用户名: 密码: 验证码:
鱼类耳石形态和微化学分析方法及其在群体识别中的实证研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耳石是存在于大多数硬骨鱼类内耳中的钙质沉积结构,目前耳石信息分析技术已广泛用于解决鱼类生态学中的诸多难题,如物种和群体识别、产卵场及洄游习性研究等。但在耳石形态学研究中,用以表征耳石形态特征的变量繁杂多样,尚未描述这些变量的系统归属特征、分类特点,对于各类参数的特点、应用效果以及常用体长校正方法缺乏系统对比分析和实证研究。在耳石元素指纹的LA-ICPMS分析方面,激光剥蚀点准确定位、有效剥蚀点识别及有效元素数据的甄别等关键技术尚未标准化,有待于深入研究。本研究选取我国近岸水域洄游性鱼类刀鲚(Coilianasus)、河口性鱼类凤鲚(Coiliamystus)以及定居性强的虾虎鱼科中华栉孔虾虎鱼(Ctenotrypauchen chinensis)、拉氏狼牙虾虎鱼(Odontamblyopuslacepedii)、六丝钝尾虾虎鱼(Amblychaeturichthys hexanema)、矛尾虾虎鱼(Chaeturichthys stigmatias)和斑尾刺虾虎鱼(Acanthogobius hasta)为研究对象,以矢耳石形态特征和微化学分析为手段,探讨耳石形态和微化学分析的相关方法论和技术,并实证研究它们在群体识别中的应用。主要研究结果如下:
     1)针对耳石形态分析中变量繁多的特点,以我国辽河口、秦皇岛和黄河口以及长江口的刀鲚群体识别为例,系统归纳和总结了耳石形态分析中涉及的变量特点,将其分为大小变量(Sizevariable)和轮廓变量(Shapevariable)两类,并结合两类变量进行了以上四个刀鲚群体的识别。结果表明,四个刀鲚群体的总体群体识别成功率相对适中(<60%),秦皇岛群体正确识别率最低(34%-39.5%),略高于随机分配概率,长江口群体正确识别率最高(64%-90%)
     2)变量筛选是耳石形态学分析中的一个关键问题,本文以刀鲚和凤鲚耳石形态学研究为例,归纳出以耳石形态学特征参数进行鱼类群体识别时参数筛选的基本原则:满足相应的统计假设以及具备潜在的群体识别能力。当参数数量相对较少时,采用层层筛选的方式得到所需参数;当参数数量较多时可结合主成分分析,以主成分代替原参数进行判别分析。
     3)在统计分析中非参数统计能够在参数统计无法适用的情况完成对分析主体的统计推断,大多数的参数统计过程均有对应的非参数统计过程。本文以辽东湾、渤海湾、胶州湾和长江口凤鲚群体识别研究为例,对比分析了参数统计与非参数统计的群体识别效果。以形状指数结合椭圆傅立叶系数进行的群体判别结果表明,非参数统计过程相比参数统计过程保留了更多的有效形态参数用于判别分析,最终取得的总体成功率更高(68.2%>46.2%)。
     4)体长校正是耳石形态对比分析中必须考虑的一个关键问题。本文以采辽东湾、渤海湾、黄河口、胶州湾和长江口的刀鲚和凤鲚样本为例,对比研究了三种常用的体长校正方法(协方差校正、残差校正和异速生长校正),结果表明三种方法的模型拟合效果相近,未现显著的差异;异速生长校正在刀鲚群体识别中取得最高判别成功率(70.7%),协方差校正在凤鲚群体识别中取得最高判别成功率(58.9%),表明最适的体长校正方法因鱼种而异。同时,本研究在前人研究的基础上提出了一套耳石形态比较研究中统计分析过程的改进方法。
     5)表征耳石形态特征的形状指数和傅立叶系数变量自身特点及其在形态对比分析中的实际应用效果是学者普遍关注的科学问题。本文以辽东湾、渤海湾、黄河口和胶州湾的五种虾虎鱼群体为例开展了基于耳石形态学特征的鱼种和群体识别的研究。结果显示,两类变量的种间识别效果显著优于群体间识别效果(83.7%-98.6%vs.50%-75.8%);傅立叶系数比形状指数更能提高种间或群体判别成功率,但形状指数在解释具体差异时更具优势。
     6)准确定位耳石核区并有效激光剥蚀测试样品是获得可靠的元素指纹ICPMS分析结果的关键技术。传统的耳石核区元素指纹单测点激光剥蚀取样分析容易因取样点的单一性和偏差而降低指纹元素分析的可靠性。本文构建了耳石核区多测点LA-ICPMS激光剥蚀取样-剥蚀点SEM显微结构验证技术,并以此技术进行了辽东湾、渤海湾、黄河口、胶州湾和长江口五个刀鲚群体识别研究。结果表明:耳石核区Sr:Ca和Ba:Ca比值是有效识别各刀鲚地理群体的元素指纹;基于两者的刀鲚群体识别总体判别成功率为72.7%,表现出了元素指纹较强的群体识别能力;多测点取样技术有效保证了证了剥蚀取样的质量和代表性,提高了群体识别的效率和准确性。
     综上所述,本论文以我国近海刀鲚、凤鲚和五种虾虎鱼为研究对象,研究了鱼类矢耳石形态分析和核区元素指纹分析在群体识别中的应用,确定了耳石形态参量的特点及分类,解析了耳石形态分析和元素指纹分析的技术关键方法,探讨了非参数统计在形态分析中的应用,提出了一套耳石形态比较研究中统计分析过程的改进方法,构建了耳石核区多测点激光剥蚀的元素指纹分析技术,拓展了耳石信息分析的应用,为开展后续研究提供了重要的理论基础和应用参考。
Otoliths are calcified structures that exist in most teleost. Otolith informationanalysis technique has been used to solve many problems in fishery ecology, forexample, species and stock discrimination, spawning ground and migration habits.However, in otolith morphology analyses, too many variables are used to express otolithmorphological characteristics, and the effective characteristics and category of thosevariables have not been well investigated. The characteristics of various kinds ofvariables, their applications and the pros and cons of the commonly used size removalmethods have not been stuied, either. In otolith elemental fingerprinting by LA-ICPMS,the methods of precisey laser ablating, validation of ablation spots and effectivelychoosing elemental data are still not standardized and thus need to be furtherinvestigated. In this study, we investigate the methods of otolith morphometrics andelemental fingprinting and their applications in stock discrimination of fish thatcommonly inhabit Chinese coastal waters. These fish include anadromous Coilia nasus,estuarine Coilia mystus and five highly localized gobies (Ctenotrypauchen chinensis,Odontamblyopus lacepedii, Amblychaeturichthys hexanema, Chaeturichthysstigmatias and Acanthogobius hasta). The main findings are as follows:
     1) Because there are too many otolith morphological variables that can be used inotolith morphology analysis, reasonable classification of the variables is essentialwhen applying them to stock discrimination. In this study, we classified the otolithmorphological variables into size variables and shape variables (i.e. Fouriercoefficients and shape indices), which were used for discriminating among stocksof Coilia nasus (the Liaohe River Estuary, the Qinhuang Island, the Yellow Riverestuary and the Yangtze River estuary). The results showed that the overallclassification success was moderate (<60%), with the lowest (34-39.5%) inQinhuang Island stock (slightly better than randomly assigned) and the highest (64-90%) in the Yangtze River estuary stock.
     2) Selecting the appropriate morphological variables in stock discrimination is a keytechnique in otolith morphology analysis. From the results of discriminating amongstocks of C. nasus and C. mystus in this study, some basic principles for selectingotolith morphological variable were suggested. Firstly, the variables should strictlymeet the corresponding statistic assumptions and have potentials for discrimination among stocks. Secondly, when the number of variables is relatively small, effectivevariables can be selected according to step-by-step statistics. However, when thereare too many variables, principle components analysis should be first applied to geteffective variables from the original ones before they are run for further statisticalanalyses such as discrimination analysis.
