system injury. Ann EmergMed1993,22(6):1022-7
    9. Xiong Y, Rabchevsky AG, Hall ED. Role of peroxynitrite in secondary oxidative damageafter spinal cord injury. Neurochem,2007,100(3):639-649.
    10. Hardeland R, Reiter RJ, Poeggeler B,et al. The significance of the metabolism of theneurohormone melatonin: antioxidative protection and formation of bioactivesubstances. Neurosci Biobehav Rev,1993,17(3):347-357.
    11. Hall ED, Branghler JM. Role of lipid peroxidation in posttraumatic spinal corddegeneration. Cent Nerv Syst Trauma,1986,3:281-94
    12. Hall ED, Braughler JM.Free radicals in CNS injury. Res Publ Assoc Res Nerv MentDis,1993,71:81-105.
    13. Hall E D, Braughler J M. Glucocorticoid mechanisms in acute spinal cord injury: areview and therapeutic rationale. Surg Neurol,1982,18:320-327.
    14. Braughler J M, Hall E D. Correlation of methylprednisolone levels in cat spinal cordwith its effects on (Na+-K+)-ATPase, lipid peroxidation, and alpha motor neuronfunction. Neurosurg,1982,56(6):838-844.
    15.杨建东,李家顺,贾连顺,等.大剂量甲基强的松龙对大鼠急性脊髓损伤预防保护作用的研究.中国脊柱脊髓杂志,2005,15(1):146-148.
    16.柏蕙英, Labruyere J,秦月琴.红花对脑减压缺氧缺血幼鼠脑神经原的保护作用.中草药1992,23(10):531-5330
    17.郑虎占,董泽宏.中药现代研究与应用[M].北京学苑出版社第三卷,1998,2069.
    1. TakahashiY, MiyassakaN, Tasaka SH, et al. Constitution of two coloting matters in theflower petals of carthamus tinctorius L. Tetrahe-dronLett,1982,23(49):5163-5166.
    2. Takahashi Y, Satio K, Yanagiya, et al. Chemical constitution of safflor yellow B, aquinochalconeC-glycoside from the flower petal sofcarthamus tinctorius L.Tetrahedron Lett,1984,25(23):2471-2472.
    3. Dnisova C, Subinova I. Study of stability of yellow pigments of carthamus tinctorius Lunder laboratory conditions. Biologia (Bratislava),1995,50(6):583-584.
    4. Meselhy MR, Kadota S, Momose Y, et al. Two new quinochalconeyellow pigments fromCarthamus tinctorius and Ca2+antagonistic activity of tinctormine. Chem PharmBul,1993,41(10):1796-1802.
    5. Kim JB, Cho MH, Hahn TR, el a1. Efficient purification and chemical structureidentification of carthamin from Carthamus tinctorius L. Agric Chem Biotech,1996,39:501-505.
    6. YinH B. A novel semiqulone chalcone sharing a pyrrol ring Cglycoside from Carthmustinctorius. Tetrahedron Lett,2000,4l(12):1955-1961.
    7.刘发,魏苑,杨新中,等.红花黄色素对高血压大鼠的降压作用及对肾素-血管紧张素的影响.药学学报,1992,27(10):785-787.
    8.莫尚武,陈恒留,刘宇.用45Ca研究红花对大鼠脑主动脉Ca2+内流的影响.中草药,1995,26(10):532-534.
    9.谷淑玲,胡书群,赵文君,等.红花黄色素对兔主动脉平滑肌细胞增殖的抑制作用.徐州医学院学报,1996,16(4):350-352.
    10.陆梁,胡书群,张光毅.黄色素抑制血管平滑肌细胞增殖与3种蛋白激酶的关系.药学学报,2000,35(3):169-172.
    11.王淑君,王万铁,熊建华,等.红花注射液对实验性脑缺血再灌注损伤中氧化氮和内皮素的影响.中国急救医学,2003,23(5):298-299.
    12.孙宜苹,杨建芬,李蔚.红花注射液对高血压病血管内皮保护作用的临床观察.上海医学,2002,25(增刊):50-52.
    13.朴永哲,金鸣,藏宝霞,等.红花黄色素改善缺氧心肌能量代谢的研究.中草药,2003,34(5):436.
