用户名: 密码: 验证码:
氟苯虫酰胺和NK130102对亚洲玉米螟的分子作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NK130102是新型邻苯二甲酰胺类化合物,通过转录组测序的方法测定了NK130102和氟苯虫酰胺处理的亚洲玉米螟的转录组,在此基础上克隆了亚洲玉米螟鱼尼丁受体(OfRyR)cDNA,并深入研究了不同浓度的氟苯虫酰胺在不同作用时间下对OfRyR cDNA表达量的影响。此外,我们在OfRyR cDNA的基础上进一步克隆了OfRyR的gDNA序列。结论如下:
     1) NK130102和氟苯虫酰胺对亚洲玉米螟2龄幼虫的LC50分别为0.2和0.17μg g-1,两种药剂的LC95分别为8.8和3.8μg g-1。亚洲玉米螟经8.8μg g-1的NK130102处理48h后,钙信号途径中的鱼尼丁受体基因表达量上调3.7倍,肌质网/内质网Ca2+ATPase基因上调2.8倍;与肌肉收缩相关的蛋白肌球蛋白,肌动蛋白,M-线蛋白unc-89,肌联蛋白的基因表达量分别上调7.4,2.8,26.9和3.7倍。因此,我们可以初步判断,NK130102可以作用于钙离子释放通道,引起肌质网/内质网钙泵中Ca2+的持续释放,导致细胞质中Ca2+浓度的升高,从而引起肌肉的持续收缩。此外,重要的杀虫剂靶标基因及解毒代谢酶基因序列的获得为基于靶标的新化合物的生物合理设计提供了基础。
     2)在此基础上,克隆了OfRyR cDNA,其开放阅读框为15324bp,可以编码5108个氨基酸,该氨基酸与其它昆虫的鱼尼丁受体氨基酸序列具有79–97%的相似性,其中与稻纵卷叶螟鱼尼丁受体氨基酸序列的相似性最高(97%)。序列分析结果表明OfRyR cDNA的C-末端存在6个跨膜区域,且这6个跨膜区恰好对应6个高疏水的区域。C-末端跨膜区存在一个构成钙离子通道的保守序列GVRAGGGIGD。实时荧光定量PCR的结果表明:OfRyRcDNA在卵中的表达水平最低,在成虫中的表达量最高,在1龄、3龄、5龄幼虫的相对表达量是卵中的1.19-1.99倍。此外,我们在OfRyR cDNA中发现了两种形式的可变剪接,一对位于第二个SPRY结构域上的互斥外显子(a/b),和一对位于第三至第四个RyR结构域上的选择性外显子(c)。诊断PCR结果表明:互斥外显子a和b在亚洲玉米螟所有龄期中均同时存在,但是外显子a和b各自所占的比例在不同龄期中却存在很大的差异。对于选择性外显子c,存在频率最高的龄期是三龄幼虫期,达到了47.5±16.3%。然而,卵期未检测到c的存在。
     3)形态学研究表明:氟苯虫酰胺和NK130102导致亚洲玉米螟出现拒食,呕吐,虫体收缩变短的中毒症状,并且体重明显变轻。实时荧光定量PCR的结果表明:氟苯虫酰胺和NK130102导致OfRyR cDNA表达量明显上调,而甲氨基阿维菌素苯甲酸盐却没有引起该基因表达量的显著变化。而且,药剂处理24h后,RyR基因的表达量随氟苯虫酰胺浓度的升高,大致呈现逐渐上调的趋势;随着时间的延长,较低浓度的氟苯虫酰胺使得RyR基因的表达量继续上调,药剂处理48h,1μg/g的氟苯虫酰胺导致RyR基因表达量上调的幅度最大,此时RyR基因的表达量是对照的2.96倍。
     4)我们在OfRyR cDNA序列的基础上,进一步克隆了该基因的gDNA序列。我们通过测序获得了长度为93575bp的DNA序列,该基因包含95个外显子,其中第25和26个外显子是一对互斥外显子,第59个外显子是一对选择性外显子。除了第21个内含子以GC开头外,其它内含子和外显子交界处都遵循GT/AG规律。
     综上所述,通过转录组测序初步明确了新化合物NK130102的作用机制,通过克隆OfRyR cDNA和gDNA,研究氟苯虫酰胺和NK130102对OfRyR cDNA表达量的影响,进一步明确了二酰胺类化合物的作用机制,为基于靶标的新农药分子生物合理设计提供理论依据。
NK130102is a novel phthalic amide insecticide. In order to investigate the mechanism ofthis compound, transcriptome sequencing was used to evaluate changes in the globle geneexpression of O. furnacalis treated with NK130102and flubendiamide. Based on thetranscriptome sequencing results, the OfRyR cDNA was cloned. The effects of differentinsecticides and different concentration of flubendiamide on OfRyR cDNA relative expressionabundance wre carried out. We also cloned the gDNA of OfRyR based on the OfRyR cDNA.Conclusions are as follows:
     1) The LC50values of NK130102and flubendiamide against Ostrinia furnacalis were0.2and0.17mg g-1respectively, and the LC95values of two insecticeides against Ostrinia furnacalis were8.8and3.8μg g-1respectively. The ryanodine receptor (RyR) gene and sarco/endoplasmicreticulum calcium ATPase gene in the calcium signaling pathway were up-regulated for3.7and2.8folds, and the myosin, actin, muscle M-line assembly protein unc-89, titin genes involved invascular smooth muscle contraction were up-regulated for7.4,2.8,26.9and3.7folds in O.furnacalis treated with NK130102at the concentration of8.8mg g-1for48h. Therefore, we coulddeduce that NK130102acting on the calcium release channel, reduced the continuous Ca2+releasefrom calcium pump, and the increased Ca2+in cytoplasm caused the persistent muscle contraction.In particular, the insecticide targets and metabolism genes will facilitate the designing of newcompounds based on the insecticide target.
