用户名: 密码: 验证码:
玉米种子抗寒剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种子活力是反映种子在各种条件下具有的潜在萌发与出苗能力,是衡量种子质量高低的一项重要指标。提高种子活力对种子提高出苗率、抵御不良环境、提升竞争能力,增强抗寒力、增加作物产量等具有重要作用。玉米是喜温作物,对低温条件适应能力差。东北地区,春季低温干旱。玉米种子早播常会遇到低温,晚播容易出现干旱,研究抗寒剂提高玉米种子的抗寒性,对于适时早播、抢墒播种,提高玉米产量,具有重要的理论和实践意义。本文通过室内试验与田间试验相结合的方法,首先以创奇518陈种子为研究材料,通过玉米种子活力引发单一试剂、复合试剂筛选研究及田间验证试验,确定提高种子活力的最优药剂。进一步在此药剂基础上,采用创奇518新种子为材料,有针对性的添加具有抗寒作用药剂,研究筛选出提高种子抗寒能力的组合,并采用正交试验设计方法确定该组合的最优浓度配比。同时,测定相关形态与生理指标,进一步研究其提高玉米种子抗寒能力的生理基础,最后通过田间生产应用进行验证。旨在为玉米种子抗寒剂的研制与应用提供科学依据。主要研究结果如下:
     1.玉米种子活力引发药剂筛选
     通过单一性药剂,聚乙二醇(PEG)、赤霉素(GA3)和氯化钙(CaCl2)对种子进行引发处理,筛选出PEG可显著提高玉米种子活力,而GA:,则可显著促进幼苗生长。发芽率方面,PEG比对照(水处理)提高12.7%,但GA3、CaCl处理则分别比对照降低13.9%、46.8%。活力指数方面,PEG处理比对照显著提高21.8%,而GA3, CaCl则分别比对照降低7.5%、48.8%。株高方面,GA3、PEG、CaCl处理则分别比对照提高了26.2%、12.8%、1.3%,GA3和PEG作用明显;PEG与GA3复合引发试验的发芽率、活力指数、过氧化物酶(POD)、过氧化氢酶(CAT)等均低于PEG(对照)处理。结果表明,PEG为提高玉米陈种子活力的最优药剂。
     2.玉米种子活力引发药剂的田间验证
     出苗率,PEG处理分别比CKl(水处理)和CK2(未处理)提高了45.5%和137.0%,平均提高了91.3%,作用显著。幼苗株高、干物质积累、根冠比,PEG处理则分别比CKl和CK2平均提高了16.5%、22.6%、13.1%。田间试验与室内试验结果趋势一致,PEG为最优种子活力引发药剂,可作为进一步研究玉米种子抗寒剂的基础药剂。
     3.玉米种子抗寒药剂筛选
     单一抗寒药剂筛选结果表明,PEG处理的发芽率略低于对照(未处理),但高于其它处理,而PEG处理的活力指数、幼苗株高和幼苗鲜重则显著低于其它处理。二甲基亚砜(DMSO)、水杨酸(SA)处理的发芽率与PEG接近,但活力指数、幼苗株高和鲜重显著高于其它处理。脯氨酸(Pro)、氯化钙(CaCl2)处理的相关指标则低于对照和PEG处理。
     进一步以PEG为基础进行复合药剂筛选,其中PEG、DMSO和SA的组合处理的玉米种子发芽率分别比CKl(水处理)、CK2(未处理)提高了80.0%、12.5%,平均提高了46.3%。发芽势分别比CK1和CK2提高了87.5%和7.1%,活力指数则分别比CKl和CK2提高了90.5%和41.0%,平均提高65.8%。幼苗鲜重、株高分别比CK1和CK2平均提高了15.1%、7.3%,过氧化物酶(POD)、过氧化氢酶(CAT)含量分别比CK1和CK2平均提高了47.5%、40.8%。该组合处理可明显提高玉米种子抗寒性。
     4.玉米种子抗寒剂的优化组合
     通过正交试验设计,对PEG、DMSO和SA组合进行优化浓度组合筛选,确定其最佳浓度组合为PEG (20%)、DMSO (0.5%)和SA(0.007%)。该组合处理的玉米种子发芽率分别比CK1(水处理)、CK2(未处理)提高39.4%、15.0%,平均提高27.2%。活力指数则分别比CK1和CK2提高41.7%和44.6%,平均提高43.2%。株高比CK1和CK2处理平均提高9.3%。而幼苗电导率、丙二醛含量则分别比CK2降低23.5%、64.9%,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)则分别比CK2提高了10.4%、42.7%和118.0%。幼苗根活力比CK2提高48.4%,作用显著。可溶性糖、叶绿素含量分别比CK2提高32.7%、34.5%,但可溶性蛋白质略有降低(0.001%)。该组合对提高种子抗寒性具有良好的促进作用。
     5.玉米种子抗寒剂的田间生产应用
     优化抗寒剂处理2年的出苗率均明显优于对照(未处理),其中2012年比对照提高了15.4%,2013年则比对照提高了15.6%,两年平均提高15.5%。玉米幼苗株高、干物质积累、根冠比明显高于对照,而玉米种子电导率值和丙二醛含量则低于对照。玉米种子抗寒性有明显提高;最终产量表现,2012年优化抗寒剂处理比对照提高6.5%,2013年提高6.3%,两年平均提高6.4%,对玉米增产有一定促进作用。
Seed vigor reflects potential ability of seed germination and seedling emergence in various conditions and is an important indicator of seed quality. Improving the vigor of seeds plays an important role in improving germination rate, withstanding the adverse environment, improving the competitive ability of seeds, enhancing cold resistance, increasing crop yield. Maize is a kind of thermophilous crop, has poor ability to adapt to low temperature. The northeast area is prone to cold and drought climate. Early sowing often encounter cold weather and late sowing is prone to drought. Study on the cold resistant agent to improve cold resistance of maize seed has important theoretical and practical significance for the early sowing,, rush-plant while the