     3) The nonparametric test is an option when the data assumptions for parametric testare not met, while most parametric tests undergo the corresponding procedures fornonparametric tests. Comparisons between parametric tests and nonparametrictests running on the otolith morphometrics of four C. mystus stocks (the LiaodongBay, the Bohai Bay, the Jiaozhou Bay and the Yangtze River estuary) wereinvestigated. Results of the stock discrimination using the combination of shapeindices and elliptic Fourier coefficients showed that nonparametric tests could keepmore effective morphological variables for stock discrimination, which producedhigher overall classification success (68.2%) than parametric tests (46.2%).
     4) Size adjustment is another important technique in otolith morphology analysis.Three methods (ANCOVA adjustment, residual adjustment and allometricadjustment) were compared to remove fish length effects, which were applied tostock discrimination of C. nasus and C. mystus (the Liaodong Bay, the Bohai Bay,the Yellow River Estuary, the Jiaozhou Bay and the Yangtze River Estuary). Theresults showed that the fitting effects of the models in the three methods weresimilar. The allometric adjustment obtained the highest classification success(70.7%) in C. nasus, while the ANCOVA adjustment got the highest classificationsuccess (58.9%) in C. mystus. This suggested that the effectiveness of each sizeadjustment might be species-specific. Moreover, a procedure that can improve thestatistical process in comparing otolith morphology analysis was proposed in thisstudy.
     5) It is of interest to fishery researchers how to identify effective otolithmorphological variables and apply them to species and stock discrimination. Thisstudy compared the shape indices and elliptic Fourier coefficients as well as theirapplications to species and stock discrimination in five goby species that inhabitedin the Liaodong Bay, the Bohai Bay, the Yellow River estuary and the JiaozhouBay (Ctenotrypauchen chinensis, Odontamblyopus lacepedii,Amblychaeturichthys hexanema, Chaeturichthys stigmatias and Acanthogobiushasta). The results showed that the classification success of species discrimination (83.7-98.6%) were significantly higher than stock discrimination (50-75.8%). Theelliptic Fourier coefficients performed better in improving classification successthan shape indices in stock discrimination.
     6) Accurately locating otolith nuclei and ensuring the effectiveness of laser ablationsare key techniques to acquire reliable LA-ICPMS analysis. The traditional singlelaser ablating of otolith nuclei may weaken the reliability of elementalfingerprinting due to the unicity and bias of the ablating spots. A multi-ablatingotolith nuclei technique for elemental fingerprint was established and was appliedto discriminating among stocks of C. nasus that were collected from the LiaodongBay, the Bohai Bay, the Yellow River estuary, the Jiaozhou Bay and the YangtzeRiver estuary. The results showed that Sr:Ca and Ba:Ca ratios were effective atelementally fingerprinting the stocks. The overall classification success was at arelatively high rate of72.7%, indicating that this technique could ensure highquality of laser ablating and thus improve the efficiency and precision of the stockdiscrimination.
     In conclusion, a number of methods of otolith morphology analysis and elementalfingerprinting for species or stock discrimination were compared and investigated inthis study. These included size adjustment, selection of effective morphologicalvariables, nonparametric test versus parametric test, shape or size variables versuselliptic Fourier analysis and multi-laser ablating in otolith nuclei for otolithfingerprinting etc.. A case study was conducted to validate each methodology, whichsuggested that each appropriate analysis methods could improve the effectiveness ofotolith analysis for species or stock discrimination. This study could help betterunderstand the fundamental theories of otolith information analysis and theirapplications in fishery ecology.
引文
Allen E G,2006. New approaches to Fourier analysis of ammonoid sutures and othercomplex, open curves. Paleobiology,32:299-315.
    Andrus C F T, Crowe D E, Sandweiss D H, Reitz E J, Romanek C S,2002. Otolith δ18Orecord of Mid-Holocene sea surface temperatures in Peru. Science,295:1508-1511
    Arai T, Kotake A, Kayama S, Ogura K, Watanabe Y,2005. Movements and life historypatterns of the skipjack tuna Katsuwonus pelamis in the western Pacific, asrevealed by otolith Sr:Ca ratios. J. Mar. Biol. Assoc. UK.,85:1211-1216
    Arai T, Otake T, Tsukamoto K,1997. Drastic changes in otolith microstructure andmicrochemistry accompanying the onset of metamorphosis in the Japanese eelAnguilla japonica. Mar. Ecol. Prog. Ser.,161:17-22
    Bani A, Poursaeid S, Tuset V M,2013. Comparative morphology of the sagittal otolithin three species of south Caspian gobies. J. Fish Bio.,82:1321-1332
    Begg G A, Overholtz W J, Munroe N J,2001. The use of internal otolith morphometricsfor identification of haddock (Melanogrammus aeglefinus) stocks on GeorgesBank. Fish. Bull.,99:1-14
    Berg E, Sarvas T H, Harbitz A, Fevolden S E, Salberg A B,2005. Accuracy andprecision in stock separation of north-east Arctic and Norwegian coastal cod byotoliths-comparing readings, image analyses and a genetic method. Mar.Freshwater Res.,56:753-762
    Bolles K L, Begg G A,2000. Distinction between silver hake (Merluccius bilinearis)stocks in US waters of the northwest Atlantic based on whole otolithmorphometrics. Fish. Bull.,98:451-462
    Campana S E,1999. Chemistry and composition of otoliths: pathways, methanisms andapplications. Mar. Ecol. Prog. Ser.,188:263-279
    Campana S E, Casselman J M,1993. Stock discrimination using otolith shape analysis.Can. J. Fish. Aquat. Sci.,50:1062-1083.
    Campana S E, Chouinard G A, Hanson J M, Frechet A, Brattey J,2000. Otolithelemental fingerprints as biological tracers of fish stocks. Fish. Res.,46:343-357
    Campana S E, Fowler A J, Jones C M,1994. Otolith Elemental Fingerprinting for StockIdentification of Atlantic Cod (Gadus-Morhua) Using Laser-Ablation ICPMS.Can. J. Fish. Aquat. Sci.,51:1942-1950
    Campbell A, Mohn R K,1982. The quest for lobster stock boundaries in the CanadianMaritimes. NAFO SCR Doc. no.82/IX/107.
    Crampton J S,1995. Elliptic Fourier shape analysis of fossil bivalves: some practicalconsiderations. Lethaia28:179-186
    Doering-Arjes P, Cardinale M, Mosegaard H,2008. Estimating population age structureusing otolith morphometrics: a test with known-age Atlantic cod (Gadus morhua)individuals. Can. J. Fish. Aquat. Sci.,65:2342–2350
    Ferson S, Rohlf F J, Koehn R K,1985. Measuring shape variation of two-dimensionaloutlines. Syst. Zool.34,59-68.
    Foote M,1989. Perimeter-based Fourier analysis: a new morphometric method appliedto the Trilobite Cranidium. J. Paleont.,63(6):880-885
    Forsberg J E, Neal P R,1993. Estimating sex of Pacific halibut (Hippoglossusstenolepis), using Fourier shape analysis of otoliths. International Pacific HalibutCommission, technical report, no.29.
    Fowler A J, Campana S E, Jones C M, Thorrold S R,1995a. Experimental assessmentof the effect of temperature and salinity on elemental composition of otolith usingsolution based ICPMS. Can. J. Fish. Aquat. Sci.,52:1421-1430
    Fowler A J, Campana S E, Jones C M, Thorrold S R,1995b. Experimental assessmentof the effect of temperature and salinity on elemental composition of otolith usinglaser ablation ICPMS. Can. J. Fish. Aquat. Sci.,52:1431-1441
    Friedland K D, Reddin D G,1994. Use of otolith morphology in stock discriminationsof Atlantic salmon (Salmo Salar). Can. J. Fish. Aquat. Sci.,51:91-98.