     2) Based on the transcriptome sequencing, we cloned and characterized the full-length RyRcDNA from Ostrinia furnacalis. This cDNA contained an ORF of15324bp encoding a protein of5108amino acid residues, which show79–97%amino acid identity with other insect RyRisoforms and share the greatest identity with Cnaphalocrocis medinalis RyR (97%). Quantitativereal-time PCR showed that the OfRyR was expressed at the lowest level in egg and the highestlevel in adult. The relative expression levels of OfRyR in first, third and fifth-instar larva were1.19~1.99times of that in egg. Moreover, two alternative splicing sites were identified in theOfRyR gene. One pair of mutually exclusive exons (a/b) were present in the central part of thepredicted second SPRY domain, and an optional exon (c) was located between the third and fourthRyR domains. Diagnostic PCR showed that exons a and b existed in all developmental stages ofOfRyR cDNA, but exon c was not detected in the egg cDNA. And the usage frequencies of theseexons were different among different developmental stages.
     3) Morphological study demonstrated that the weight of O. furnacalis treated withflubendiamide and NK130102were much lighter than those treated with emamectin benzoate andDMSO. Flubendiamide and NK130102also caused the toxic symptom of antifeedant, vomiting,contract and shortening. Real-time fluorescent quantitative PCR showed the relative expressionquantity of RyR cDNA was increased when O. furnacalis treated with flubendiamide andNK130102, while emamectin benzoate has no effect on the OfRyR expression. The relative expression quantity of RyR cDNA from O. furnacalis treated with different concentration offlubendiamide was also carried out. The OfRyR cDNA increased with the increasingflubendiamide concentrations after treatment24h, and flubendiamide at lower concentrations canlead to continuing rise over time. The biggeat raise of OfRyR cDNA was2.96-fold than controlwhen Flubendiamide at1μg/g for48h.
     4) We cloned the gDNA of OfRyR based on OfRyR cDNA. The full length of93575bpOfRyR gDNA contains95exons, the25and26exons are a pair of exclusive exons and the59exon is an optional exon. The exon/intron boundaries assigned follow the GT/AG rule.
     In conclusion, transcriptome sequencing data provide useful information in understanding themechanisms of novel insecticide NK130102. We cloned cDNAand gDNA of OfRyR and analysedthe effects of diamides on the expression of OfRyR, which further clarify the mechanism ofdiamide insecticides. The results will facilitate the designing of new compounds based on theinsecticide targets and could provide the basis for further study of resisitance to diamideinsecticides.
引文
1.陈斌.利用主要气象因子对二代玉米螟预测预报研究.[硕士学位论文].泰安:山东农业大学,2007.
    2.董丽霞,甲氨基阿维菌素苯甲酸盐对棉铃虫的抗性选育及亚致死效应研究.[硕士学位论文].北京:中国农业科学院,2011.
    3.董卫莉.基于鱼尼丁受体(RyR)杀虫剂的设计、合成与生物活性研究.[博士学位论文].天津:南开大学,2009.
    4.董卫莉,徐俊英,刘幸海等.昆虫鱼尼丁受体及以其为靶标的杀虫剂的研究进展.农药学学报,2008,10:178-185.