soil is damp, increasing the yield of maize. This paper selected optimal reagent to improve seed vigor firstly by using old Chuangqi518seeds as materials, through a single reagent, composite reagent priming and field verification tests. Using new Chuangqi518seeds as raw material, cold resistant agent on improving cold resistance of maize seeds by adding reagents of improving the cold resistance based on the chemicals was done. The cold resistant agent was further optimized by orthogonal test for finding the concentration ratio. At the same time, determination of morphological and physiological indexes related to the cold resistance mechanism of maize seeds and the field verification experiment were be done for providing scientific basis for the research and application of maize seed cold resistant agent. The results were as follows:
     1. Screening agent of maize seed vigor priming
     By a single agent, polyethylene glycol (PEG), gibberellin (GA3) and calcium chloride (CaC12) of seed priming treatment, the result was that PEG can significantly improve the maize seed vigor, and GA3can significantly promote the growth of seedling. The germination rate of PEG increased by12.7%than the control (water treatment), but GA3, CaCl2treatment reduced by13.9%,46.8%. Vigor index of PEG treatment significantly increased by21.8%, while GA3, CaC12reduced by7.5%,48.8%. Plant height, GA3, PEG, CaCl2treatment increased by26.2%,12.8%,1.3%, effect of GA3and PEG was obvious; In PEG and GA3 composite initiator experiment, germination rate, vigor index, peroxidase (POD), catalase (CAT) were lower than the PEG (control) treatment. The results showed that, PEG was the best medicine to improve seed vigor of old maize seed.
     2. The field verification test of maize seed vigor priming agent
     The seedling emergence rate, PEG increased by45.5%and137%than CK1(water treatment) and CK2(untreated), the average increase of91.3%,effect is significant. The plant height, dry matter accumulation, root shoot ratio, PEG treatment respectively increased by16.5%,22.6%,13.1%than CK1and CK2. The results of field test and laboratory test are consistent, PEG is the optimal seed vigor priming agent, can be used as the basis medicament for further research of maize seed cold resistant agents.
     3. Screening of maize seed cold resistant agents
     Single cold drug screening results showed that the germination rate of PEG treatment was slightly lower than the control (untreated), but higher than other treatments, and vigor index, seedling height and fresh weight of seedlings were significantly lower than other treatments. The germination rate of two dimethyl sulfoxide (DMSO), salicylic acid (SA) treatment was close to PEG, but the vigor index, seedling height and fresh weight was significantly higher than other treatments. Proline (Pro), calcium chloride (CaC12) correlation index was lower than control and PEG treatment.