    14.朴永哲,金鸣,藏宝霞,等.红花黄色素缓解大鼠心肌缺血作用的研究..心肺血管病杂志,2002,21(4):225.
    15.王幼平,乔峻,钱中希,等.红花黄素对缺血心肌的保护及抗氧化作用的实验研究.中华心胸血管外科杂志,1995,11(3):176-177.
    16.陈铎葆,刘建国,管凤云,等.红花黄素RRR对犬缺血心肌的影响.中国药理学通报,2000,16(5):590-591.
    17.魏道武,郑云霞,齐文萱.红花黄色素对实验性家兔心肌梗塞的影响.甘肃中医学院学报,1991,8(1):47-49.
    18.陈文梅,金鸣,吴伟,等.红花黄色素抑制血小板激活因子介导的血小板活化作用的研究.中国药学杂志,2000,35(11):741-744.
    19.王玉芹,杨树东,李家实,等.红花黄色素对血小板活化因子介导的中性粒细胞功能的影响.北京中医药大学学报,2001,23(4):21-23.
    20.金鸣,吴伟,陈文梅,等.红花总黄色素体外抑制血小板激活因子受体结合作用的研究.中国药学杂志,2001,36(3):167-169.
    21.臧宝霞,金鸣,司南,等.羟基红花黄色素A对血小板活化因子的拮抗作用.药学学报,2002,37(9):696-699.
    22.李江伟.红花黄色素对家兔血浆纤溶酶原激活剂及其抑制剂水平的影响.中草药,2002,30(2):128-129.
    23.陈希元,马军,阿不力克木.红花黄素对大鼠动脉血浆中6-Keto-PGF1a和TXB2含量的影响.中国药理学通报,1996,12(6):483-485.
    24.赵金明,秦文艳,齐越,等.红花黄色素抗凝血作用及对血小板聚集影响的研究.实验动物科学,2009,26(6):30-32.
    25. Zhu HB, Zhang L, et al. Therapeutic effects of hydroxysafflor yellow A on focalcerebral ischemic injury in rats and its primary mechanisms. Asian Nat Prod Res,2005,7(4):607-613.
    26.金鸣,李金荣,蔡亚欣,等.红花水溶性成分抗氧化作用的研究.心肺血管病杂志,1998,17(4):27-29
    27.田京伟,傅风华,蒋王林,等.羟基红花黄色素A对脑缺血所致大鼠脑线粒体损伤的保护作用.药学学报,2004,39(10):774-777.
    28.陈文梅,金鸣,李金荣,等.红花黄素对羟自由基损伤抗凝酶3的保护作用.心肺血管病杂志,1998,17(3):215-217.
    29.殷冬梅,顾建兰,沙宝熙,等.红花黄色素对幼鼠缺氧-复氧损伤的保护作用.南通医学院学报,2004,24(1):21-23.
    30. Wang C, Zhang D, et al. Neuroprotective effects of safflor yellow B on brain ischemicinjury. Exp Brain Res,2007,177(4):533-539.
    31.金鸣,李金荣,吴伟,等.红花黄色素抗氧化作用的研究.中国中药杂志,2004,29(5):447-449.
    32. Toshihiro A, Hirotoshi O, Toshitake T, et al. Erythro-hentria contane-6,8-diol and11other alkance-6,8-diols from carthamus tinctorius. Phytochemstry,1994,36(1):105-107.
    33.吴传,金鸣,杨树东,等.红花总黄素抑制血小板激活因子所致毛细血管通透性增加的研究.心肺血管疾病杂志,1998,18(4):281-283.
    34.金鸣,高子淳,王继峰.羟基红花黄色素A抑制PAF诱发的家兔血小板活化的研究.北京中医药大学学报,2004,27(5):32-35.67
    35.陈志强,王万铁,叶秀云,等.红花注射液对脑缺血/再灌注损伤家兔血清白细胞介素IL-8的影响.中国急救医学,2005,25(2):118-121.
    36.金鸣,裴崇强,臧宝霞,等.羟基红花黄色素A缓解血小板激活因子诱导的内皮细胞炎症因子表达升高作用的研究.心肺血管病杂志,2011,30(5):429-432.
    37.吴伟,金鸣,童静,等.羟基红花黄色素A诱导家兔白细胞活化的作用.药学学报,2011,46(2):153-157.
