用户名: 密码: 验证码:
牛蒡低聚果糖诱导烟草系统抗性的表达谱分析及信号转导机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物在整个生长发育过程中,需要不断抵御各种病原微生物的侵染。在与病原微生物长期相互作用并且协同进化过程中,植物逐渐形成一套复杂精密的防御体系。当受到病原微生物侵染时,植物自身会产生多种抗性反应,例如,离子流动和活性氧爆发、抗病相关蛋白基因表达、木质素合成等。激发子(elicitor)是一类同样能够诱导这些抗性反应的分子和因素。按照其来源,激发子可分为非生物激发子和生物激发子。生物激发子主要来源于病原物、其他微生物以及植物提取物或代谢物等。其中,寡糖激发子是一种来源于植物或真菌细胞壁结构的多糖降解产物,具有化学性质稳定、环境友好等特点,在低浓度下就能够诱导植物产生显著的抗病性。
     牛蒡低聚果糖(Burdock fructooligosaccharide, BFO)是本课题组从牛蒡根组织中分离纯化的一种分子量均一的水溶性菊糖型低聚糖。BFO占牛蒡根干重的17%左右,是一种储存型低聚糖。前期研究发现,BFO能够显著增加黄瓜对白粉病、枯萎病和炭疽病,番茄对灰霉病,烟草对烟草花叶病毒病以及多种果实对采后病害的抗性。BFO作为植物源、储存型的功能性低聚糖能诱导植物抗性无疑是一个有趣而新颖的发现。研究证实BFO处理显著提高了黄瓜、番茄和烟草局部叶及系统叶内源水杨酸(Salicylic Acid, SA)的水平和SA信号转导途径下游部分病程相关蛋白(Pathogenesis Related Proteins, PRs)的表达,表明BFO可能是通过水杨酸信号转导途径诱导植物系统抗性。但是,BFO诱导植物系统抗性是通过哪些信号途径来实现的?在诱导植物系统抗性过程中,有哪些早期信号转导机制?这些问题尚未见报道。本文利用高通量测序技术研究了BFO诱导后烟草基因表达谱及其早期转导信号分子Ca2+、NO和ROS的变化。结果如下:
     1.BFO诱导烟草的基因表达谱分析。以蒸馏水处理为对照,利用Solexa技术研究了BFO处理烟草1h的基因表达谱变化,结果发现412个基因的表达出现显著变化。其中表达显著上调的169个基因,主要包括编码SA激活的蛋白激酶、丝氨酸蛋白激酶、苏氨酸蛋白激酶、茉莉酸信号转导途径的抑制因子、ACC氧化酶、MYB转录因子、病程相关蛋白等基因;243个基因表达显著下调,主要包括编码ABA羟化酶、WRKY转录因子、ERF转录因子、ERF类转录因子、锌指蛋白等基因。BFO诱导的差异基因的基因本体论分析显示,差异基因参与的生物过程,主要集中在植物应激反应、防御反应、次生物质及RNA合成、激素响应以及信号转导等方面。为了进一步验证表达谱测序的可靠性,我们利用半定量和实时定量PCR技术研究了8个差异表达基因的表达量变化,结果与表达谱数据基本一致。研究结果表明,BFO激活植物抗性机制主要依赖SA介导的系统获得性抗性,还通过诱导次生代谢防御物质和其它一些与抗病性相关的因子来提高植物的防御反应。
     2.以烟草为植物材料,研究了BFO处理对烟草抗性早期信号转导的影响。结果表明:BFO能够迅速诱导烟草悬浮细胞胞外碱化,pH值5min内由5.23升高为5.6,之后逐渐降低至初始水平。BFO能够诱导胞外Ca2+内流,致使细胞内Ca2+含量迅速升高,9min时约为对照组的1.3倍。荧光和试剂盒定量检测发现BFO处理提高了烟草叶片中NO和ROS的含量。Ca2+相关的抑制剂(EGTA和LaCl3)都能够明显抑制BFO诱导的NO的生成。通过使用NO抑制剂(L-NAME)、ROS抑制剂(catalase)与BFO共处理发现,L-NAME能够抑制NO以及ROS的产生。相反,catalase能够抑制BFO诱导ROS的升高,但不能阻止NO水平的升高,从而证实NO作用位置可能位于ROS的上游。BFO处理1h时,SA合成基因PAL和ICS的表达分别在在30mmin和20min时达到高峰,约为对照的5倍和3.5倍。SA含量在BFO处理180min时约为对照的1.5倍。说明BFO能够通过诱导PAL和ICS的表达从而促进SA的积累。