    Gao Y W, Joner S H, Bargmann G G,2001. Stable isotopic composition of otoliths inidentification of spawning stocks of Pacific herring (Clupea pallasi) in PugetSound. Can. J. Fish. Aquat. Sci.,58:2113-2120
    Gao Y W, Beamish R J,2003. Stable isotope variations in otoliths of Pacific halibut(Hippoglossus stenolepis) and indications of the possible1990regime shift. Fish.Res.,60:393–404
    Geffen A J, Morales-Ninc B, Pérez-Mayolc S, Cantarero-Roldánd A M, Skadala J,Tovar-Sánchezc A,2013. Chemical analysis of otoliths: Cross validation betweentechniques and laboratories. Fish. Res.,143:67–80
    Jolicoeur, P J,1963. The multivariate generalization of the allometric equation.Biometrics,19,497±499.
    Kafemann R, Adlerstein S, Neuk amm R,2000. Variation in otolith strontium andcalcium ratios as an indicator of life-history strategies of freshwater fish specieswithin a brackish water system. Fish. Res.,46:313-325
    Kennedy B P, Folt C L, Blum J D, Chamberlain C P,1997. Natural isotope markers insalmon. Nature,387:766-767
    kuhl F P, Giardina C R,1982. Elliptic Fourier features of a closed contour. Comp. Graph.Ima. Proc.,18:236-258.
    L'Abée-Lund J H, Jensen A H,1993. Otoliths as natural tags in the systematics ofsalmonids. Environ. Biol. Fish.,36:389-393
    Lele S,1991. Some comments on coordinate-free and scaleinvariant methods inmorphometrics. American Journal of Physical Anthropology85:407–417
    Lestrel,1997. Fourier descriptors and their applications in biology. CambridgeUniversity Press,307-321.
    Lord C, Morat F, Lecomte-Finiger R, Keith P,2012. Otolith shape analysis for threeSicyopterus (Teleostei: Gobioidei: Sicydiinae) species from New Caledonia andVanuatu. Environ. Biol. Fish.,93(2):209-222.
    Marcus, L F,1990. Traditional morphometrics. In: Rohlf F J, Bookstein F L,(Eds.),Proceedings of the Michigan Morphometrics Workshop, vol.2. Univ. MichiganMus. Evol. Spec. Pub., pp.77-122.
    Morris J A, Rulifson R A, Toburen L H,2003. Life history strategies of striped bass,Morone saxatilis, populations inferred from otolith microchemistry. Fish. Res.,62:53-63
    Neves A, Sequeira V, Farias I, Vieira A R, Paiva R, Gordo L S,2011. Discriminatingbluemouth, Helicolenus dactylopterus (Pisces: Sebastidae), stocks in Portuguesewaters by means of otolith shape analysis. J. Mar. Biol. Assoc. UK.,91:1237-1242
    Parisi-Baradad V, Manjabacas A, Lombarte A, Olivella R, Chic ò, Piera J, García-Ladona E,2010. Automated Taxon Identification of Teleost fishes using an otolithonline database—AFORO. Fish. Res.,105:13-20Penrose L S,1954. Distance, size and shape. Annals of Eugenics,18:337–343
    Radhakrishnan K V, Li Y X, Jayalakshmy K V, Liu M, Murphy B R, Xie S G,2012.Application of otolith shape analysis in identifying different ecotypes of Coiliaectenes in the Yangtze Basin, China. Fish. Res.,125-126:156-160.
    Reyment R, Blackith R E, Campbell N A,1984. Multivariate Morphometrics,2nd ed.Academic Press, London,232
    Reyment R,1990. Reification of classical multivariate analyses in morphometry. In:Rohlf F J, Bookstein F L,(Eds.), Proceedings of the Michigan MorphometricsWorkshop, vol.2. Univ. Michigan Mus. Zool. Spec. Pub., pp.123±144
    Saila S B, Flowers, J M,1969. Geographic morphometric variation in American lobster.Syst. Zool.18,330±338
    Schwarcz H P, Gao Y, Campana S, Browne D, Knyf M, Brand U,1998. Stable carbonisotope variations in otoliths of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat.Sci.,55:1798-1806
    Secor D H, Rooker J R,2000. Is otolith strontium a useful scalar of life cycles inestuarine fishes? Fish. Res.,46:359-371
    Stransky C,2005. Geographic variation of golden redfish (Sebastes marinus) and deep-sea redfish (S. mentella) in the North Atlantic based on otolith shape analysis.ICES J. Mar. Sci.,62:1691-1698
    Stransky C, MacLellan S E.2005. Species separation and zoogeography of redfish androckfish (genus Sebastes) by otolith shape analysis. Can. J. Fish. Aquat. Sci.,62:2265-2276.
    Stransky C, Murta A G, Schlickeisen J, Zimmermann C,2008. Otolith shape analysisas a tool for stock separation of horse mackerel (Trachurus trachurus) in theNortheast Atlantic and Mediterranean. Fish. Res.,89:159-166
    Thorrold S R, Campana S E, Jones C M, Swart P K,1997. Factors determining δ13Cand δ18O fractionation in aragonitic otoliths of marine fish. Geochim. Cosmochim.Ac.,61:2909-2919
    Torres G J, Lombarte A, Morales-Nin B,2000. Sagittal otolith size and shape variabilityto identify geographical intraspecific differences in three species of the genusMerluccius. J. Mar. Biol. Assoc UK.,80:333-342
    Tuset V M, Lombarte A, Gonzalez J A, Pertusa J F, Lorente M J,2003a. Comparativemorphology of the sagittal otolith in Serranus spp. J. Fish Bio.,63:1491-1504
    Tuset V M, Lozano I J, González J A et al.,2003b. Shape indices to identify regionaldifferences in otolith morphology of comber, Serranus cabrilla (L.,1758). J. Appl.Ichthyol.,19:88—93
    Tzeng W N, Shiao J C, Iizuka Y,2002. Use of otolith Sr:Ca ratios to study the riverinemigratory behaviors of Japanese eel Anguilla japonica, Mar. Ecol. Prog. Ser.,245:213-221
    Yang J, Arai T, Liu H, Miyazaki N,2006a. Environmental signature in the otolithelemental fingerprint of the tapertail anchovy, Coilia mystus, from the Changjiangestuary, China. J. Appl. Ichthyol.,22;459–462
    Yang J, Arai T, Liu H, Miyazaki N, Tsukamoto K,2006b. Reconstructing habitat use ofCoilia mystus and Coilia ectenes of the Yangtze River estuary, and of Coiliaectenes of Taihu Lake, based on otolith strontium and calcium. J. Fish Bio.,69:1120-1135
    窦硕增,2007。鱼类的耳石信息分析及生活史重建-理论、方法与应用。海洋科学集刊,48:93-113
    窦硕增,天野洋典,于鑫,曹亮,白井厚太郎,大竹二雄,塚本勝巳,2011。基于多测点LA-ICPMS的耳石核区元素指纹分析技术及其在鱼类群体识别中的实证研究。海洋与湖沼,42:771-778
    高永文,鲁安怀,宋玉国,2004。鱼耳石的碳、氧稳定同位素成分研究。自然科学进展,14:268-272
    高永华,李胜荣,任冬妮,乔莉,冯庆玲,2008.鱼耳石元素研究热点及常用测试分析方法综述。地学前缘,15:11-17
    郭弘艺,唐文乔,魏凯,胡雪莲,2007.中国鲚属鱼类的矢耳石形态特征.动物学杂志,42(1):39—47
    郭弘艺,魏凯,唐文乔,吴嘉敏,陈文银,2010.基于矢耳石形态特征的中国鲚属鱼类种类识别.动物分类学报,35(1):127—134
    何文平,2012。鱼类耳石形态研究进展。安徽农业科学,40:14760-14762
    姜涛,杨健,刘洪波,沈新强,2011.刀鲚、凤鲚和湖鲚矢耳石的形态学比较研究.海洋科学,35(3):23—31