    5.董闫涛.鱼尼丁受体杀虫剂的设计合成与生物活性研究.[博士学位论文].天津:南开大学,2012.
    6.房玲玲,周海燕. Ryanodine受体突变和恶性高热的研究进展,国际麻醉学与复苏杂志,2007,28:532-535.
    7.韩红梅,尹长城. Ryanodine受体相关的肌肉疾病及其研究进展,生理科学进展,2005,36:18-22.
    8.刘鹏飞.基于鱼尼丁受体(RyR)的杀虫剂设计、合成及生物活性研究.[博士学位论文].天津:南开大学,2012.
    9.马志卿.不同类杀虫剂的致毒症状与作用机理关系研究.[博士学位论文].杨凌:西北农林科技大学,2002.
    10.郭朝,殷跃红.基于分子马达集体运行机制的骨骼肌收缩动态力学模型——基于分子马达运行机制的骨骼肌生物力学原理(I),中国科学,2012,42(6):672-679.
    11.任立群.肌联蛋白的结构特点与生理功能,国外医学内科学分册,2006,33(5):215-217.
    12.孙丽娜.小菜蛾和甜菜夜蛾鱼尼丁受体基因克隆及分子药理学研究.[博士学位论文].北京:中国农业科学院,2012.
    13.王昆.棉田玉米螟的发生与防治,北京:中国农业科技出版社,1997.
    14.王振营,何康来,邢珍娟,白树雄,文丽萍.不同类型玉米组织对亚洲玉米螟幼虫存活和生长发育的影响,中国农学通报,2004,20(5):217-224.
    15.王伟业.亚洲玉米螟发生规律及防治技术研究.[硕士学位论文].哈尔滨:黑龙江大学,2010.
    16.杨峰山,小菜蛾Bt蛋白受体基因克隆及序列分析.哈尔滨,黑龙江大学出版社,2009
    17.章晓辉,朱培闳. Ryanodine受体结构和药理学性质,生理科学进展,1997,28:224-228.
    18. Akshay ADC, Jeffrey JB, Raymond SN, Nicos AN, Sandra EN.(2013) Structure and function ofthe SPRY/B30.2domain proteins involved in innate immunity. Protein Science22:1-10.
    19. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature1993,361:315–325.
    20. Bibikova, M, Carroll, D, Segal, DJ, et al. Stimulation of homologous recombination throughtargeted cleavage by chimeric nucleases. Molecular and Cellular Biology2001,21(1):289-297.
    21. Bibikova, M, Golic, M, Golic, KG, et al. Targeted chromosomal cleavage and mutagenesis inDrosophila using zinc-finger nucleases. Genetics2002,161(3):1169-1175.
    22. Boch, J, Scholze, H, Schornack, S, et al. Breaking the code of DNA binding specificity ofTAL-type III effectors. Science2009,326(5959):1509-1512.
    23. Bonas, U, Stall, RE, and Staskawicz, B. Genetic and structural characterization of the avirulencegene avrBs3from Xanthomonas campestris pv. vesicatoria. Molecular Genetics and Genomics1989,218(1):127-136.
    24. Bootman MD, Collins TJ, Peppiatt CM et al., Calcium signalling—an overview. Seminars in Celland Developmental Biology2001,12:3-10.
    25. Buck E, Zimanyi I, Abramson JJ, et al. Ryanodine stabilizes multiple conformational states of theskeletal muscle calcium release channel, Journal of Biological Chemistry1992,267:23560-23567.
    26. Callaway, C, Seryshev, A, Wang, JP, Slavik, KJ, Needlman, DH, Cantu, CI, Wu, Y, Jayaraman, T,Marks, AR, Hamilton, SL. Localisation of the high and low affinity [3H]ryanodine binding sites onthe skeletal muscle Ca2+release channel. The Journal of Biological Chemistry1994,269:15876-15884.
    27. Carlson, DF, Tan, W, Lillico, SG, et al. Efficient TALEN-mediated gene knockout in livestock.Proceedings of the National Academy of Sciences of the United States of America2012,109(43):17382-17387.
    28. Cermak, T, Doyle, EL, Christian, M, et al. Efficient design and assembly of custom TALEN andother TALeffector-based constructs for DNAtargeting. Nucleic Acids Research2011,39(12): e82.
    29. Choulika, A, Perrin, A, Dujon, B, et al. Induction of homologous recombination in mammalianchromosomes by using the I-SceI system of Saccharomyces cerevisiae. Molecular and CellularBiology1995,15(4):1968-1973.