     3.研究了BFO处理烟草后,与抗病性相关的生理生化反应以及次生代谢物质的变化。结果显示:BFO处理可显著降低MDA的含量,3天时与对照相比,降低了40%,从而减少对细胞膜的伤害作用。BFO处理可显著地增加烟草叶片的叶绿素含量,尤其是叶绿素a含量提高幅度较大,48h时含量增加了约1.5倍,有利于植株光合作用。BFO处理可以增加植物体内可溶性酚、可溶性糖和可溶性蛋白的含量,4天时约为对照组的2.1、2.2和1.2倍,一定程度上提高植物抗病性。同时,BFO处理提高了烟草中抗病相关酶(SOD、POD、PAL)的酶活,其活力增强都与植物诱导抗性的提高密切相关。此外,BFO提高了总酚、类黄酮及木质素等次生代谢物质的含量。总酚和类黄酮分别在处理后2天和3天时达到最高值,为对照组的1.77和1.65倍。木质素含量在处理后3-5d则明显高于对照,并在5d内一直保持上升趋势。
     4.研究挥发性物质(E)-2-己烯醛对采后番茄控制病害的影响。(E)-2-己烯醛能够显著降低果实自然感病和接种灰霉病的发生率和病情指数。自然感病实验中,处理组番茄的发病率和病情指数分别是对照组的51.9%和59.8%。在接种灰霉病实验中,4天时处理组的发病率和病情指数分别是对照的43.5%和27.8%。空间浓度为0.1μM的(E)-2-己烯醛处理不仅能够提高番茄果实中抗病相关酶POD和PAL的活性,增加总酚和类黄酮在果实中的积累,也明显诱导LOX和ETR等JA/ET信号途径相关基因的表达,但是却不能诱导病程相关蛋白基因(PR1、PR5)等SAR的标记基因的增加。推测(E)-2-己烯醛可能通过激活茉莉酸/乙烯途径诱导果实产生系统抗性抵御病害。
     综上所述,BFO诱导增强植物抗性的机制是以SA介导的SAR途径为主,多种激素信号通路共同作用的结果。次生代谢产物的合成和抗性基因的表达也与其密切相关。BFO处理烟草后会产生一系列的信号转导,例如胞外介质碱性化,钙离子变化,一氧化氮和活性氧产生等。其中,NO的升高受到Ca2+的调控。同时NO可以调节ROS的生成,并与ROS都参与了诱导编码SA合成基因表达从而促进水杨酸的积累。此外,BFO处理可以降低细胞膜相对透性及MDA含量,减少对膜的伤害作用;提高叶绿素含量,增强植物的光合作用;诱导抗病相关酶(CAT、POD、PAL、PPO)活性的提高,提高烟草叶片中总酚、类黄酮和木质素的累积,增强对病害的抗性。
In nature, plants are continuously infected by a wide range of harmful pathogenic microorganisms. The evolutionary between plants and their attackers provided plants with a highly sophisticated defense system. Plants have developed various defence responses against pathogen attack, including reactive oxygen species burst, the accumulation of salicylic acid (SA) and lignin synthesis. These defense responses could also be induced by a class of molecules named elicitor. Elicitor is a kind of compounds trigger a large array of defense responses in host plant, including biotic elicitor and abiotic elicitor. Among biotic elicitor, the oligosaccharide elicitors derived from fungal and plant cell wall polysaccharides can induce resistance to various pathogens at very low concentrations.