    姜涛,周昕期,刘洪波,刘焕章,杨健,2013.鄱阳湖刀鲚耳石的两种微化学特征.水产学报,37(2):239-244
    李辉华,郭弘艺,唐文乔,郑飞,2013.两种耳石分析法在鲚属种间和种群间识别效果的比较研究.淡水鱼也,1:14-18
    廖锐,区又君,2008。鱼类耳石研究和应用进展。南方水产,4:69-75
    苏锦祥,2000。鱼类学与海水鱼类养殖。中国农业出版社,北京
    杨良锋,李胜荣,罗军燕,高永华,佟景贵,曹烨,申俊峰,2006.不同水域鲤鱼耳石微化学特征及其环境指示意义。岩石矿物学杂志,25(6):511-516
    张弛,2012。鱼类耳石形态在蓝点马鲛群体识别和皮氏叫姑鱼年龄估算上的应用实例。中国海洋大学。
    Agüera A, Brophy D,2011. Use of saggital otolith shape analysis to discriminateNortheast Atlantic and Western Mediterranean stocks of Atlantic saury,Scomberesox saurus saurus (Walbaum). Fish. Res.,110:465—471
    Begg G A, Brown R B,2000. Stock identification of haddock Melanogrammusaeglefinus on Georges Bank based on otolith shape analysis. T. Am. Fish. Soc.,129:935—945
    Burke N, Brophy D, King P A,2008a. Otolith shape analysis: itsapplication fordiscriminating between stocks of Irish Sea and Celtic Sea herring (Clupeaharengus) in the Irish Sea. ICES J. Mar. Sci.,65:1670—1675
    Burke N, Brophy D, King P A,2008b. Shape analysis of otolith annuli in Atlanticherring (Clupea harengus); a new method for tracking fish populations. Fish. Res.,91:133—143
    Cadrin S X,2000. Advances in morphometric identification of fishery stocks. Rev. Fish.Biol. Fisher.,10:91—112
    Campana S E, Casselman J M,1993. Stock discrimination using otolith shape analysis.Can. J. Fish. Aquat. Sci.,50:1062—1083
    Capoccioni F, Costa C, Aguzzi J et al.,2011. Ontogenetic and environmental effects onotolith shape variability in three Mediterranean European eel (Anguilla anguillaL.) local stocks. J. Exp. Mar. Biol. Ecol.,397:1—7
    Cardinale M, Doering-Arjes P, Kastowsky M et al.,2004. Effects of sex, stock, andenvironment on the shape of known-age Atlantic cod (Gadus morhua) otoliths.Can. J. Fish. Aquat. Sci.,61:158—167
    DeVries D A, Grimes C B, Prager M H,2002. Using otolith shape analysis todistinguish eastern Gulf of Mexico and Atlantic Ocean stocks of king mackerel.Fish. Res.,57:51—62
    Duarte-Neto P, Lessa R, Stosic B et al.,2008. The use of sagittal otoliths indiscriminating stocks of common dolphinfish (Coryphaena hippurus) offnortheastern Brazil using multishape descriptors. ICES J. Mar. Sci.,65:1144—1152
    Farias I, Vieira A R, Gordo L E et al.,2009. Otolith shape analysis as a tool for stockdiscrimination of the black scabbardfish, Aphanopus carbo Lowe,1839(Pisces:Trichiuridae), in Portuguese waters. Sci. Mar.,73(s2):47—53
    Ferguson G J, Ward T M, Gillanders B M,2011. Otolith shape and elementalcomposition: complementary tools for stock discrimination of mulloway(Argyrosomus japonicus) in southern Australia. Fish. Res.,110:75—83
    Forsberg J E, Neal P R,1993. Estimating sex of Pacific halibut (Hippoglossusstenolepis): using Fourier shape analysis of otoliths. Technical Reports (IPHC),29:1—23
    Gagliano M, McCormick M I,2004. Feeding history influences otolith shape in tropicalfish. Mar. Ecol. Prog. Ser.,278:291—296
    Galley E A, Wright P J, Gibb F M,2006. Combined methods of otolith shape analysisimprove identification of spawning areas of Atlantic cod. ICES J. Mar. Sci.,63:1710—1717
    Kuhl F K, Giardina C R,1982. Elliptic Fourier features of a closed contour. Comput.Graph. Image Process.,18:236—258
    Lleonart J, Salat J, Torres G J,2000. Removing allometric effects of body size inmorphological analysis. J. Theor. Biol.,205:85—93
    Lombarte A, Lleonart J,1993. Otolith size changes related with body growth, habitatdepth and temperature. Environ. Biol. Fish.,37:297—306
    Longmore C, Fogarty K, Neat F et al.,2010. A comparison of otolith microchemistryand otolith shape analysis for the study of spatial variation in a deep-sea teleost,Coryphaenoides rupestris. Environ. Biol. Fish.,89:591—605
    Lord C, Morat F, Lecomte-Finiger R,2011. Otolith shape analysis for three Sicyopterus(Teleostei: Gobioidei: Sicydiinae) species from New Caledonia and Vanuatu.Environ. Biol. Fish.,93:209—222
    Neves A, Sequeira V, Farias I et al.,2011. Discriminating bluemouth, Helicolenusdactylopterus (Pisces: Sebastidae), stocks in Portuguese waters by means ofotolith shape analysis. J. Mar. Biol. Assoc. UK.,91:1237—1242
    Petursdottir G, Begg G A, Marteinsdottir G,2006. Discrimination between Icelandiccod (Gadus morhua L.) populations from adjacent spawning areas based on otolithgrowth and shape. Fish. Res.,80:182—189
    Stransky C, Baumann H, Fevolden S E et al.,2008a. Separation of Norwegian coastalcod and Northeast Arctic cod by outer otolith shape analysis. Fish. Res.,90:26—35
    Stransky C, Murta A G, Schlickeisen J et al.,2008b. Otolith shape analysis as a tool forstock separation of horse mackerel (Trachurus trachurus) in the Northeast Atlanticand Mediterranean. Fish. Res.,89:159—166
    Torres G J, Lombarte A, Morales-Nin B,2000. Sagittal otolith size and shape variabilityto identify geographical intraspecific differences in three species of the genusMerluccius. J. Mar. Biol. Assoc. UK.,80:333—342
    Tracey S R, Lyle J M, Duhamel G,2006. Application of elliptical Fourier analysis ofotolith form as a tool for stock identification. Fish. Res.,77:138—147
    Tuset V M, Lozano I J, González J A et al.,2003. Shape indices to identify regionaldifferences in otolith morphology of comber, Serranus cabrilla (L.,1758). J. Appl.Ichthyol.,19:88—93
    Wang Ying-Jun, Ye Zhen-Jiang, Liu Qun et al.,2011. Stock discrimination ofspottedtail goby (Synechogobius ommaturus) in the Yellow Sea by analysis ofotolith shape. Chin. J. Oceanol. Limnol.,29:192—198
    窦硕增,横内一樹,于鑫,曹亮,大竹二雄,塚本勝巳,2011a.基于EPMA的耳石Sr:Ca比分析及其在鱼类生活史反演中的应用实例研究.海洋与湖沼,42(4):512—520
    窦硕增,天野洋典,于鑫,曹亮,白井厚太郎,大竹二雄,塚本勝巳,2011b.基于多测点LA-ICPMS的耳石核区元素指纹分析技术及其在鱼类群体识别中的实证研究.海洋与湖沼,42(6):771—778
    郭弘艺,唐文乔,魏凯,胡雪莲,2007.中国鲚属鱼类的矢耳石形态特征.动物学杂志,42(1):39—47
    王英俊,叶振江,刘群,窦硕增,王巍令,2010.细条天竺鱼(Apogonichthyslineatus)与黑鳃天竺鱼(Apogonichthys arafurae)耳石形态识别的初步研究.海洋与湖沼,41(2):281—284
    王英俊,叶振江,杨永桓,孟晓梦,2007.耳石形态在黄海蓝点马蛟群体鉴别方面的应用.中国海洋大学学报,37(增刊):155—158
    叶振江,孟晓梦,高天翔,杨永桓,王英俊,2007.两种花鲈(Lateolabrax sp.)耳石形态的地理变异.海洋与湖沼,38(4):356—360
    张波,戴芳群,金显仕,2008.黄海重要饵料鱼种矢耳石的形态特征.中国水产科学,15(6):917—926
    张国华,但胜国,苗志国,邓书东,1999.六种鲤科鱼类耳石形态以及在种类和群体识别中的应用.水生生物学报,23(6):683—688