    30. Christian, M, Cermak, T, Doyle, EL, et al. Targeting DNA double-strand breaks with TAL effectornucleases. Genetics2010,186(2):757-761.
    31. Cohen-Tannoudji, M, Robine, S, Choulika, A, et al. I-SceI-induced gene replacement at a naturallocus in embryonic stem cells. Molecular and Cellular Biology1998,18(3):1444-1448.
    32. Conesa A, G tz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool forannotation, visualization and analysis in functional genomics research. Bioinformatics2005,21:3674–3676.
    33. Cong, L, Ran, FA, Cox, D, et al. Multiplex genome engineering using CRISPR/Cas systems.Science2013,339(6121):819-823.
    34. Copello JA, Barg S, Sonnleitner A, Porta M, Diaz-Sylvester P, Fill M, et al. Differential activationby Ca2+, ATP and caffeine of cardiac and skeletal muscle ryanodine receptors after block by Mg2+.Journal of Membrane Biology2002,187:51-64.
    35. Cordova D, Benner EA, Sacher MD, Rauh JJ, Sopa JS, Lahm GP, et al. Anthranilic diamides: Anew class of insecticides with a novel mode of action, ryanodine receptor activation. PesticideBiochemistry and Physiology2006,84:196-214.
    36. Cordova D, Benner EA, Sacher MD, Rauh JJ, Sopa JS, Lahm GP, et al. The novel mode of actionof anthranilic diamide insecticides–ryanodine receptor activation; Lyga J and Theodoritis G;Synthesis and Chemistry of Agrochemicals Series VII; American Chemical Society; WashingtonDC2007a, pp223-234.
    37. Cordova D, Benner EA, Sacher MD, Rauh JJ, Sopa JS, Lahm GP, et al. Elucidation of the mode ofaction of RynaxypyrTM, a selective ryanodine receptor activator; Ohkawa H, Miyagawa H, Lee PW;Pesticide Chemistry: Crop Protection, Public Health, Environmental Safety; Wiley-VCH;Weinheim2007b, pp121-125.
    38. Coronado R, Morrissette J, Sukhareva M, et al. Structure and function of ryanodine receptor.American Journal of Physiology1994,269:15876-15884.
    39. Cui X, Ji D, Fisher DA, et al. Targeted integration in rat and mouse embryos with zinc-fingernucleases. Nature Biotechnology2011,29(1):64-67.
    40. Dekeyser M A. Acaricide Mode ofAction. Pest Management Science2005,61(2):103-110.
    41. Doyon Y, McCammon, JM, Miller, JC, et al. Heritable targeted gene disruption in zebrafish usingdesigned zinc-finger nucleases. Nature Biotechnology2008,26(6):702-708.
    42. Du GG, MacLennan DH. Functional consequences of mutations of conserved, polar amino acids intransmembrane sequences of the Ca2+release channel (ryanodine receptor) of rabbit skeletalmuscle sarcoplasmic reticulum. The Journal of Biological Chemistry1998,273:31867–31872.
    43. Dulhunty AF, Pouliquin P. What we don 't know about the structure of ryanodine recep tor calciumrelease channels. Clinical and Experimental Pharmacology and Physiology2003,30(10):713-723.
    44. DuPont Rynaxypyr insect control technical bulletin:http://www.dupont.com/production_agriculture/en_US/assets/downloads/pdfs/Rynaxypyr_technical_bulletin.pdf
    45. Ebbinghaus-Kintscher U, Luemmen P, Lobitz N, Schulte T, Funke C, Fischer R et al. Phthalicacid diamides activate ryanodine sensitive Ca2+release channels in insects, Cell Calcium2006,39:21-33.
    46. Fill M and Copello JA. Ryanodine receptor calcium release channels. Physiological Reviews2002,82:893-922.
    47. Flisikowska, T, Thorey, IS, Offner, S, et al. Efficient immunoglobulin gene disruption and targetedreplacement in rabbit using zinc finger nucleases. PLoS One2011,6(6): e21045.
    48. Gao L, Balshaw D, Xu L, Tripathy A, Xin C, et al. Evidence for a role of the lumenal M3-M4loopin skeletal muscle Ca2+release channel (ryanodine receptor) activity and conductance. BiophysicalJournal2000,79:828–840.
    49. Garcia J and Schneider MF. Suppression of calcium release by calcium or procaine in voltageclamped rat skeletal muscle fibres. The Journal of Physiology1995,485:437-445.
    50. George CH, Rogers SA, Bertrand BMA, Tunwell REA, Thomas NL, et al. Alternative Splicing ofRyanodine Receptors Modulates Cardiomyocyte Ca2+Signaling and Susceptibility to Apoptosis.Circulation Research2007,100:874-883.