     Experiment of composite medicament screening was be done on the basis of PEG, germination rate of maize seed of PEG, DMSO and SA combined treatment increased by80%and12.5%than CK1(water treatment), CK2(untreated), the average increase of46.3%. Germination potential respectively increased by87.5%and7.1%than CK1and CK.2, the vigor index respectively increased by90.5%and41%than CK1and CK2, the average increase of65.8%. Seedling fresh weight, plant height increased by15.1%,7.3%than CK1and CK2, peroxidase (POD), catalase (CAT) content increased by47.5%,40.8%than CK1and CK2. The combined treatment can significantly improve the cold resistance of maize seed.
     4. The optimization of maize seed cold resistant agent
     Through the orthogonal experimental design, optimized concentration combinations on PEG, DMSO and SA was screened, its optimal concentration combination was PEG (20%), DMSO (0.5%) and SA (0.007%). The germination rate of combined treatment of maize seed respectively increased by39.4%,15%than CK1(water treatment), CK2(untreated), an average increase of27.2%. Vigor index respectively increased by41.7%and44.6%than CK1and CK2, the average increase of43.2%. Plant height averagely increased of9.3%than CK1and CK2. And the MDA content, conductivity of seedling respectively reduced23.5%,64.9%than CK2, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) content respectively increased by10.4%,42.7%and118%than CK2. The root vigor of seedling increased by48.4%than CK2, effect was significant. The content of chlorophyll, soluble sugar respectively increased by32.7%,34.5%than CK2, but the soluble protein decreased slightly (0.001%). This combination had a good effect on improving cold resistance of seeds.
     5. Application of field production of maize seed cold resistant agent
     The germination rate of two years of optimization of cold resistant agent was significantly better than the control (untreated), which in2012increased by15.4%than the control, in2013increased by15.6%than the control, two years averagely increased by15.5%. Maize plant height, dry matter accumulation, root shoot ratio was higher than that of the control, but the corn seed and MDA content was lower than those of control. Maize seed cold resistance is obviously improved; The final yield performance of optimization cold resistant agent processing, increased by6.5%in2012, increased by6.3%in2013than control, two years averagely increased by6.4%. Optimization cold resistant agent had a certain effect on maize yield.
引文
1.毕辛华,戴心维.1993.种子学.北京:农业山版社,123-251.
    2.曹邦华等.2004.PEG预处理对刺槐种子抗盐性的影响.种子,23(3):19-21.
    3.陈民生,耿忠义,赵京岚.2007.温度对玉米种子萌发特性的影响.山东农业大学学报(自然科学版),38(2):196-202.
    4.陈禅友.1991.PEG处理提高长豇豆种子活力的初步研究.种子,11(1):32-35.
    5.陈少裕.1991.膜脂过氧化对植物细胞的危害.植物生理学通讯,27(2):84-90.
    6.陈士林等.2003.钙和赤霉素对玉米种子活力的影响Chinese Agricultural Science Bulletin, 19(4):64-67.
    7.陈十林等.2004.赤霉素和钙对玉米种子萌发的效应.种子,23(4):47-49.
    8.陈甲洪,谢晓英.2013.气候灾害对粮食安全的影响机制研究.农业经济问题,(1):12-19.
    9.崔秀敏等.2000.PEG引发种子的研究进展.塔里木农垦大学学报,12(4):47-52.
    10.丁义峰,刘萍.2011.水杨酸诱导植物抗逆性研究进展.生物学教学,36(11):2-4.
    11.丁颖.1983.中国栽培稻种的分类(1959).丁颖稻作论文选集.北京:农业出版社.
    12.杜朝昆等.2005.水杨酸诱导的玉米幼苗适应高温和低温胁迫的能力与抗氧化酶系统的关系.植物生理学通讯,41(1):19-22.
    13.樊龙江等.1998.甜玉米种子活力低下原因及提高其田间出苗率研究.作物学报,24(1):103-109.
    14.冯学民,周洪飞.2002.试验与统计.哈尔滨:哈尔滨工程大学出版社,3.
    15.傅家瑞.1985.种子生理.北京:科学出版社.
    16.高灿红等.2006.玉米幼苗抗氧化酶活性、脯氨酸含量变化及与其耐寒性的关系.应用生态学报,17(6):1045-1050.
    17.高春智等.2012.不同浓度赤霉素浸种对樟子松种子萌发的影响.内蒙古农业大学学报,33(3):67-72.
    18.高吉寅.1984.低温对玉米幼苗线粒体功能与结构的影响.中国农业科学,32-36.
    19.高素华等.1999.低温对玉米幼苗生理反应的影响.应用气象学报,10(2):238-242.