    keljo F, Ferri J,2012. The use of otolith shape and morphometry for identification andsize-estimation of five wrasse species in predator-prey studies. J. Appl. Ichthyol.,28:524—530
    Agüera A, Brophy D,2011. Use of saggital otolith shape analysis to discriminateNortheast Atlantic and Western Mediterranean stocks of Atlantic saury,Scomberesox saurus saurus (Walbaum). Fish. Res.,110:465—471
    Begg G A, Brown R B,2000. Stock identification of haddock Melanogrammusaeglefinus on Georges Bank based on otolith shape analysis. T. Am. Fish. Soc.,129:935—945
    Campana S E, Casselman J M,1993. Stock discrimination using otolith shape analysis.Can. J. Fish. Aquat. Sci.,50:1062—1083
    Cardinale M, Doering-Arjes P, Kastowsky M et al.,2004. Effects of sex, stock andenvironment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can.J. Fish. Aquat. Sci.,61:158—167
    Cheng Q Q,2010. Morphological variation of Coilia mystus (Clupeiformes;Engraulidae) in three Chinese estuaries. J. Life Sci.,4(6):29—34
    Forsberg J E, Neal P R,1993. Estimating sex of Pacific halibut (Hippoglossusstenolepis): using Fourier shape analysis of otoliths. Technical Reports (IPHC),110:75—83
    Gagliano M, McCormick M I,2004. Feeding history influences otolith shape in tropicalfish. Mar. Ecol. Prog. Ser.,278:291—296
    He W P, Li Z J, Liu J S et al.,2008. Validation of a method of estimating age, modelinggrowth, and describing the age composition of Coilia mystus from the YangtzeEstuary, China. ICES J. Mar. Sci.,65:1655—1661
    Lombarte A, Lleonart J,1993. Otolith size changes related with body growth, habitatdepth and temperature. Environ. Biol. Fish.,37:297—306
    Longmore C, Fogarty K, Neat F et al.,2010. A comparison of otolith microchemistryand otolith shape analysis for the study of spatial variation in a deep-sea teleost,Coryphaenoides rupestris. Environ. Biol. Fish.,89:591—605
    Lord C, Morat F, Lecomte-Finiger R,2011. Otolith shape analysis for three Sicyopterus(Teleostei: Gobioidei: Sicydiinae) species from New Caledonia and Vanuatu.Environ. Biol. Fish.,93:209—222
    Rohlf F J, Archie J W,1984. A comparison of Fourier methods for the description ofwing shape in mosquitoes (Ritera eulicidae). Syst. Zool.,33:302—317
    Simoneau M, Casselman J M, Fortin R,2000. Determining the effect of negativeallometry (length/height relationship) on variation in otolith shape in lake trout(Salvelinus namaycush), using Fourier-series analysis. Can. J. Zool.,78:1597—1603
    Tracey S R, Lyle J M, Duhamel G,2006. Application of elliptical Fourier analysis ofotolith form as a tool for stock identification. Fish. Res.,77:138—147
    Tuset V M, Lozano I J, González J A et al.,2003. Shape indices to identify regionaldifferences in otolith morphology of comber, Serranus cabrilla (L.,1758). J. Appl.Ichthyol.,19:88—93
    Yang J, Arai T, Liu H B et al.,2006. Environmental signature in the otolith elementalfingerprint of the tapertail anchovy, Coilia mystus, from the Changjiang estuary,China. J. Appl. Ichthyol.,22:459—462
    窦硕增,2007.鱼类的耳石信息分析及生活史重建——理论、方法与应用.海洋科学集刊,48:94—114
    窦硕增,横内一樹,于鑫,曹亮,大竹二雄,塚本勝巳,2011.基于EPMA的耳石Sr:Ca比分析及其在鱼类生活履历反演中的应用实例研究.海洋与湖沼,42(4):512—520
    窦硕增,于鑫,曹亮,2012.鱼类矢耳石形态分析及其在群体识别中的应用实例研究.海洋与湖沼,43(4):702—712
    郭弘艺,魏凯,唐文乔,吴嘉敏,陈文银,2010.基于矢耳石形态特征的中国鲚属鱼类种类识别.动物分类学报,35(1):127—134
    姜涛,杨健,刘洪波,沈新强,2011.刀鲚、凤鲚和湖鲚矢耳石的形态学比较研究.海洋科学,35(3):23—31
    王英俊,叶振江,刘群,窦硕增,王巍令,2010.细条天竺鱼(Apogonichthyslineatus)与黑鳃天竺鱼(Apogonichthys arafurae)耳石形态识别的初步研究.海洋与湖沼,41(2):281—284
    王英俊,叶振江,杨永桓,孟晓梦,2007.耳石形态在黄海蓝点马鲛群体鉴别方面的应用.中国海洋大学学报,37(增刊):155—158
    叶振江,孟晓梦,高天翔,杨永桓,王英俊,2007b.两种花鲈(Lateolabrax sp.)耳石形态的地理变异.海洋与湖沼,38(4):356—360
    叶振江,朱柏军,薛莹,2007a.中国习见海洋鱼类耳石图谱.青岛:中国海洋大学出版社,1—231
    张波,戴芳群,金显仕,2008.黄海重要饵料鱼种矢耳石的形态特征.中国水产科学,15(6):917—926
    张国华,但胜国,苗志国等,邓书东,1999.六种鲤科鱼类耳石形态以及在种类和群体识别中的应用.水生生物学报,23(6):683—688
    Agüera A, Brophy D,2011. Use of saggittal otolith shape analysis to discriminateNortheast Atlantic and western Mediterranean stocks of Atlantic saury,Scomberesox saurus saurus (Walbaum). Fish. Res.,110:465–471.
    Bolles K L Begg G A,2000. Distinction between silver hake (Merluccius bilinearis)stocks in US waters of the northwest Atlantic based on whole otolithmorphometrics. Fish. Bul.98:451—462
    Campana S E, Casselman J M.1993. Stock discrimination using otolith shape analysis.Can. J. Fish. Aquat. Sci.,50:1062-1083
    Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H,2004. Effects of sex, stock,and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths.Can. J. Fish. Aquat. Sci.61:158—167
    Chen S Y Y, Lestrel P E, Kerr W J S, McColl J H,2000. Describing shape changes inthe human mandible using elliptic Fourier functions. Eur. J. Orthodont.22:205–216
    Cooley, W W, Lohnes P R,1971. Multivariate data analysis. John Wiley&Sons, NewYork
    Dou S Z, Yu X, Cao L,2012. Otolith shape analysis and its application in fish stockdiscrimination: a case study. Oceanology et Limnologia Sinica,43(4):702-712
    Duarte-Neto P, Lessa R, Stosic B, Morize E,2008. The use of sagittal otoliths indiscriminating stocks of common dolphinfish (Coryphaena hippurus) offnortheastern Brazil using multishape descriptors. ICES J. Mar. Sci.,65:1144–1152
    Forsberg J E, Neal P R,1993. Estimating sex of Pacific halibut (Hippoglossusstenolepis): using Fourier shape analysis of otoliths. Technical Reports (IPHC),29:1—23
    Galley E A, Wright P J, Gibb F M,2006. Combined methods of otolith shape analysisimprove identification of spawning areas of Atlantic cod. ICES J. Mar. Sci.,63:1710—1717
    Longmore C, Fogarty K, Neat F, Brophy D, Trueman C, Milton A and Mariani S,2010.A comparison of otolith microchemistry and otolith shape analysis for the studyof spatial variation in a deep-sea teleost, Coryphaenoides rupestris. Environ. Biol.Fish.,89:591–605
    Humphries J M, Bookstein F L, Chernoff B, Smith G R, Elder R L, Poss S G,1981.Multivariate discrimination by shape in relation to size. Syst. Zool.30:291—308
    Iwata H, Ukai Y,2002. SHAPE: A computer program package for quantitativeevaluation of biological shapes based on elliptic Fourier descriptors. J. Hered.,93:384-385.