    51. Ghassemi F, Vukcevic M, Xu L, Zhou HY, Meissner G, Muntonie F, Jungbluth H, Zorzato F,Treves S. A recessive ryanodine receptor1mutation in a CCD patient increases channel activity.Cell Calcium2009,45:192-197.
    52. Groh, S, Marty I, Ottolia M, Prestipino G, Chapel A, Villaz M, Ronjat M. Functional interaction ofthe cytoplasmic domain of triadin with the skeletal ryanodine receptor. Journal of BiologicalChemistry1999,274(18):12278–12283.
    53. Guo L, Tang BZ, Dong W, Liang P, Gao XW.(2012) Cloning, characterisation and expressionprofiling of the cDNA encoding the ryanodine receptor in diamondbackmoth, Plutella xylostella(L.)(Lepidoptera: Plutellidae). Pest Management Science68:1605–1614.
    54. Guo L, Wang Y, Zhou X, Li Z, Liu S, Pei L, Gao X, Functional analysis of a point mutation in theryanodine receptor of Plutella xylostella (L.) associated with resistance to chlorantraniliprole. PestManagement Science2013, doi:10.1002/ps.3651.
    55. Hall T. Ecological effects assessment of flubendiamide. Pflanzenschutz-Nachrichtern Bayer2007,60:167–182.
    56. Hamilton S. Ryanodine receptors. Cell Calcium2005,38:253-260.
    57. Hasan G, Rosbash M. Drosophila homologs of two mammalian intracellular Ca2+-release channels:identification and expression patterns of the inositol1,4,5-triphosphate and the ryanodine receptorgenes. Development1992,116:967-975.
    58. Hockemeyer D, Soldner F, Beard C, et al. Efficient targeting of expressed and silent genes inhuman ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnology2009,27(9):851-857.
    59. Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Research1999,9:868–877.
    60. Hwang, W.Y., Fu, Y., Reyon, D., et al. Efficient genome editing in zebrafish using a CRISPR-Cassystem. Nature Biotechnology2013,31(3):227-229.
    61. Jinek, M., Chylinski, K., Fonfara, I., et al. A programmable dual-RNA-guided DNA endonucleasein adaptive bacterial immunity. Science2012,337(6096):816-821.
    62. Johnson JM, Castle J, Garrett-Engele P, Kan ZY, Loerch PM, et al. Genome-Wide Survey ofHuman Alternative Pre-mRNA Splicing with Exon Junction Microarrays. Science2003,302:2141-2144.
    63. Kato K, Kiyonaka S, Sawaguchi Y, Tohnishi M, Masaki T, Yasokawa N, et al. Molecularcharacterization of flubendiamide sensitivity in the lepidopterous ryanodine receptor Ca2+releasechannel. Biochemistry200948:10342-10352.
    64. Kimura T, Lueck JD, Harvey PJ, Pace SM, Ikemoto N, et al. Alternative splicing of RyR1altersthe efficacy of skeletal EC coupling. Cell Calcium2009,45:264–274.
    65. Knight AL, Flexner L, Disruption of mating in codling moth (Lepidoptera: Tortricidae) bychlorantranilipole, an anthranilic diamide insecticide. Pest Management Science2007,63:180-189
    66. Lahm GP, Selby TP, Freudenberger JH, et al. Insecticidal anthranilic diamides: a new class ofpotent ryanodine receptor activators. Bioorganic&Medicinal Chemistry Letters2005,15:4898-4906.
    67. Lahm GP, Stevenson TM, Selby TP, Freudenberger JH, Dubas CM, Smith BK, et al. RynaxypyrTM:A new anthranilic diamide insecticide acting at the ryanodine receptor. In: Ohkawa H, MiyagawaH, Lee PW (eds), Pesticide Chemistry: Crop Protection, Public Health, Environmental Safety;Wiley-VCH; Weinheim,2007a, pp111-120.
    68. Lahm GP, Stevenson TM, Selby TP, et al. RynaxypyreTM: a new insecticidal anthranilic diamidethat acts as a potent and selective ryanodine receptor activator. Bioorganic&Medicinal ChemistryLetters2007b,17:6274-6279.
    69. Lehmberg E and Casida JE. Similarity of insect and mammalian ryanodine binding sites. PesticideBiochemistry and Physiology1994,48:152-154.
    70. Linke WA, Ivemeyer M, Mundel P, et al. Nature of PEVK-titin elasticity in skeletal muscle.Proceedings of the National Academy of Sciences of the United States of America1998,95:8052–8057.