    38.徐万群,石磊,顾华丽,等.红花黄色素对急性冠状动脉综合征病人炎症因子的影响.青岛大学医学院学报,2011,47(5):426-428.
    39. Shan LQ, Ma S, Qiu XC, et al. Hydroxysafflor Yellow A protects spinal cords fromischemia/reperfusion injury in rabbits. BMC Neuroscience,2010,11:98-105.
    40.赖真,李丽珊,程少冰,等.黄芪加红花对脑缺血再灌注后神经细胞凋亡及半胱氨酸蛋白酶-3的影响.中国实验方剂学杂志,2009,15(2):45-48.
    1. Stokes BT. Experimental spinal cord injury: a dynamic and verifiable injury device [J].J Neurotrauma,1992,9(2):129–134.
    2. Brian K. Kwon, FRCSC, Wolfram Tetzlaff, et al. Pathophysiology and pharmacologictreatment of acute spinal cord injury[J]. The Spine Journal,2004,4:451-464.
    3.胥少汀,郭世绂.脊髓损伤基础与临床[M].北京:人民卫生出版社,1993;120-150.
    4.陈博来,邓晋丰.活血化瘀中药对大鼠脊髓损伤后血管内皮素及功能恢复的实验研究[J].新中医,2005,37(10):94-96.
    5.胡俊勇,刘世敬,杨远良等.丹参对大鼠脊髓损伤后脊髓血流量及运动功能的影响[J].中国中西医结合杂志,2003,6(23):167-169.
    6.刘世清,王钢,陶海鹰,等.丹参对脊髓损伤后血清钙、镁、锌、铜含量的影响[J].中国中医伤科杂志,2001,9(3):13-15.
    7.刘世清,赵东明,王海斌等.复方丹参对大鼠脊髓损伤后细胞凋亡及诱导型一氧化氮合酶表达的影响[J].中国脊柱脊髓杂志,2005,15(2):109-112.
    8.马永刚,刘世清,彭昊,等.复方丹参对大鼠实验性脊髓损伤的保护作用[J].山东中医药大学学报.2002,26(3):216-218.
    9. Chen X, Zhou C, Guo J, et al. Effects of dihydroxylphenyl lactic acid on inflammatoryresponses in spinal cord injury [J]. Brain Res,2011,1372:160-168.
    10.胡侦明,劳汉昌,张宝华,等.实验性脊髓损伤早期三七总皂甙对PGl2和TXA2的影响[J].中国脊柱脊髓杂志,1995,5(5):206-208.
    11.胡侦明,劳汉昌,张宝华,等.三七总皂甙对脊髓损伤早期病理变化影响的观察[J].中国脊柱脊髓杂志,1997,7(1):26-28.
    12.胡侦明,劳汉昌,张宝华,等.三七总皂甙治疗早期脊髓损伤的实验研究[J].中华骨科杂志,1996,16(6):384-387.
    13.舒钧,劳汉昌,张宝华,等.三七总皂甙对脊髓损伤早期保护作用的实验研究[J].中国脊柱脊髓杂志,1993,3(3):118-121.
    14.赵玉鑫,王洪,杨述华,等.三七总皂苷干预脊髓损伤大鼠诱导型一氧化氮合酶及半胱氨酸天冬氨酸蛋白酶-3表达的变化[J].中国临床康复,2006,10(31):31-33.
    15.黄纯海,王廷华,李群.脊髓全横断大鼠神经生长因子和脑源性神经营养因子表达及三七皂苷的干预效应[J].中国组织工程研究与临床康复,2007,11(41):8276-8279.
    16. MASAHIRO SAKANAKA, PENGXIANG ZHU, BO ZHANG, et al. IntravenousInfusion of Dihydroginsenoside Rb1Prevents Compressive Spinal Cord Injury andIschemic Brain Damage through Upregulation of VEGF and Bcl-xL [J]. Journal ofneurotrauma,2007,24(6):1037-1054.
    17.刘建新,王小亚,王晓峰,等.黄茂注射液对颅脑损伤后脑保护作用的实验研究[J].中国中西医结合杂志,2008,15(5):266-268.
    18.任宪盛,冷向阳,杨有庚,等.黄芪对大鼠实验性脊髓损伤的神经保护作用[J].中国临床康复,2006,10(7):31-33.