    20.耿广东等.2002.水杨酸对茄子幼苗抗寒性的影响.西北农林科技大学学报(自然科学版),30(6):101-103.
    21.龚明等.1990.植物体内的钙信使系统.植物学通讯,7(8):19-29.
    22.关贤交,欧阳西荣.玉米低温冷害研究进展.作物研究,2004(5):353-357.
    23.郭丽红等.2001.钙对玉米种子活力和萌发过程中谷胱甘肽还原酶活性的影响.昆明师范高等专科学校学报,23(4):37-39.
    24.韩涛等.2002.外源水杨酸处理对采后番茄和黄瓜果实抗冷性的影响.中国农业科学,35(5):571-575.
    25.贺长征等.2002.混合盐引发对水稻种子在逆境条件下发芽及幼苗生理特性的影响.浙江大学学报,28(2):175-178.
    26.贺长征等.2004.种子引发技术.天津农林科技,(4):15-16.
    27.黄雪彦等.2003.不同加速老化条件下高油玉米单交种与普通玉米单交种种子活力的比较.玉米科学,11(增刊):36-38.
    28.洪法水等.1995.PEG预处理提高玉米种子活力和萌发代谢的效应.安徽农业科学,23(2):111-113.
    29.胡晋等.2003.一种提高种子活力的固体引发方法.专利号:031296165.
    30.黄丽华等.2005.水杨酸对玉米幼苗抗寒性的影响.作物杂志,16-17.
    31.黄雪彦等.2003.不同加速老化条件下高油玉米单交种与普通玉米单交种种子活力的比较.玉米科学,11(增刊):36-38.
    32.霍树春等.2007.赤霉素的剂型及其应用研究.安徽农业科学,35(24):7394-7397.
    33.季鹏等.2006.聚乙二醇(PEG)引发种子的机制及最适引发条件的选择.中国农村小康科技,(6):18-20.
    34.蒋安等.2010.低温胁迫对墨西哥玉米幼苗抗寒性的影响.草业科学,27(3):89-92.
    35.解秀娟,胡晋.2003.沙引发对紫花苜蓿种子盐逆境下发芽及幼苗生理生化变化的影响.种子,22(4):5-6.
    36.晋鹏宇等.2012.芽苗期低温对玉米生长的影响及抗逆栽培措施.华北农学报,27(增刊):139-143.
    37.康国章等.2004.水杨酸在植物抗环境胁迫中的作用.广西植物,24(2):178-83.
    38.孔小卫.2002.二甲亚砚(DMSO)对大豆萌发及幼苗期生理生化指标的影响.安徽机电学院学报,17(4):20-23.
    39.梁子谦,李小军.2006.影响中国粮食生产的因子分析.农业经济问题,(11).19-22.
    40.李保珠等.2011.赤霉素的研究进展.中国农学通报,27(1):1-5.
    41.李海舰,薛继亮.2013.气候变化影响中国粮食生产的区域差异分析,(8):73-75.
    42.李皓等.2012.种子引发技术研究进展.热带农业工程,36(3):20-23.
    43.李庆民,朱跃斌.2011.低温冷害对玉米生理过程的影响.民营科技,(3):123.
    44.李素玲等.2000.低温胁迫对玉米种子发芽率的影响.山西农业科学,28(2):3-6.
    45.李卫华等.2006.种子引发处理对棉花种子发芽的影响.种子,25(1):26-30.
    46.李兆亮等.1998.水杨酸对黄瓜叶片抗氧化剂酶系的调节作用.植物学报,40(4):356-361.
    47.励立庆等.2004.抗寒剂包膜对超甜玉米低温逆境下生理生化变化的影响.浙江大学学报(农业与生命科学版),30(3):311-317.
    48.龙方.2007.新世纪中国粮食安全问题研究.湖南农业大学学报(社会科学版),8(3):7-14.
    49.吕小红,傅家瑞.1990.聚乙二醇渗调处理提高花生种子活力和抗寒性.中山大学学报,29(1):63-69.
    50.马风鸣等.2007.低温胁迫对玉米幼苗某些生理指标的影响.作物杂志,(5):41-45.
    51.马俊华等.2012.老化玉米种子修复处理后的活力效应研究.玉米科学,20(4):101-104.
    52.马瑞霞,王彦容.2008.种子水引发的研究进展.草业学报,17(6):141-147.