    Jolicouer P,1963. The multivariate generalization of the allometry equation. Biometrics,19:497—499
    Kuhl F P, Giardina C R,1982. Elliptic Fourier features of a closed contour. Comut.Graph. Image Process.,18:236–258.
    Lombarte A, Castellón A.1991. Interspecific and intraspecific otolith variability in thegenus Merluccius as determined by image analysis. Can. J. Zool.,69:2442-2449.
    Lombarte A. and Lleonart J.1993. Otolith size changes related with body growth,habitat depth and temperature. Environ. Biol. Fish.,37:297—306
    Mardia K V,1971. The effect of nonnormality on some multivariate tests and robustnessto nonnormality in the linear model. Biometrika,58:105—121
    Neves A, Sequeira V, Farias I, Vieira A R, Paiva R, Gordo L S,2011. Discriminatingbluemouth, Helicolenus dactylopterus (Pisces: Sebastidae), stocks in Portuguesewaters by means of otolith shape analysis. J. Mar. Biol. Ass. U.K.91:1237—1242
    Gerry P Q, Michael J K,2002. Experimental design and data analysis for biologists.Cambridge University Press, New York.
    Radhakrishnan K V, Li Y X, Jayalakshmy K V, Liu M, Murphy B R, Xie S G,2012.Application of otolith shape analysis in identifying different ecotypes of Coiliaectenes in the Yangtze Basin, China. Fri. Res.125-126:156—160
    Reist J D,1985. An empirical evaluation of several univariate methods that adjust forsize variation in morphometric data. Can. J. Zool.63:1429—1439.
    Reist J D,1986. An empirical evaluation of coefficients used in residual and allometricadjustment of size covariation. Can. J. Zool.64:1363—1368
    Rohlf F J,1967. Correlated characters in numerical taxonomy. Syst. Zool.16:109—126
    SAS Institute Inc.2011. SAS/STAT9.3User’s Guide. Cary, NC: SAS Institute Inc.
    Stransky C,2005. Geographic variation of golden redfish (Sebastes marinus) and deep-sea redfish (S. mentella) in the North Atlantic based on otolith shape analysis.ICES J. Mar. Sci.,62:1691—1698
    Stransky C, MacLellan S E,2005. Species separation and zoogeography of redfish androckfish (genus Sebastes) by otolith shape analysis. Can. J. Fish. Aquat. Sci.62:2265—2276
    Tracey S R, Lyle J M, Duhamel G,2006. Application of elliptical Fourier analysis ofotolith form as a tool for stock identification. Fri. Res.77:138—147
    Torres G J, Lombarte A, Morales-Nin B,2000. Sagittal otolith size and shape variabilityto identify geographical intraspecific differences in three species of the genusMerluccius. J. Mar. Biol. Ass. U.K.80:333—342
    Tuset V M, Lozano I J, Gonzalez J A, Pertusa J F, Garcia-Diaz M M,2003. Shapeindices to identify regional differences in otolith morphology of comber, Serranuscabrilla (L.,1758). J. Appl. Ichthyol.,19:88-93
    Vignon M.2012. Ontogenetic trajectories of otolith shape during shift in habitat use:Interaction between otolith growth and environment. J. Exp. Mar. Biol. Ecol.,420-421:26-32
    Wilcox R R, Charlin V, Thompson K,1986. New Monte Carlo results on the robustnessof the ANOVA F, W and F*statistics. Commun. Stat. Simul. C., B15:933-944.
    Yu X, Cao L, Nan O, Zhao B, Dou S Z,2013. Stock discrimination of Coilia Mystususing otolith shape analysis. Oceanology et Limnologia Sinica,44(3):768-774
    Agüera A, Brophy D,2011. Use of saggittal otolith shape analysis to discriminateNortheast Atlantic and western Mediterranean stocks of Atlantic saury,Scomberesox saurus saurus (Walbaum). Fish. Res.,110:465–471.
    Arechavala-Lopez P, Sanchez-Jerez P, Bayle-Sempere J T, Sfakianakis D G, SomarakisS,2012. Discriminating farmed gilthead sea bream Sparus aurata and Europeansea bass Dicentrarchus labrax from wild stocks through scales and otoliths. J. Fish.Biol.,80:2159–2175.
    Begg G A, Overholtz W J, Munroe N J,2001. The use of internal otolith morphometricsfor identification of haddock (Melanogrammus aeglefinus) stocks on GeorgesBank. Fish. Bull.,99:1-14.
    Bird J L, Eppler D T, Checkley D M,1986. Comparisons of herring otoliths usingFourier-series shape-analysis. Can. J. Fish. Aquat. Sci.,43:1228-1234.
    Bolles K L, Begg G A,2000. Distinction between silver hake (Merluccius bilinearis)stocks in U.S. waters of the northwest Atlantic based on whole otolithmorphometrics. Fish. Bull.,98:451–462.
    Burke N, Brophy D, King P A,2008a. Shape analysis of otolith annuli in Atlanticherring (Clupea harengus); a new method for tracking fish populations. Fish. Res.,91:133–143.
    Burke N, Brophy D, King P A,2008b. Otolith shape analysis: its application fordiscriminating between stocks of Irish Sea and Celtic Sea herring (Clupeaharengus) in the Irish Sea. ICES J. Mar. Sci.,65:1670–1675.
    Campana S E, Casselman J M,1993. Stock discrimination using otolith shape analysis.Can. J. Fish. Aquat. Sci.,50:1062-1083.
    Capoccioni F, Costa C, Aguzzi J, Menesatti P, Lombarte A, Ciccotti E,2011.Ontogenetic and environmental effects on otolith shape variability in threeMediterranean European eel (Anguilla anguilla, L.) local stocks. J. Exp. Mar. Biol.Ecol.,397:1-7.
    Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H,2004. Effects of sex, stock,and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths.Can. J. Fish. Aquat. Sci.,61:158-167.
    Chen D G,1991. Fishery ecology of the Bohai Sea and the Yellow Sea. Marine Press,Beijing.(in Chinese).
    Chu Y D, Luo Y L, Wu H L,1963. Studies on the taxonomy of Sciaenidae anddescription of the new species and genera. Science and Technology Press ofShanghai, Shanghai.(in Chinese).
    Crampton J S,1995. Elliptic Fourier Shape-Analysis of Fossil Bivalves-SomePractical Considerations. Lethaia,28:179-186.
    Dou S Z, Yu X, Cao L,2012a. Otolith shape analysis and its application in fish stockdiscrimination: a case study. Oceanol. Limnol. Sinica,43:702-712.(in Chinesewith English abstract).
    Dou S Z, Amano Y, Xin Y, Cao L, Shirai K, Otake T, Tsukamoto K,2012b. Elementalsignature in otolith nuclei for stock discrimination of anadromous tapertailanchovy (Coilia nasus) using laser ablation ICPMS. Environ. Biol. Fish.,95:431-443.
    Ferguson G J, Ward T M, Gillanders B M,2011. Otolith shape and elementalcomposition: complementary tools for stock discrimination of mulloway(Argyrosomus japonicus) in southern Australia. Fish. Res.,110:75-83.
    Fitch J E, Brownell R L,1968. Fish otoliths in cetacean stomachs and their importancein interpreting feeding habits. J. Fish. Res. Board Can.,25:2561–2574.
    Gauldie R W, Nelson D G A,1990. Otolith growth in fishes. Comp. Biochem. Physiol.,A: Physiol.,97A:119-135.