    19.马永刚,刘世清,刘敏,等.中药黄芪对脊髓星形胶质细胞单核细胞趋化蛋白-1分泌的影响[J].中国骨伤,2004,17(11):653-655.
    20.刘世清,马永刚,彭昊,等.中药黄芪对实验性脊髓损伤的神经保护作用.中国骨伤,2003,16(8):463-465.
    21.孙海燕,贾连顺,陈宣维,等.川芎嗪对大鼠脊髓损伤段电解质、水含量改变的保护作用[J].中国中医骨伤科杂志,2005,13(2):4-6.
    22.孙海燕,张宝华,劳汉昌.大鼠脊髓损伤后血栓素A2、前列环素和丙二醛的变化及川芎嗪的作用[J].昆明医学院学报,1998,19(4):611
    23.李光辉,李锋,陈超,等.川芎嗪对大鼠脊髓损伤后线粒体功能的保护作用[J].中国中医急症,2005,14(10):991-992.
    24. Li-Hong Fan, Kun-Zheng Wang, Bin Cheng, et al. Anti-apoptotic and neuroprotectiveeffects of Tetramethylpyrazine following spinal cord ischemia in rabbits [J]. BMCNeuroscience,2006,7(48):1-9.
    25. Shaoyang Chen, Lize Xiong, Qiang Wang, et al. Tetramethylpyrazine attenuates spinalcord ischemic injury due to aortic cross-clamping in rabbits [J]. BMC Neurology,2002,2(1):1-6.
    26.沈正祥,吕红斌,李小明,等.川芎嗪对大鼠急性脊髓损伤模型caspase-3和NF表达的影响[J].中南大学学报,2008,33(8):693-699.
    27.张国福,王和鸣.补阳还五汤对骨髓间质干细胞移植治疗大鼠脊髓损伤的影响[J].中国骨伤,2006,19(8):452-454.
    28.李保林,何洪阳,郑重.加味补阳还五汤治疗急性脊髓损伤的实验研究[J].中医正骨,2001,13(6):3-4.
    29.胡晓梅,何洪阳,郑重,等.加味补阳还五汤对实验性损伤脊髓轴浆运输的保护作用[J].成都中医药大学学报,2001,24(1):42-44.
    30.杨运东,冯秋珍,魏玉玲,等.加味补阳还五汤治疗大鼠脊髓损伤的实验研究[J].中医正骨,1998,10(6):3-6.
    31. Xiao-Ming Li, Xiao-Chun Bai, Lu-Ning Qin, et al, Neuroprotective effects of BuyangHuanwu Decoction on neuronal injury in hippocampus after transient forebrain ischemia inrats[J]. Neuroscience Letters,2003,346:29–32.
    32. Lei Wang, Dian-Ming Jiang, Neuroprotective effect of Buyang Huanwu Decoction onspinal ischemia/reperfusion injury in rats[J], Journal of Ethnopharmacology,2009,124:219–223.
    33. An Chen, HuiWanga, Jianwei Zhanga, et al. BYHWD rescues axotomized neurons andpromotes functional recovery after spinal cord injury in rats [J]. Journal ofEthnopharmacology,2008,117:451–456.
    34.刘汝专,潘汉升,唐晓菊,等.血府逐瘀汤对兔颈脊髓急性损伤减压术后神经元及血管灌注的干预效果[J].中国临床康复,2006,10(19):53-55.
    35.杜良杰,殷晓雪,杨毓华,等.醒髓汤抑制脊髓继发性损伤的实验研究[J].中国骨伤,2001,14(5):279-282.
    36.吴念先,董秀华,李淑贞.中医内服治疗早中期脊柱脊髓损伤[J].中国骨伤,1998,11(2):50-51.
    37.马勇,吴健,袁冬平,等.中药脊髓康抗脊髓损伤作用实验[J].中国临床康复,2005,9(45):62-63.
    38.张平,刘红,韩凤岳,等.中药髓复康对损伤后的脊髓神经元的保护作用[J].神经解剖学杂志,2002,4:358-360.
    39.苏衍萍,韩凤岳,张平,等.髓复康促进大鼠脊髓修复再生的超微结构研究[J].中国骨伤,2000,13(7):389-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700