    53.马树庆等.2003.中国东北地区玉米低温冷害风险评估研究.自然灾害学报,12(3):1372-141.
    54.马文广等.2011.不同药剂处理对低温逆境下烟草种子发芽和幼苗生长的影响.科技通报,27(6):873-880.
    55.孟英,李明,王连敏等.低温冷害对玉米生长影响及相关研究.黑龙江农业科学,2009(4):150-153.
    56.欧阳西荣,林彰文.2004.种子处理对玉米幼苗抗低温能力的影响.种子,23(6):26-29.
    57.齐付国等.2008.水杨酸对小麦幼苗抗寒性的影响.安徽农业科学,36(14):5732-5733.
    58.邱乾栋等.2009.植物抗寒性生理研究进展.山东农业科学,(8):53-57.
    59.史占忠等.2003.三江平原春玉米低温冷害发生规律及防御措施.黑龙江农业科学,(2):7-10.
    60.宋松泉,傅家瑞.1991.钙对种子萌发的调节作用.种子,(5):34-37.
    61.孙海燕等.2006.甜玉米种子活力及其种子处理方法研究进展.种子,25(8):35-38.
    62.孙建华等.聚乙二醇引发对儿种牧草种子发芽率和活力的影响.草业学报,1999,8(2):34-42.
    63.孙琴等.2013.低温对玉米的影响研究进展.作物研究,27(4):393-397.
    64.孙玉洁,王国槐.2009.植物抗寒机理的研究进展.作物研究,23(5):293-297.
    65.田海霞,李艳华.2013.我国粮食安全现状及存在的问题.商业研究,(4)89-90.
    66.汪多仁.2008.农药中间体二甲基亚砜生产现状与市场展望.农药市场信息,(15):25.
    67.王国莉等.2011.抚顺地区低温冷害及其对农业生产的影响.安徽农业科学,39(6):3574-3576.
    68.王辉.2013.我国粮食安全问题探析.农业科技与装备,(3):81-82.
    69.王金胜等.1993.低温对不同抗冷性玉米幼苗H2O2及其清除酶类的影响.山西农业大学学报,13(3):240-243.
    70.王连敏,王立志.1999.苗期低温对玉米体内脯氨酸、电导率及光合作用的影响.中国农业气象,20(2):28-31.
    71.王洪刚等.2008.温度对玉米种子发芽及苗期生长的影响.黑龙江农业科学,(1):37-39.
    72.王慧超等.2008.PEG渗透处理对植物种子的影响.安徽农业科学,36(6):2224-2226.
    73.王茅雁.1989.低温对玉米幼苗叶片核酸含量和核酸酶活力的影响.华北农学报,4(4):28-33.
    74.王瑞等.2007.低温胁迫对玉米幼苗某些生理指标的影响.作物逆境生理研究展,180-185.
    75.王书裕.1995.农作物冷害的研究.北京:气象出版社.
    76.王廷芹,杨暹.2009.赤霉素对青花菜植株生长和茎尖核酸含量的影响.长江蔬菜,(1):51-52.
    77.王彦波等.2007.霉素的应用研究进展.北方园艺,(6):74-75.
    78.肖伏娥,胡扬.1988.外源脯氨酸与水稻幼苗的抗寒性.湖南农学院学报,14(2):15-19.
    79.邢少辰.1998.环境胁迫与植物体内脯氨酸的关系.生态农业研究,6(2):30-33.
    80.熊冬金等.1996.玉米在涝渍和低温胁迫过程中四种酶同工酶分析及丙二醛的变化.南昌大学学报,20(4):314-319.
    81.徐同,陈翠莲.1983.植物抗逆性测定(脯氨酸快速测定).华中农学院学报,2(1):94-95.
    82.燕义唐.1987.PEG引发预防大豆种子吸胀冷害效果.植物生理学通讯,(4):24-26.
    83.杨德军,洪伟.2011.低温对玉米生理特性的影响.民营科技,(3):120.
    84.杨福等.1994.二甲基亚砜(DMSO)对水稻幼穗愈伤组织诱导及植株再生的影响.吉林农业大学学报,16(4):29-33.
    85.杨红旗等.2011.中国玉米产业现状与发展问题探讨.中国农学通报,27(6):368-373.
    86.杨文清等.2005.赤霉素包衣处理对黄瓜种子发芽及幼苗各部位生长的影响,24(12):16-20.