     Burdock fructooligosaccharide (BFO) is a plant reserve carbohydrate, first isolated from the roots of Arcitum lappa by our group. The amount of BFO in the air-dried root tissue is about17.0%. BFO is not only water-soluble, nontoxic and biocompatible, but also has versatile functional properties, which can agree with the demands of modern environmental protection. In our previous works, BFO could enhance plant resistance to several pathogens. In tobacco, BFO could increase the expression of PRs and SA to enhance resistance against tobacco mosaic virus. It is interesting that a reserve oligosaccharide could improve defense responses in plant. However, the transcriptional programming and early signaling pathway after BFO treatment remain unclear, and the underlying molecular mechanism of BFO in plants is still largely unknown. Therefore, we investigated the expressions of key genes involed in signaling pathways and defense reaction after BFO treatment in tobacco by High-throughput sequencing; we researched that the early signal transduction and the relation of NO and ROS in tobacco after BFO treatment by fluorescent probe and related inhibitors. In addition, we also examined the physiological and biochemical changes associated with resistance in plant after the treatment of BFO. The mainly results are as followed:
     1. In the present study, we compared differential expression profiling of tobacco after treatment with BFO or distilled water (DW). A number of candidate genes that had altered expression in response to BFO were identified. In all,169genes were identified as up-regulated genes. The expressions of243genes were decreased. We investigated the expressions of genes involved in defense responses and signaling pathways in BFO treated tobacco plants on a genome-wide scale. GO analysis showed that differentially expressed genes were involved in responses to stress, defense responses, biosynthetic processes, responses to hormone, RNA biosynthetic processes and signaling pathways. Eight differentially expressed genes were selected to test the reliability of Solexa sequencing. The fold changes of differential genes in transcription profile and results by qRT-PCR were similar. The results suggested that the mechanism of BFO enhanced plant resistance might be basically about the SA-mediated pathway, and other hormones also play a role in defense response. Moreover, secondary metabolites were related to constitutive activation of the host defense response in BFO treated tobacco.
     2. We used tobacco plant material, studied the effect of early signal transduction pathway after BFO treatment in tobacco. The results show that:BFO induced extracellular alkalization in tobacco, extracellular Ca2+influx in tobacco epidermal cells, Ca2+is involved in the nitric oxide (NO) generation after BFO treatment, NO and reactive oxygen species (ROS) generation in tobacco guard cells and leaf tissue; Secondly, we demonstrate NO may act as a messenger in regulating ROS. BFO also induced the expression of the genes encoding PAL and ICS to induce the accumulation of SA. Meanwhile, BFO also induced the expression of the genes encoding NPR1to activite SAR and enhance plant resistance to pathogen.
     3. The physiological and biochemical changes associated with disease resistance after BFO treatment in tobacco were investigated, and the accumulation of secondary metabolite was detected. The results indicated that BFO could significantly decrease MDA content, increase the content of chlorophyll, soluble protein, soluble sugar and soluble phenols. Meanwhile, BFO treatment could increase the content of total phenolic, flavonoids, lignin and other secondary metabolites. In addition, BFO treatment increased the activity of related enzymes (peroxidase, superoxide dismutase, phenol oxidase) and the expression of related enzyme gene in tobacco. But interestingly, BFO treatment was not able to induce the accumulation of callose.
     4. In this paper, the effects of trans-2-hexenal on the control of postharvest diseases in tomato fruit were investigated. We indicated that the incidence of natural infection and inoculation by Botrytis cinerea in tomato fruit was significantly decreased after treatment with trans-2-hexenal. Trans-2-hexenal increased the mRNA levels of genes encoding ethylene receptors, lipoxygenase, and the phenylalanine ammonia lyase (PAL), but did not induce mRNA accumulation of the pathogenesis-related proteins (PR-la or PR-5). The activities of peroxidases and PAL and the accumulation of phenolic compounds were significantly enhanced after trans-2-hexenal treatment. The findings suggest that the controlling effects of trans-2-hexenal in postharvest tomato fruit might be related to JA/ET-mediated induced systemic resistance.
     In summary, the mechanism of BFO enhanced plant resistance might be basically about the SA-mediated pathway, and secondary metabolites play an important role in the induced resistance. Treatment with BFO results in the activation of plant responses, such as medium alkalinization, elevation of cytoplasmic Ca2+concentrations, NO and ROS production. Ca2+is involved in the generation of NO after BFO treatment. NO may act as a messenger in regulating ROS, and induces the expression of PAL and ICS genes to promote the accumulation of salicylic acid. In addition, BFO treatment could reduce the content of MDA, and increase the content of chlorophyll and the activities of defense related enzymes (CAT, POD, PAL, PPO). BFO treatment can induce the accumulation of total phenolics, flavonoids and lignin in tobacco to enhance resistance.
引文
陈英,黄敏仁,诸葛强等.植物抗病信号转导途径及其相互作用.南京林业大学学报,2002,26(3):85-90.
    蔡新忠,郑重.植物系统性获得抗病性的产生原理和途径.植物保护学报,1999,26:83-88.
    陈伟,叶明志,周洁.植物酚类物质研究进展.福建农业大学学报,1997,26(4):502-508.
    郝林华,陈磊,仲娜等.牛蒡寡糖的分离纯化及结构研究.高等学校化学学报,2005,7:1242-1247.