    Iwata H, Ukai Y,2002. SHAPE: A computer program package for quantitativeevaluation of biological shapes based on elliptic Fourier descriptors. J. Hered.,93:384-385.
    Kuhl F P, Giardina C R,1982. Elliptic Fourier features of a closed contour. Comp.Graph. Ima. Proc.,18:236-258.
    L'Abée-Lund J H, Jensen A H,1993. Otoliths as natural tags in the systematics ofsalmonids. Environ. Biol. Fish.,36:389-393.
    Lombarte A, Castellón A,1991. Interspecific and intraspecific otolith variability in thegenus Merluccius as determined by image analysis. Can. J. Zool.,69:2442-2449.
    Lombarte A, Lleonart J,1993. Otolith size changes related with body growth, habitatdepth and temperature. Environ. Biol. Fish.,37:297-306.
    Longmore C, Fogarty K, Neat F, Brophy D, Trueman C, Milton A, Mariani S,2010. Acomparison of otolith microchemistry and otolith shape analysis for the study ofspatial variation in a deep-sea teleost, Coryphaenoides rupestris. Environ. Biol.Fish.,89:591-605.
    Lord C, Morat F, Lecomte-Finiger R, Keith P,2012. Otolith shape analysis for threeSicyopterus (Teleostei: Gobioidei: Sicydiinae) species from New Caledonia andVanuatu. Environ. Biol. Fish.,93:209-222.
    Monteiro L R, Beneditto A P M D, Guillermo L H, Rivera L A,2005. Allometricchanges and shape differentiation of sagittal otoliths in sciaenid fishes. Fish. Res.,74:288-299.
    Murie D J, Lavigne D M,1991. Food consumption of wintering harp seals, Phocagroenlandica, in the St. Lawrence Estuary, Canada. Can. J. Zool.,69:1289-1296.
    Nasreddine K, Benzinou A, Fablet R,2009. Shape geodesics for the classification ofcalcified structures: beyond Fourier shape descriptors. Fish. Res.,98:8-15.
    Parisi-Baradad V, Lombarte A, Garcia-Ladona E, Cabestany J, Piera J, Chic O,2005.Otolith shape contour analysis using affine transformation invariant wavelettransforms and curvature scale space representation. Mar. Freshwater Res.,56:795-804
    Parisi-Baradad V, Manjabacasa A, Lombarte A, Olivella R, Chic ò, Piera J, García-Ladona E,2010. Automated Taxon Identification of Teleost fishes using an otolithonline database-AFORO. Fish. Res.,105:13-20.
    Parmentier E, Vandewalle P, Lagardère F,2001. Morphoanatomy of the otic region incarapid fishes: comorphological study of their otoliths. J. Fish Biol.,58:1046-1068.
    Piera J, Parisi-Baradad V, García-Ladona E, Lombarte A, Recasens L, Cabestany J,2005. Otolith shape feature extraction oriented to automatic classification withopen distributed data. Mar. Freshwater Res.,56:805-814.
    Ponton D,2006. Is geometric morphometrics efficient for comparing otolith shape ofdifferent fish species? Comput. Vis. Imag. Underst.,267:750-757.
    Reichembacher B, Sienknecht U, Küchenhoff H, Fenske N,2007. Combined otolithmorphology and morphometry for assessing taxonomy and diversity in fossil andextant Killifish (Aphanius prolebias). J. Morphol.,268:898-915.
    Reig-Bola o R, Marti-Puig R, Lombarte A, Soria J A, Parisi-Baradad V,2010. A newotolith image contour descriptor based on partial reflection. Environ. Biol. Fish.,89:579-590.
    Reist J D,1986. An empirical evaluation of coefficients used in residual and allometricadjustment of size covariation. Can. J. Zool.,64:1363-1368.SAS Institute Inc.,2004. SAS/STAT9.1User’s Guide. Cary, NC: SAS InstituteInc.
    Skeljo F, Ferri J,2012. The use of otolith shape and morphometry for identification andsize-estimation of five wrasse species in predator-prey studies. J. Appl. Ichthyol.,28:524-530.
    Smith S J, Campana S E,2010. Integrated stock mixture analysis for continuous andcategorical data, with application to genetic-otolith combinations. Can. J. Fish.Aquat. Sci.,67:1533-1548.
    Stransky C, MacLellan S E,2005. Species separation and zoogeography of redfish androckfish (genus Sebastes) by otolith shape analysis. Can. J. Fish. Aquat. Sci.,62:2265-2276.
    Stransky C, Murta A G, Schlickeisen J, Zimmermannc C,2008. Otolith shape analysisas a tool for stock separation of horse mackerel (Trachurus trachurus) in theNortheast Atlantic and Mediterranean. Fish. Res.,89:159-166.
    Tracey S R, Lyle J M, Duhamel G,2006. Application of elliptic Fourier analysis ofotolith form as a tool for stock identification. Fish. Res.,77:138-147.
    Tuset V M, Lombarte A, Gonzales J A, Pertusa J F, Lorentes M J,2003a. Comparativemorphology of the sagittal otolith in Serranus spp. J. Fish. Biol.,63:1491-1504.
    Tuset V M, Lozano I J, González1J A, Pertusa J F, García-Díaz1M M,2003b. Shapeindices to identify regional differences in otolith morphology of comber, Serranuscabrilla (L.,1758). J. Appl. Ichthyol.,19:88-93.
    Tuset V M, Rosin P L,2006. Sagittal otolith shape used in the identification of fishesof the genus Serrranus. Fish. Res.,81:316-325.
    Vignon M,2012. Ontogenetic trajectories of otolith shape during shift in habitat use:Interaction between otolith growth and environment. J. Exp. Mar. Biol. Ecol.,420-421:26-32.
    Wang Y J, Ye Z J, Liu Q, Cao L,2011. Stock discrimination of spottedtail goby(Synechogobius ommaturus) in the Yellow Sea by analysis of otolith shape.Oceanol. Limnol. Sinica,29:192-198.
    Yu X, Cao L, Nan O, Zhao B, Dou S Z,2013. Stock identification of Coilia mystususing otolith shape analysis. Oceanol. Limnol. Sinica,44:768-774.(in Chinesewith English abstract).