    87.杨晓杰,孙志琳.2003.阿司匹林和复方新诺明对大都种子萌发及活力的影响.植物生态学报,27(5):667-671.
    88.杨晓玲等.2007.水杨酸对黄瓜种子萌发及幼苗抗低温的影响.种子,26(1):78-80.
    89.杨永青等.2004.渗透调节对低温伤害敏感大豆种子质膜氧化还原活性的影响.植物生理与分子生物学学报,30(5):589-594.
    90.尹吕喜等.2009.赤霉素对盐胁迫下水稻种子发芽及幼苗生长的影响.安徽农业科学,37(14):6389-6390.
    91.由继红等.2002.钙对玉米幼苗的抗寒性及膜H-ATPase舌性的影响.东北师大学报(自然科学版),34(3):79-81.
    92.于龙凤,安福全.2011.低温胁迫对玉米幼苗生理生化特性的影响.农业科技通讯,(2):47-49.
    93.袁晓波,王永.2004.浅谈赤霉素的作用机制与使用.山东食品发酵,133(2):15-16.
    94.袁小丽等.1990.CaCL2、多胺对花生种子萌发中乙烯施放及提高种子活力的效应.中山大学学报(自然科学版),29(4):92-99.
    95.原永兵等.1997.水杨酸对苹果叶片中H202水平的调节及其机制.园艺学报,24(3):220-24.
    96.张春光等.2001.水杨酸诱导植物抗性的研究进展.生命科学研究,5(3):185-189.
    97.张海艳.2013.低温对鲜食玉米种子萌发及幼苗生长的影响.中国生理学报,49(4):347-350.
    98.张丽,祝利海.2011.PEG引发对农大108玉米种子萌发及活力的影响.种子科技,(7):24-26.
    99.张卫华等.2004.种子引发及其效应.种子,23(6):49-51.
    100.张雯等.2010.聚乙二醇的渗透调节作用在药用植物育种研究中的应用.中草药,41(8):1399-1403.
    101.张文明等.2003.电导法测定大豆种子活力的初步研究.种子,(2):34-36.
    102.张文明等.2004.砂引发对草坪草种子萌发及活力的影响.种子,23(2):14-17.
    103.张文明等.2005.砂引发对甜玉米种子萌发及活力的影响.安徽农业大学学报,32(2):178-182.
    104.张晓艳,李宇歌.2005.PEG渗透处理对老化种子活力的影响.吉林师范大学学报,(2):50-52.
    105.张志华,杨洪文.2003.甲基亚砚的应用级市场前景分析.化学工程师,6(3).
    106.赵光武等.2006.药沙引发对超甜玉米种子活力及其生理变化的影响.作物学报,32(1):147-151.
    107.赵剑等.1998.聚乙二醇和聚乙烯醇渗调处理对苜蓿幼苗抗冷害的影响.东北师大学报(自然科学版),(2):50-54.
    108.赵淑婷等.2013.SA和PEG引发处理对NaCl胁迫下玉米种子萌发及幼苗生长的影响.天津农学院学报,20(2):30-34.
    109.赵天宏等.2008.逆境胁迫下植物活性氧代谢及外源调控机理的研究进展.作物杂 志,(3):10-15.
    110.赵玥等.2012.种子引发机理研究进展及牧草种子引发研究展望.中国草地学报,34(3):102-108.
    111.郑光华等.1988.大豆种子吸胀冷害与“修补”过程的探讨.中国科学(B辑),18(4):395-402.
    112.朱佳等.2006.硅对低温胁迫下冬小麦幼苗光合作用及相关生理特性的影响.中国农业科学,39(9):1780-1788.
    113.朱祥春等.2004.幼苗低温诱导蛋白的鉴定.东业大学学报,35(60):674-679.
    114.朱玉龙,王玺.2013.水杨酸包衣对低温胁迫下玉米种子萌发及幼苗生长的影响.21(4):68-71.
    115.宗学风等.2002DMSO对小麦种子发芽率及其幼苗素质影响的研究.西南农业大学学报,24(5):389-392.
    116. Amarjits S B, Rewa D, Malik C P.1989. Influence of seed pretreatments with plant growth regulators on metablic alterations of germinating maize embryos under stressing temperature regimes. Annals of Botany,64:37-41.
    117. Amooaghaie R.2011. The effect of hydro and osmo-priming on alfalfa seed germination and antioxidant defenses under salt stress. African journal of biotechnology,10(33): 6268-6275.