    郝林华,孙丕喜,石红旗等.牛蒡寡糖诱导黄瓜对白粉病的抗性[J],上海交通大学学报(农业科学版),2006,5:441-447.
    刘庆元,张穗,李久禄等.黄瓜品种对霜霉病的抗性机理.华北农学报.1993,8(1):70-75.
    刘峰,慕卫,何茂华等.植物系统获得抗病性及其控制农作物病害中的应用前景.中国农学通报,2003,19(1):94-96.
    刘愚.乙烯生物合成及其调节研究的进展.植物生理学通讯,1990,1:60-66.
    李海燕,刘惕若,甄艳.辣椒品种对疫病的抗性研究--氨酸、丙二醛与可溶性糖在抗病中的作用.中国农学通报,2006,22:315-317.
    龙书生,李亚玲,张宇宏等.糖分含量作为抗镰刀菌茎腐病玉米品种的育种指标研究[J].山东农业大学学报,1999,30(4):372-380.
    栾晓燕,陈怡,杜维广等.不同抗性大豆品种(系)感染SMV后可溶性糖和游离氨基酸的研究[J].大豆科学,2000,19(4):356-361.
    郭泽建,李德葆.活性氧与植物抗病性.植物学报,2000,42:881-891.
    林忠平.植物对病害的防御系统[J].植物学通报,1993,10(3):1-13.
    沈喜海.施用钛多收对黄瓜产量、品质和抗病性的影响(简报)[J].河北职业技术师范学院学报,1999,4:70-71.
    孙大业,细胞信号转导[M].北京;科学出版社,2001.
    滕晓坤,肖华胜.基因芯片与高通量DNA测序技术前景分析.中国科学C辑:生 命科学,38(10):891-899.
    王淑芬,张仪.大白菜干烧心病的形态结构及生理生化变化[J].园艺学报,1996,23(1):37-44.
    吴岳轩,曾富华,王荣臣.杂交稻对白叶枯病的诱导抗性与细胞内防御酶系统关系的初步研究[J].植物病理学报,1999,32(1):77-85.
    饶力群,官春云,罗泽民.过氧化氢、水杨酸与植物抗病性关系的研究进展.湖南农业大学学报,2000,26(1):9-14.
    云兴福.黄瓜组织中氨基酸、糖和叶绿素含量与霜霉病抗菌素的关系.华北农学报,1993,8(4):52-58.
    章元寿.植物病理生物学.南京.江苏科学技术出版社,1996,264.
    张宪政,陈凤玉.植物生理学[M].长春:吉林科学出版社,1996.
    周博如,李永镐,刘太国等.不同抗性的大豆品种接种大豆细菌性疫病菌后可溶性蛋白、总糖含量变化的研究[J].大豆科学,2000,19(2):111-114.
    张建军,李祥,侯明生.小麦植株内可溶性糖含量与对梭条斑花叶病毒抗性的关系[J].植物保护,1997,23(5):16-18.
    赵小明.壳寡糖诱导植物抗病性及其诱抗机理的初步研究.中国科学院,2006.
    Agrawal,aA.A.,1998. Induced responses to herbivory and increased plant performance. Science,279(5354):1201-1202.
    Atkinson, C.J., T.A. Mansfield, M.R. McAinsh, C. Brownlee and A.M. Hetherington, 1990. Interactions of calcium with abscisic acid in the control of stomatal aperture. Biochemie und Physiologie der Pflanzen,186(5-6):333-339.
    Baillieul, F., I. Genetet, M. Kopp, P. Saindrenan, B. Fritig and S. Kauffmann,1995. A new elicitor of the hypersensitive response in tobacco:A fungal glycoprotein elicits cell death, expression of defence genes, production of salicylic acid, and induction of systemic acquired resistance. Plant J,8(4):551-560.
    Balachandran, S., R.J. Hull, R.A. Martins, Y. Vaadia and W.J. Lucas,1997. Influence of environmental stress on biomass partitioning in transgenic tobacco plants expressing the movement protein of tobacco mosaic virus. Plant Physiol, 114(2):475-481.
    Barroso, J.B., F.J. Corpas, A. Carreras, L.M. Sandalio, R. Valderrama, J.M. Palma, J.A. Lupianez and L.A. del Rio,1999. Localization of nitric-oxide synthase in plant peroxisomes. J Biol Chem,274(51):36729-36733.
    Block, A., E. Schmelz, P.J. O'Donnell, J.B. Jones and H.J. Klee,2005. Systemic acquired tolerance to virulent bacterial pathogens in tomato. Plant Physiol, 138(3):1481-1490..