    Bath G E, Thorrold S R, Jones C M, Campana S E, McLaren J W, Lam J W H,2000.Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim.Cosmochim. Acta.,64:1705–1714
    Cai D L, Ji D C, Zhou C W,1980. An ecological investigation and fishery of theanchovy (Coilia ectenes Jordan et Seale) in the lower Yellow River. J. ShandongUni.12:97–107(in Chinese with English abstract)
    Campana S E,1999. Chemistry and composition of fish otoliths: pathways,mechanisms and applications. Mar. Ecol. Prog. Ser.,188:263—297
    Campana S E, Chouinard G A, Hanson J M, Fréchet A, Brattey J,2000. Otolithelemental fingerprints as biological tracers of fish stocks. Fish. Res.,46:343–357
    Campana S E, Fowler A J, Jones C M,1994. Otolith elemental fingerprinting for stockidentification of Atlantic cod (Gadus morhua) using laser ablation ICPMS. Can. J.Fish. Aquat. Sci.,51:1942–1950
    Campana S E, Thorrold S R,2001. Otoliths, increments and elements: keys to acomprehensive understanding of fish populations? Can. J. Fish. Aquat. Sci.,58:30—38
    Chen D G,1991. Fishery ecology of the Bohai Sea and the Yellow Sea. Ocean Press,Beijing (in Chinese)
    Cheng Q Q, Lu D R, Ma L,2005. Morphological differences between close populationsdiscernible by multivariate analysis: a case study of genus Coilia (Teleostei:Clupeiforms). Aquat Liv Res18:187–192
    Chen J S,2006. Theories of river water quality and water quality of Chinese rivers. SciPress, Beijing (in Chinese)
    Collingsworth P D, van Tassell JJ, Olesik J W, Marschall E A,2010. Effects oftemperature and elemental concentration on the chemical composition of juvenileyellow perch (Perca flavescens) otoliths. Can. J. Fish. Aquat. Sci.,67:1187–1196
    DiMaria R A, Miller J A, Hurst T P,2010. Temperature and growth effects on otolithelemental chemistry of larval Pacific cod, Gadus macrocephalus. Environ. Biol.Fish.,89:453–462
    Edmonds J S, Caputi N, Morita M,1991. Stock discrimination by trace element analysisof otoliths of orange roughy (Hoplostethus atlanticus), a deep water marine teleost.Aust. J. Mar. Freshwat. Res.,42:383—389
    Elsdon T S, Gillanders B M,2002. Interactive effects of temperature and salinity onotolith chemistry: challenges for determining environmental histories of fish. Can.J. Fish. Aquat. Sci.,59:1796–1808
    Elsdon T S, Wells B K, Campana S E, Gillanders B M, Jones C M, Limburg K E, SecorD H, Thorrold S R, Walther B D,2008. Otolith chemistry to describe movementsand life history parameters of fishes: hypotheses, assumptions, limitations andinferences. Oceanogr. Mar. Biol.,46:297—330
    Fowler A J, Campana S E, Thorrold S R,1995. Experimental assessment of the effectof temperature and salinity on elemental composition of otoliths using laserablation ICPMS. Can. J. Fish. Aquat. Sci.,52:1431—1441
    Gallahar N K, Kingsford M J,1996. Factors influencing Sr/Ca ratios in otoliths ofGirella elevate: An experimental investigation. J. Fish. Biol.,48:174–186
    Gillanders B M, Joyce T C,2005. Distinguishing aquaculture and wild yellowtailkingfish via natural elemental signatures in otoliths. Mar. Freshwater. Res.,56:693–704
    Gillanders B M, Kingsford M J,2000. Elemental fingerprints of otoliths of fish maydistinguish estuarine ‘nursery’habitats. Mar. Ecol. Prog. Ser.,201:273–286
    Hu M H, Stallard R F, Edmond J M,1982. Major ion chemistry of some large Chineserivers. Nature298:550–553
    Humphreys RL Jr, Campana S E, DeMartini E E,2005. Otolith elemental fingerprintsof juvenile Pacific swordfish Xiphias gladius. J. Fish. Biol.66:1660–1670
    Kalish J M,1989. Otolith microchemistry: validation of the effects of physiology, ageand environment on otolith composition. J. Exp. Mar. Biol. Ecol.,132:151–178
    Liu Y K,1985. Water chemistry of the rivers in the Jing-Jin-Tang region, China.Proceedings of the symposium on chemgeology research in China. Sci. Press,Beijing (in Chinese)
    Liu Y L, Wu Z Q, Ma M L,2008. Progress of studies of tapertail anchovy Coilia ectenesin China. Fish. Scil,27:205–209(in Chinese)
    Longmore C, Fogarty K, Neat F, Brophy D, Trueman C, Milton A, Mariani S,2010. Acomparison of otolith microchemistry and otolith shape analysis for the study ofspatial variation in a deep-sea teleost, Coryphaenoides rupestris. Environ. Biol.Fish.,89:591–605
    Luo BZ, Shen HT,1994. The Three Gorges Dam and its effects on the ecology andenvironment of the Yangtze River Estuary. Science Press, Beijing (in Chinese)
    Martin G B, Wuenschel M J,2006. Effect of temperature and salinity on otolith elementincorporation in juvenile gray snapper Lutjanus griseus. Mar. Ecol. Prog. Ser.,324:29–239
    Martin G B, Thorrold S R, Jones C M,2004. Temperature and salinity effects onstrontium incorporation in otoliths of larval spot (Leiostomus xanthurus). Can. J.Fish. Aquat. Sci.,61:34–42
    Miller J A,2009. The effects of temperature and water concentration on the otolithincorporation of barium and manganese in black rockfish Sebastes melanops. J.Fish. Biol.,75:39–60
    Proctor C H, Thresher R E, Gunn J S, Mills D J, Harrowfield I R, Sie H,1995. Stockstructure of the southern blue tuna Thunnus maccoyi: an investigation based onprobe microanalysis of otolith composition. Mar. Biol.122:511–526
    Secor D H, Dean J M, Campana S E,1995a. Recent developments in fish otolithresearch. University of South Carolina Press, Columbia S C,1—735
    Secor D H, Henderson-Arzapalo A, Piccoli P M,1995b. Can otolith microchemistrychart patterns of migration and habitat utilization in anadromous fishes? J. Exp.Mar. Biol. Ecol.,192:15—33
    Secor D H, Rooker J R,2000, Is otolith strontium a useful scalar of life cycles inestuarine fishes? Fish. Res.,46:359–371
    Shi B A, Liang X C,1996. Level and distribution of strontium in the water course ofthe Yellow River drainage. J. Environ. Health.13:63–64(in Chinese with Englishabstract)
    Stransky C, Garbe-Schonberg C-D, Günther D,2005. Geographic variation andjuvenile migration in Atlantic redfish inferred from otolith microchemistry. Mar.Freshwater. Res.56:677–691
    Thorrold S R, Jones, C M, Campana S E, Mclaren J W, Lam J W H,1998. Trace elementsignatures in otoliths record natal river of juvenile American shad (Alosasapidissima). Limnology et Oceanography,43:1826—1835
    Thresher R E,1999. Elemental composition of otoliths as a stock delineator in fishes.Fish. Res.,43:165—204
    Thresher R E, Proctor C H, Gunn J S, Harrowfield I R,1994. An evaluation of electronprobe microanalysis of otoliths for stock delineation and identification of nurseryareas in a southern temperate groundfish, Nemadactylus macropterus(Cheilodactylidae). Fish. Bull.,92:817–840
    Townsend D W, Radtke R L, Malone D P,Wallinga J P,1995. Use of otolithstrontium:calcium ratios for hindcasting larval cod distributions relative to watermasses on Georges Bank. Mar. Ecol. Prog. Ser.,119:37–44
    Tzeng W N,1994. Temperature effects on the incorporation of strontium in otolith ofJapanese eel Anguilla japonica. J. Fish. Biol.,45:1055–1066
    Tzeng W N,1996. Effects of salinity and ontogenetic movement on strontium:calciumratios in the otoliths of the Japanese eel, Anguilla japonica. J. Exp. Mar. Biol. Ecol.,199:111–122
    Walther B D, Thorrold S R,2006. Water, not food, contributes the majority of strontiumand barium deposited in the otoliths of a marine fish. Mar. Ecol. Prog. Ser.,311:125–130
    Walther B D, Thorrold S R,2009. Inter-annual variability in isotope and elementalratios recorded in otoliths of an anadromous fish. J. Geochemi. Explor.,102:181–186
    Wang B, Lee X Q, Yuan H L, Zhou H, Cheng H G, Jiang W, Yan H,2009. Study on Srgeochemistry of surface waters in mid-eastern China. Earth Environ.,37:42–49(in Chinese with English abstract)
    Yang J, Arai T, Liu H, Miyazaki N, Tsukamoto K,2006. Reconstructing habitat use ofCoilia mystus and Coilia ectenes of the Yangtze River estuary, and of Coiliaectenes of Taihu Lake, based on otolith strontium and calcium. J. Fish. Biol.69:1120–1135
    Yuan C M,1987. Spawning migration of Chinese anchovy Coilia ectenes. Bull. Biol.12:1–3(in Chinese with English abstract)
    Yuan C M, Qin A L,1984. Ecological habits and distribution of Coilia along theChinese coast and its changes of catches. Mar. Sci.1984(5):35–37(in Chinesewith English abstract)
    Zhao J C, Geng D Q, Peng J H, Liu C Q, Dupre B, Gaillarder J, Li W P, He Q C,2003.Origin of major elements and Sr isotope for river water in Yangtze River sourcearea. Hydrogeol. Eng. Geol.,30:89–93(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700