    118. Artola A, Garcia-De Los Santos G, Carrillo C G.2003. A seed vigor test for bird's foot trefoil. Seed Science and Technology,31:753-757.
    119. Bijanzadeh E, Nosrati K, Egan T.2010. Influence of seed priming techniques on germination and emergence of rape seed (Brassica napus L.). Seed Science and Technology, 38(1):242-247.
    120. Borman H C, Janshan E V N.1980. Nieotiananata bacum callus studies ABA increase resistance to cold damage. Physiol Plant,48:491-493.
    121. Bradford K J.1986. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Hort Science,21(51):1105-1112.
    122. Callan N W, Mathre D E, Miller J B.1990. Bio-priming seed treatment for biological control of Pythium ultimum preemergence damping off in sh2 sweet com. Plant Disease, 74:368-372.
    123. Cantliffe D J.1991. Benzyladenine in the priming solution reduces themodormancy of lettuce seeds. Horticultural Technology,1:95-97.
    124. Carpenter W J, Boucher J F.1991. Priming improves high-temperature germination of pansy seed. Hortscienca,26:541-544.
    125. Cayuela E, Perez-Alfocea F, Caro M., Bolarin M C.1996. Priming of seeds with NaCL induces physiological changes in tomato. Plant Physiol,96,231-236.
    126. Chen K, Arora R, Arora U.2010. Osmopriming of spinach(Spinacia oleracea L. cv. Bloomsdale) seeds and germination performance under temperature and water stress. Seed Science and Technology,38(1):36-48.
    127. Chen K T, Rajeev A.2011. Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in spinach(Spinacia oleracea). Plant Science,180(2):212-220.
    128. Copedland L O, McDonald M B.2001. Principles of seed science and technology. Dordrecht: Kluwer Academic:277-296.
    129. Corbineau F, Ozbingol N, Vinel D.2000. Improvement of tomato seed germination by osmo priming as related to energy metabolism. Seed biology:advances and applications, 467-476.
    130. Daniel A A, Kent J B, John D H.1987. Osmotic priming of tomato seed:effects on germination, field emergence, seedling growth and fruit yield. Horticulture science, 112(3):427-432.
    131. Dearman J, Brocklehuret P A, Drew R L K.1986. Effect of osmotic priming and aging on onion seed germination. Annual Application Biology,83:313-315.
    132. Dorota S.2011. Enhancement of zinnia seeds by osmo-priming and grapefruit extract treatment. Acta Scientiarum Polonorum-Hortorum Cultus,10(2):33-47.
    133. Ewa K, Justyna P-G, Jan K.2003. Effect s of matriconditioning on onion seed germination, seedling emergence and associated physical and metabolic events. Plant Growth Regulation,41:269-278.
    134. Fujikura Y, Kraak H L, Basra A S, Karssen C M.1993. Hydrpriming, a simple and inexpensive priming method. Seed Science and Technology,21:639-642.
    135. Heydecker W, Higgins J, Gulliver R L.1973. Accelerated germination by osmotic seed treatment. Nature,246:42-44.
    136. Dhillon N P S.1995. Seed priming of male sterile muskmelon(Cucumis meld) for low temperature germination. Seed Science and Technology,23:881-884.
    137. Fudikura Y, Kraak H I, Basra A S, et al..1993. Hydropriming, a simple and inexpensive priming method. Seed Science and Technology, (21):639-642.
    138. Haigh A M, Badow E WR.1987. Germination and priming of tomato, carrot, onion and sorghum seeds in a range of osmotica. HodScience,112:202-208.
    139. Hepler PK, Wayne RO.1985. Ann. Rev. Plant Physiol.,36:397-439.
    140. Heydecker W, Coolbear P.1977. Seed treatments for improved performance-Survey and attempted prognosis. Seed Science and Technology,5:353-425.
    141. Hydecker W, Higgins J and Gullier R L.1973. Accelerated germination by osmotic seed treatment. Nature,246:42-44.
    142. Joyce G S, Melissa L.2008. Comparative studies of seed priming and pelleting on percentage and meantime to germination seeds of tomato(Lycopersicon esculentum Mill.). African Journal of Agricultural Research,3(10):725-731.
    143. Karssen C M, Hangh A, van er Toorn P Weges R.1989. Physiolgical mechnisms involved in seed priming. In Taylorson RB ed, Recent Advances in the Development and germination of Seeds. Plenum Press, New York,269-280.