    Bostock, R.M.,2005. Signal crosstalk and induced resistance:Straddling the line between cost and benefit. Annu Rev Phytopathol,43:545-580.
    Busch, W. and J.U. Lohmann,2007. Profiling a plant:Expression analysis in arabidopsis. Curr Opin Plant Biol,10(2):136-141.
    Cheung, F., B.J. Haas, S.M. Goldberg, G.D. May, Y. Xiao and C.D. Town,2006. Sequencing medicago truncatula expressed sequenced tags using 454 life sciences technology. BMC Genomics,7:272.
    Coventry, H.S. and I.A. Dubery,2001. Lipopolysaccharides from burkholderia cepacia contribute to an enhanced defensive capacity and the induction of pathogenesis-related proteins in nicotianae tabacum. Physiol Mol Plant P, 58(4):149-158.
    Cueto, M., O. Hernandez-Perera, R. Martin, M.L. Bentura, J. Rodrigo, S. Lamas and M.P. Golvano,1996. Presence of nitric oxide synthase activity in roots and nodules of lupinus albus. Febs Lett,398(2-3):159-164.
    Davis, D., P. Low and H. P,1998. Purification of a glycoproteinelicitor of phytoalexin formation from verticillium dahliae. Physiol Mol Plant P,52:259-273.
    Dean RA and K. J,1987. Rapid lignification in response to wounding and infection as a mechanism for induced systemic protection in cucunber. Physiology Molecular Plant Pathology,31(5):69-81.
    Delledonne, M., Y. Xia, R.A. Dixon and C. Lamb,1998. Nitric oxide functions as a signal in plant disease resistance. Nature,394(6693):585-588.
    Dixon RA, H.M., Lamb CJ 1994. Early events in the activation of plant defense responses.32:479-501. Annu Rev Phytopathol,32:479-501.
    Dong, X.,1998. Sa, ja, ethylene, and disease resistance in plants. Curr Opin Plant Biol, 1(4):316-323.
    Durner, J., D. Wendehenne and D.F. Klessig,1998. Defense gene induction in tobacco by nitric oxide, cyclic gmp, and cyclic adp-ribose. Proc Natl Acad Sci U S A, 95(17):10328-10333.
    Ebel, J.,1998. Oligoglucoside elicitor-mediated activation of plant defense. Bioessays, 20(7):569-576.
    Emrich, S.J., W.B. Barbazuk, L. Li and P.S. Schnable,2007. Gene discovery and annotation using lcm-454 transcriptome sequencing. Genome Res,17(1): 69-73.
    Esquerre-Tugaye MT, Boudard G and D. B,2000. Cell wall degrading enzymes, inhibitory proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens. Plant Physiol Biochem,38:157-163.
    Eulgem, T., P.J. Rushton, S. Robatzek and I.E. Somssich,2000. The wrky superfamily of plant transcription factors. Trends Plant Sci,5(5):199-206.
    Foissner, I., D. Wendehenne, C. Langebartels and J. Durner,2000. In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J,23(6):817-824.
    Frydman, J.,2001. Folding of newly translated proteins in vivo:The role of molecular chaperones. Annu Rev Biochem,70:603-647.
    Giannopolitis, C.N. and S.K. Ries,1977. Superoxide dismutases:I. Occurrence in higher plants. Plant Physiol,59(2):309-314.
    Goraczniak, R.M., T. Duda and R.K. Sharma,1998. Calcium modulated signaling site in type 2 rod outer segment membrane guanylate cyclase (ros-gc2). Biochem Biophys Res Commun,245(2):447-453.
    Hahn, M.G.,1996. Microbial elicitors and their receptors in plants. Annual Review of Phytopathology,34(1):387-412.
    Hain, R., Stabel.P, A. Czernilofsky, H. Steinbi, Herrara-Estrella. L. and J. Schell, 1985. Plant protoplasts by a selectable chimeric gene intake, integration, expression and gene delivery. Mol.Gen.Genet(199):161-168.
    Hamel, L.P. and N. Beaudoin,2010. Chitooligosaccharide sensing and downstream signaling:Contrasted outcomes in pathogenic and beneficial plant-microbe interactions. Planta,232(4):787-806.
    Hamilton-Kemp, T.R., C.T. McCracken, Jr., J.H. Loughrin, R.A. Andersen and D.F. Hildebrand,1992. Effects of some natural volatile compounds on the pathogenic fungialternaria alternata andbotrytis cinerea. J Chem Ecol,18(7): 1083-1091.