    71. Liu S, Altman RB. Large scale study of protein domain distribution in the context of alternativesplicing. Nucleic Acids Research2003,31:4828-4835.
    72. MacKrill JJ. Protein-protein interactions in intracellular Ca2+-release channel function.Biochemical Journal1999,337:345-361.
    73. Marks AR. Cellular functions of immunophilins. Physiological Reviews1996,76:631-649.
    74. Marks AR, Marx SO, Reiken S. Regulation of ryanodine receptors via macromolecular complexes.A novel role for leucine/isoleucine zippers. Trends in Cardiovascular Medicine2002,12:166–170.
    75. Marks AR, Tempst P, Hwang KS, Taubman MB, Inui M, Chadwick C, Fleischer S, Nadal-GinardB. Molecular cloning and characterization of the ryanodine receptor/junctional channel complexcDNA from skeletal muscle sarcoplasmic reticulum. Proceedings of the National Academy ofSciences United States of America1989,86:8683–8687.
    76. Marx SO, Gaburjakova J, Gaburjakova M, Henrikson Ch, Ondrias K, Marks AR. Coupled gatingbetween cardiac calcium release channels (ryanodine receptors). Circulation Research2001,88:1151-1158.
    77. Masaki T, Yasokawa N, Tohnishi M, Nishimatsu T, Tsubata K, Inoue K et al. Flubendiamide, anovel Ca2+channel modulator, reveals evidence for functional cooperation between Ca2+pumpsand Ca2+release. Molecular Pharmacology2006,69:1733-1739.
    78. Meissner G. Ryanodine receptor/Ca2+release channels and their regulation by endogenouseffectors. Annual Review of Physiology1994,56:485-508.
    79. Meloun B, Moravek L, and Kostka V. Complete amino acid sequence of human serum albumin.FEBS Letters1975,58(1):134-137.
    80. Morgulis A, Gertz EM, Schaffer AA, Agarwala R: A fast and symmetric DUST implementation tomask low-complexity DNA sequences. Journal of Computational Biology2006,13:1028-1040.
    81. Monma S, Sunazuka T, Nagai K, et al. Verticilide: Elucidation of absolute configuration and totalsynthesis. Organic Letters2006,8(24):5601-5604.
    82. Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B. Mapping and quantifying mammaliantranscriptomes by RNA-Seq. Nature Methods2008,5:621–628.
    83. Nakai J, Imagawa T, Hakamat Y, Shigekawa M, Takeshima H, Numa S, Primary structure andfunctional expression from cDNA of the cardiac ryanodine receptor/calcium release channel. FEBSLetters1990,271(1-2):169-177.
    84. Nancy A. Benkusky, Emily F. Farrell, Héctor H. Valdivia. Ryanodine receptor channelopathies.Biochemical and Biophysical Research Communications2004,322:1280-1285
    85. Narahashi T. Nerve Membrane Ion Channels as the Target Site of Insecticides. Mini Reviews inMedicinal Chemistry2002,2(4):419-432.
    86. Nauen R, Bretschneider T. New Modes of Action of Insecticides. Pesticide Outlook2002,13(6):241-245.
    87. Ogawa Y. Role of Ryanodine Receptors. Critical Reviews in Biochemistry and Molecular Biology1994,29:229-274.
    88. Ogawa Y, Kurebayashi N, Murayama T. Ryanodine receptor isoforms in excitation-contractioncoupling. Advances in Biophysics1999,36:27-64.
    89. Ogawa Y, Murayama T, Kurebayashi N. Comparison of properties of Ca2+release channelsbetween rabbit and frog skeletal muscles. Molecular and Cellular Biochemistry1999,190:191-201.
    90. Ohkawa H, Miyagawa H, Lee PW. Pesticide Chemistry [M]. Weinheim: Wiley-VCH VerlagGmbH&Co KGaA,2007:137-140.
    91. Ottini L, Marziali G, Conti A, Charlesworth A, Sorrentino V. Alpha and beta isoforms ofryanodine receptor from chicken skeletal muscle are the homologues of mammalian RyR1andRyR3. Biochemical Journal1996,315:207-216.
    92. Oyamada H, Murayama T, Takagi T, Iino M, Iwabe N, Miyata T et al. Primary structure anddistribution of ryanodine-binding protein isoforms of the bullfrog skeletal muscle. The Journal ofBiological Chemistry1994,269:17206-17214.
    93. Palnitkar SS, Mickelson JR, Louis CF and Parness J. Pharmacological distinction betweendantrolene and ryanodine binding sites: evidence from normal and malignanthyperthermia-susceptible porcine skeletal muscle. Biochemical Journal1997,326:847-852.