    144. Khan A A, Water E C Jr.1969. On the hormonal control of post-harvest dormancy and germination in barley seeds. Life Sei,8:729-736.
    145. Khan A A, Maguim J D, Abawi G S, Ilyas S.1992. Matriconditioning of vegetable seeds to improve stand establishment in early field plantings. Journal of American Society of Horticultural Science,117:41-47.
    146. Koller D.1972. Seed Biology, Kozlowski TT(ed). Academic Press, New York.
    147. Kubik K K, Eastin J A, Eastin J D, et al..1988. Solid matrix priming of tomato and pepper. In proceedings of International Conference in Stand Establishment of Horticultural Science,117:942-945.
    148. Liang Y C, Chen Y C, Chen Q, et al..2003. Exogenous silicon(Si) increases antioxidant enzyme avtivity and reduce lipid peroxidation in roots of salt-stressed barley(Hordeum vulgare L.). Journal of Plant Physiology,160(10):1157-1164.
    149. McDonald M B.2008. Seed technology and its biological basis. Florida:CRC Press.
    150. Mehdi G, Mahmoud P M, Mehdi T, et al..2008. Influence of different osmo-priming treatments on emergency and yield of maize(Zea mays L.). Research Journal of Biological Sciences,3(12):1452-1455.
    151. Moiler M, Smith M L.1998. The applicability of seaweed suspensions as priming treatments of lettuce(Lactuca safiva L.) seeds. Seed Science and Technolog,26: 425-438.
    152. Nayyar H, Walia D P Kaitha B L.1995. Performance of broad wheat(Triticum aestivum) seed primed with growth regulators and inorganic salts. Indian Journal of Agricultural Science,65(2):112-116.
    153. Parera C A, Cantiiffe D J.1994. Presowing seed priming. Hortcultural Reviews,16: 109-141.
    154. Passam H C Kakouriotis D.1994. The effects of osmo-conditioning on the germination, emergence and early plant growth of cucumber under saline conditions. HortScience, 57,233-240.
    155. Pill W G.1995. Low water potential and presowing germination treatments to improve seed quality. In:Seed Quality(Basra, A S ed). Food Products Press,319-359.
    156. Prasad T K, Anderson M D, Stewart C R.1994. Acclimation, hydrongen peroxide and abscisic acid protect mitchondria against irreversible injury in maize seedling. Plant Physiol.,105:619-6271.
    157. Raskin I, hmann A, elander W, et al..1987. Salicylic acid-a Natural inducer of hea production in arnm lilies. Science,237:1545.
    158. Rowse H R.1996. Drum-priming:A non-osmotic method of priming seeds. Seed Science and Technology, (24):281-294.
    159. Saxena 0 P, Gita S.1987. Osmotic Priming studies in some vegetable seeds. Acta Horticulture,215:201-208.
    160. Seyed S R.2011. Grain yield and physiological growth indices in maize(Zea mays L.) hybrids under seed biopriming with plant growth promoting rhizobacteria(PGPR). Journal of Food Agriculture & Environment,9(3-4):393-397.
    161. Sitan.su P, Jennyfer B, Amrita D.2011. Effect of seed bio priming with some antagonistic isolates of trichoderma species. Journal of Mycology and Plant Pathology,41(1): 43-48.
    162. Taylor A Q.1988. SMP:Solid matrix priming of seeds. Scientia Horticuhurae,37:1-11.
    163. Toorop P E, Aelst A C V Hilhorst H W M.1998. Endosperm cap weakening and end-β-mannanase activity during priming of tomato(Lycopersicon esculentum cv. Money-maker) seeds are initiated upon crossing a threshold water potential. Seed Science Research,8:483-489.
    164. Varier A, Vari A K.2010. Seed science and technology. New Delhi:Kalyani Publishers: 182-198.
    165. Warren J E, Bennett M A.1997. Seed hydration using the drum priming system. HortScience, 32:1220-1221.
    166. Warren J E, Bennett M A.2000. Bio-osmopriming tomato (Lycopersicon esculentum Mill.) seeds for improved seedling establishment. Wallingford, U. K:CABI Publishing, 477-487.
    167. Wu L, Hallgren S W, Ferris D M, et al..1999. Solid matrix priming to enhance germination of loblolly pine(Pinus taeda)Seeds. Seed Science and Technolgy,27:251-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700