    He, P.-Q., L. Tian, K.-S. Chen, L.-H. Hao and G.-Y. Li,2006. Induction of volatile organic compounds of lycopersicon esculentum mill. And its resistance to botrytis cinerea pers. By burdock oligosaccharide. J Integr Plant Biol,48(5): 550-557.
    Huang, J., X. Lu, H. Yan, S. Chen, W. Zhang, R. Huang and Y Zheng,2012. Transcriptome characterization and sequencing-based identification of salt-responsive genes in millettia pinnata, a semi-mangrove plant. DNA Res, 19(2):195-207.
    Johal, G.S. and S.P. Briggs,1992. Reductase activity encoded by the hml disease resistance gene in maize. Science,258(5084):985-987.
    Kawamura, Y., S. Hase, S. Takenaka, Y. Kanayama, H. Yoshioka, S. Kamoun and H. Takahashi,2009. Infl elicitin activates jasmonic acid-and ethylene-mediated signalling pathways and induces resistance to bacterial wilt disease in tomato. J Phytopathol,157(5):287-297.
    Klarzynski, O., V. Descamps, B. Plesse, J.C. Yvin, B. Kloareg and B. Fritig,2003. Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol Plant Microbe Interact,16(2):115-122.
    Koga, D., T. Hirata, N. Sueshige, S. Tanaka and A. Ide,1992. Induction patterns of chitinases in yam callus by inoculation with autoclaved fusarium oxysporum, ethylene, and chitin and chitosan oligosaccharides. Bioscience, biotechnology, and biochemistry,56(2):280-285.
    Kogel, G., B. Beissmann, H.J. Reisener and K.H. Kogel,1988. A single glycoprotein from puccinia graminis f. Sp. Tritici cell walls elicits the hypersensitive lignification response in wheat. Physiol Mol Plant P,33(2):173-185.
    Kumar, D. and D.F. Klessig,2000. Differential induction of tobacco map kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid. Mol Plant Microbe Interact,13(3):347-51.
    Levine, A., R. Tenhaken, R. Dixon and C. Lamb,1994. H2o2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell,79(4): 583-593.
    Liu, N., Z. Lin, L. Guan, G. Gaughan and G. Lin,2014. Antioxidant enzymes regulate reactive oxygen species during pod elongation in pisum sativum and brassica chinensis. PLoS One,9(2):e87588.
    Livak, K.J. and T.D. Schmittgen,2001. Analysis of relative gene expression data using real-time quantitative per and the 2(-delta delta c(t)) method. Methods, 25(4):402-408.
    Loon, L.C., W.S. Pierpoint, T. Boller and V. Conejero,1994. Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Rep,12(3): 245-264.
    Lum, H.K., Y.K. Butt and S.C. Lo,2002. Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (phaseolus aureus). Nitric Oxide,6(2): 205-213.
    Luna, E., V. Pastor, J. Robert, V. Flors, B. Mauch-Mani and J. Ton,2011. Callose deposition:A multifaceted plant defense response. Mol Plant Microbe Interact, 24(2):183-193.
    Mathieu, Y., K. Armen, H. Xia, J. Guern, A. Koller, M.D. Spiro, M. O'Neill, P. Albersheim and A. Darvill,1991. Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. The Plant Journal, 1(3):333-343.
    Metzker, M.L.,2010. Sequencing technologies-the next generation. Nat Rev Genet, 11(1):31-46.
    Min, L., Y. Li, Q. Hu, L. Zhu, W. Gao, Y. Wu, Y. Ding, S. Liu, X. Yang and X. Zhang, 2014. Sugar and auxin signaling pathways respond to high temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol.
    Morozova, O. and M.A. Marra,2008. Applications of next-generation sequencing technologies in functional genomics. Genomics,92(5):255-264.
    Mur, L.A., I.E. Santosa, L.J. Laarhoven, N.J. Holton, F.J. Harren and A.R. Smith, 2005. Laser photoacoustic detection allows in planta detection of nitric oxide in tobacco following challenge with avirulent and virulent pseudomonas syringae pathovars. Plant Physiol,138(3):1247-1258.
    Nawrath, C. and J.P. Metraux,1999. Salicylic acid induction-deficient mutants of arabidopsis express pr-2 and pr-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell,11(8):1393-1404.
    Newman, M.A., M.J. Daniels and J.M. Dow,1997. The activity of lipid a and core components of bacterial lipopolysaccharides in the prevention of the hypersensitive response in pepper. Mol Plant Microbe Interact,10(7): 926-928.