    94. Penner R, Neher E, Takeshima H, Nishimura S, Numa S, Functional expression of the calciumrelease channel from skeletal muscle ryanodine receptor cDNA. FEBS Letters1989,259(1):217-221.
    95. Peppe BB, Carruth LA, New plant insecticide for control of the European corn borer. Journal ofEconomic Entomology1945,38:59-66.
    96. Perez CF, Mukherjee S, Allen PD. Amino acids1-1,680of ryanodine receptor type1hold criticaldeterminants of skeletal type for excitation-contraction coupling. Role of divergence domain D2.The Journal of Biological Chemistry2003,278:39644-39652.
    97. Puente E, Suner MM, Evans AD, McCaffery AR, Windass JD, Identification of a polymorphicryanodine receptor gene from Heliothis virescens (Lepidoptera: Noctuidae). Insect Biochemistryand Molecular Biology2000,30:335-347.
    98. Radermacher M, Rao V, Grassucci R et al., Cryo-Electron Microscopy and Three-DimensionalReconstruction of the Calcium Release Channel/Ryanodine Receptor from Skeletal Muscle. TheJournal of Cell Biology1994,127:411-423.
    99. Ralf N. Perspectives Insecticide mode of action: return of the ryanodine receptor. PestManagement Science2006,62:690-692.
    100. Rodney GG, Moore CP, Williams BY, Zhang JZ, Krol J, et al.(2001) Calcium binding tocalmodulin leads to an N-terminal shift in its binding site on the ryanodine receptor. J Biol Chem276:2069–2074.
    101. Rubtsov, AM. Molecular mechanisms of regulation of the activity of sarcoplasmic reticulumCa-release channels, muscle fatigue, and Severins phenomenon. Biochemistry2001,66(10):1132-1143.
    102. Samso M, Radermacher M, Grassucci R, Berkowitz J, Xin HB, Fleischer S, Wagenknecht TT. The3D locations of calmodulin (CaM) and FK506-binding protein (FKBP12) binding sites on theryanodine receptor.41stAnnual Meeting of the Biophysical Society, Biophysical Journal1997,72:A169.
    103. Sattella DB, Cordova D, Cheek TR, Insect ryanodine receptors: molecular targets for novel pestcontrol chemicals. Invertebrate neuroscience2008,8:107-119.
    104. Schuhmeier RP, Gouadon E, Ursu D, Kasielke N, Flucher BE, Grabner M, Melzer W. Functionalinteraction of CaV channel isoforms with ryanodine receptors studied in dysgenic myotubes.Biophysical Journal2005,88,1765-1777.
    105. Scott-ward TS, Dunbar SJ, Windass JD. Characterization of the ryanodine receptor-Ca2+releasechannel from the thoracic tissues of the lepidopteran insect Heliothis virescens. Journal ofMembrane Biology2001,179:127-141.
    106. Sharma MR, Jeyakumar LH, Fleischer S, and Wagenknecht T. Three-dimensional Structure ofRyanodine Receptor Isoform Three in Two Conformational States as Visualized by Cryo-electronMicroscopy. The Journal of Biological Chemistry2000,275:9485-9491.
    107. Skeie GO, Lunde PK, Sejerated OM, Mygland Aê, Aarli JA and Gilhus NE. Autoimmunityagainst the ryanodine receptor in myasthenia gravis. Acta Physiologica Scandinavica2001,171:379-384.
    108. Sparks T C, Crouse G D, Durst G. Natural products as insecticides: the biology, biochemistry andquantitative structure-activity relationships of spinosyns and spinosoids. Pest Management Science2001,57:896-905.
    109. Spudich JA. The myosin swinging cross-bridge model. Nature Reviews Molecular Cell Biology,2001,2(4):387–392.
    110. Sun LN, Cui L, Rui CH, Yan XJ, Yang DB, et al.(2012) Modulation of the expression ofryanodine receptor mRNA from Plutella xylostella as a result of diamide insecticide application.Gene511:265–273.
    111. Tae HS, Wei L, Willemse H, MirzaS, Gallant EM, et al. The elusive role of the SPRY2domain inRyR1. Channels2011,5:148-160.
    112. Takeshima H, Nishi M, Iwabe N, Miyata T, Hosoya T, Masai I et al. Isolation and characterizationof a gene for a ryanodine receptor/calcium release channel in Drosophila melanogaster. FEBSLetters1994,337:81-87.