    Nguyen, H.P., S. Chakravarthy, A.C. Velasquez, H.L. McLane, L. Zeng, H. Nakayashiki, D.H. Park, A. Collmer and G.B. Martin,2010. Methods to study pamp-triggered immunity using tomato and nicotiana benthamiana. Mol Plant Microbe Interact,23(8):991-999.
    Nishiyama, R., D.T. Le, Y. Watanabe, A. Matsui, M. Tanaka, M. Seki, K. Yamaguchi-Shinozaki, K. Shinozaki and L.S. Tran,2012. Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One,7(2): e32124.
    Nomura, K., M. Melotto and S.Y. He,2005. Suppression of host defense in compatible plant-pseudomonas syringae interactions. Curr Opin Plant Biol,
    Nurnberger, T. and F. Brunner,2002. Innate immunity in plants and animals: Emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr Opin Plant Biol,5(4):318-324.
    Okazaki, M., H. Nimitkeatkai, T. Muramatsu, H. Aoyama, K. Ueno, M. Mizutani, N. Hirai, S. Kondo, T. Ohnishi and Y. Todoroki,2011. Abscinazole-el, a novel chemical tool for exploring the role of aba 8'-hydroxylase cyp707a. Bioorg Med Chem,19(1):406-413.
    Pariset, L., G. Chillemi, S. Bongiorni, V. Romano Spica and A. Valentini,2009. Microarrays and high-throughput transcriptomic analysis in species with incomplete availability of genomic sequences. N Biotechnol,25(5):272-279.
    Peng, J., X. Deng, J. Huang, S. Jia, X. Miao and Y. Huang,2004. Role of salicylic acid in tomato defense against cotton bollworm, helicoverpa armigera hubner. Z Naturforsch C,59(11-12):856-862.
    Pieterse, C.M. and L.C. Van Loon,2004. Nprl:The spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol,7(4):456-464.
    Pieterse, C.M.J., A. Leon-Reyes, S. Van der Ent and S.C.M. Van Wees,2009. Networking by small-molecule hormones in plant immunity. Nat Chem Biol, 5(5):308-316.
    Qi, Y, K. Tsuda, J. Glazebrook and F. Katagiri,2011. Physical association of pattern-triggered immunity (pti) and effector-triggered immunity (eti) immune receptors in arabidopsis. Mol Plant Pathol,12(7):702-708.
    Reymond, P., S. Grunberger, K. Paul, M. Muller and E.E. Farmer,1995. Oligogalacturonide defense signals in plants:Large fragments interact with the plasma membrane in vitro. Proc Natl Acad Sci U S A,92(10):4145-4149.
    Ribeiro, E.A., Jr., F.Q. Cunha, W.M. Tamashiro and I.S. Martins,1999. Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. Febs Lett,445(2-3):283-286.
    Ross, A.F.,1961. Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology,14:329-339.
    Sakano, K.,2001. Metabolic regulation of ph in plant cells:Role of cytoplasmic ph in defense reaction and secondary metabolism. Int Rev Cytol,206:1-44.
    Sandalio, L.M., M. Rodriguez-Serrano, M.C. Romero-Puertas and L.A. Del Rio,2008. Imaging of reactive oxygen species and nitric oxide in vivo in plant tissues. Methods Enzymol,440:397-409.
    Shibuya N and M. E,2001. Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant P,159:223-233.
    Shibuya, N. and E. Minami,2001. Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant P,59(5):223-233.
    Shinya, T., I. Galis, T. Narisawa, M. Sasaki, H. Fukuda, H. Matsuoka, M. Saito and K. Matsuoka,2007. Comprehensive analysis of glucan elicitor-regulated gene expression in tobacco by-2 cells reveals a novel myb transcription factor involved in the regulation of phenylpropanoid metabolism. Plant Cell Physiol, 48(10):1404-1413.
    Shinya, T., K. Hanai, I. Galis, K. Suzuki, K. Matsuoka, H. Matsuoka and M. Saito, 2007. Characterization of ntchitiv, a class iv chitinase induced by beta-1,3-1,6-glucan elicitor from alternaria alternata 102:Antagonistic effect of salicylic acid and methyl jasmonate on the induction of ntchitiv. Biochem Biophys Res Commun,353(2):311-317.
    Simpson, S.D., D.A. Ashford, D.J. Harvey and D.J. Bowles,1998. Short chain oligogalacturonides induce ethylene production and expression of the gene encoding aminocyclopropane 1-carboxylic acid oxidase in tomato plants. Glycobiology,8(6):579-583.
    Sinha, D., M.K. Gupta, H.K. Patel, A. Ranjan and R.V. Sonti,2013. Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors xopn, xopq, xopx and xopz of xanthomonas oryzae pv. Oryzae. PLoS One,8(9):e75867.
    Sticher, L., B. Mauch-Mani and J.P. Metraux,1997. Systemic acquired resistance. Annu Rev Phytopathol,35:235-270.
    Sun, F., P. Zhang, M. Guo, W. Yu and K. Chen,2013. Burdock fructooligosaccharide induces fungal resistance in postharvest kyoho grapes by activating the salicylic acid-dependent pathway and inhibiting browning. Food Chem,138(1): 539-546.
    Thomma, B.P., K. Eggermont, I.A. Penninckx, B. Mauch-Mani, R. Vogelsang, B.P. Cammue and W.F. Broekaert,1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A, 95(25):15107-15111.
    Tieman, D.M. and H.J. Klee,1999. Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiol,120(1):165-172.
    Trewavas, A.J. and R. Malho,1998. Ca2+ signalling in plant cells:The big network! Curr Opin Plant Biol,1(5):428-433.
    Tuteja, N., M. Chandra, R. Tuteja and M.K. Misra,2004. Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J Biomed Biotechnol,2004(4):227-237.
    Vallad GE, G.R.,2004. Systemic acquired resistance and induced systemic resis-tance in conventional agriculture. Crop Sci 44: 1920-1934.
    van Verk, M.C., D. Pappaioannou, L. Neeleman, J.F. Bol and H.J. Linthorst,2008. A novel wrky transcription factor is required for induction of pr-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol,146(4): 1983-1995.
    Wang, H., U. Avci, J. Nakashima, M.G. Hahn, F. Chen and R.A. Dixon,2010. Mutation of wrky transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc Natl Acad Sci U S A,107(51):22338-22343.
    Wang, L., P. Li and T.P. Brutnell,2010. Exploring plant transcriptomes using ultra high-throughput sequencing. Brief Funct Genomics,9(2):118-128.
    Weber, A.P., K.L. Weber, K. Carr, C. Wilkerson and J.B. Ohlrogge,2007. Sampling the arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol,144(1):32-42.
    Wildermuth, M.C., J. Dewdney, G. Wu and F.M. Ausubel,2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414(6863):562-565.
    Wink, M.,1988. Plant breeding:Importance of plant secondary metabolites for protection against pathogens and herbivores. Theoret. Appl. Genetics,75(2): 225-233.
    Wojtaszek, P.,2000. Nitric oxide in plants:To no or not to no. Phytochemistry,54(1): 1-4.
    Wu, T., Z. Qin, X. Zhou, Z. Feng and Y. Du,2010. Transcriptome profile analysis of floral sex determination in cucumber. J Plant Physiol,167(11):905-913.
    Yin, H., S. Li, X. Zhao, Y. Du and X. Ma,2006. Cdna microarray analysis of gene expression in brassica napus treated with oligochitosan elicitor. Plant Physiol Biochem,44(11-12):910-916.
    Zhang JY, Du XL, Wang QJ, Chen XK, Lv D, Xu KY, Qu SC and Z. Z.,2010. Expression of pathogenesis related genes in response to salicylic acid, methyl jasmonate and 1-aminocyclopropane-l-carboxylic acid in malus hupehensis (pamp.) rehd. BMC Res Notes,3:208.
    Zhang, P.Y., J.C. Wang, S.H. Liu and K.S. Chen,2009. A novel burdock fructooligosaccharide induces changes in the production of salicylates, activates defence enzymes and induces systemic acquired resistance to colletotrichum orbiculare in cucumber seedlings. J Phytopathol,157(4): 201-207.
    Zhao, J., L.C. Davis and R. Verpoorte,2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv,23(4):283-333.
    Zhu-Salzman, K., R.A. Salzman, J.E. Ahn and H. Koiwa,2004. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol,134(1):420-431.
    Zielinski, R.E.,1998. Calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Physiol Plant Mol Biol,49:697-725.
    Zimmermann, S., uuml, T. rnberger, J.M. Frachisse, W. Wirtz, J. Guern, R. Hedrich and D. Scheel,1997. Receptor-mediated activation of a plant ca2+-permeable ion channel involved in pathogen defense.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700