    113. Tang W, Sencer S, Hamilton SL. Calmodulin modulation of proteins involved inexcitation-contraction coupling. Frontiers in Bioscience2002,7:1583–1589.
    114. Templeton, N.S., Roberts, D.D., and Safer, B. Efficient gene targeting in mouse embryonic stemcells. Gene Therapy1997,4(7):700-709.
    115. Tesson, L, Usal, C, Menoret, S, et al. Knockout rats generated by embryo microinjection ofTALENs. Nature Biotechnology2011,29(8):695-696.
    116. Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F et al. Identification of mutationsin the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricularcardiomyopathy type2(ARVD2). Human Molecular Genetics2001,10:189-194.
    117. Tohnishi M, Nakao H, Furuya T, Seo A, Kodama H, Tsubata K et al. Flubendiamide, a novelinsecticide highly active against Lepidopterous insect pests. Journal of Pesticide Science2005,30:354-360.
    118. Troczka B, Zimmer CT, Elias J, Schorn C, Bass C, Davies TGE, Field LM, Williamson MS, SlaterR, Nauen R, Resistance to diamide insecticides in diamondback moth, Plutella xylostella(Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of theryanodine receptor. Insect Biochemistry and Molecular Biology2012,42:873-880.
    119. Tu Q, Velez P, Brodwick M, Fill M. Streaming potentials reveal a short ryanodine-sensitiveselectivity filter in cardiac Ca2+release channel. Biophysical Journal1994,67:2280-2285.
    120. Tung CC, Lobo PA, Kimlicka L, Petegem FV. The amino-terminal disease hotspot of ryanodinereceptors forms a cytoplasmic vestibule. Nature2010,468:585-589.
    121. Wagenknecht T, Grassucci R, Frank J, et al. Three dimensional architecture of the calciumchannel/Food structure of sarcoplasmic reticulum. Nature1989,338(6211):167-170.
    122. Wagenknecht T, Radermacher M, Grassucci R, Berkowitz J, Xin HB, Fleischer S. Locations ofcalmodulin and FK506-binding protein on the three-dimensional architecture of the skeletal muscleryanodine receptor. Journal of Biological Chemistry1997,272(51):32463-32471.
    123. Wang JJ, Li YQ, Han ZJ, Zhu YL, Xie ZJ, et al. Molecular Characterization of a RyanodineReceptor Gene in the Rice Leaffolder, Cnaphalocrocis medinalis (Guenée). PLoS ONE2012,7(5):e36623.
    124. Wang XL, Wu SW, Yang YH, Wu YD. Molecular cloning, characterization and mRNA expressionof a ryanodine receptor gene from diamondback moth, Plutella xylostella. Pesticide Biochemistryand Physiology2012,102:204–212.
    125. Wierenga RK, Hol WGJ. Predicted nucleotide-binding properties of p21protein and itscancer-associated variant. Nature1983,302:842–844.
    126. Wing K D, Sacher M, Kagaya Y, et al. Bioactivation and mode of action of the oxadianzineindoxacarb in insects. Crop Protection2002,19:537-545.
    127. Wright, D.A., Townsend, J.A., Winfrey, R.J., Jr., et al. High-frequency homologous recombinationin plants mediated by zinc-finger nucleases. Plant Journal2005,44(4):693-705.
    128. Xiong H, Feng X, Gao L, Xu L, Pasek DA, et al.(1998) Identification of a two EF-hand Ca2+binding domain in lobster skeletal muscle ryanodine receptor/Ca2+release channel. Biochemistry37:4804–4814.
    129. Xu X, Bhat MB, Nishi M, Takeshima H, Ma J. Molecular cloning of cDNA encoding a Drosophilaryanodine receptor and functional studies of the carboxyl-terminal calcium release channel.Biophysical Journal2000,78:1270-1281.
    130. Yamaguchi N, Xin C, Meissner G. Identification of apocalmodulin and Ca2+-calmodulin regulatorydomain in skeletal muscle Ca2+release channel, ryanodine receptor. The Journal of BiologicalChemistry2001,276:22579–22585.
    131. Yang DB, Zhang LN, Yan XJ, Wang ZY and Yuan HZ, Effects of Droplet Distribution onInsecticide Toxicity to Asian Corn Borers (Ostrinia furnaealis) and Spiders (Xysticus ephippiatus).Journal of Integrative Agriculture2014,13(1):122-131.
    132. Zarka A, Shoshan-Barmatz V. Characterization and photoaffinity labeling of the ATP binding siteof the ryanodine receptor from skeletal muscle. European Journal of Biochemistry1993,213:147–154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700