用户名: 密码: 验证码:
长期不同施肥下新疆灰漠土有机碳演变特征及转化机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田有机碳含量是衡量土壤肥力高低的重要指标之一,也是土壤碳库中最活跃的部分。灰漠土有机碳研究对干旱区碳循环研究和保证新疆农业可持续发展具有重要的现实和科学意义。本文选择新疆灰漠土长期肥料试验的化肥(N、NP、NPK、NK、PK),施有机肥(NPKM、hNPKM),秸秆还田(NPKS、S),不施肥(CK),撂荒(CK0)处理,对土壤有机碳演变特征;有机碳组分时序差异;微生物生物量碳(SMBC)的季节性变化、SOC分解转化特点进行了研究;并采用DNDC模型,对灰漠土未来30年SOC演变趋势和固碳潜力进行了预测,结果如下:
     (1)施用有机物料(有机肥和秸秆)均能增加灰漠土有机碳含量,提高速率为0.004g/kg·a~0.626g/kg·a,但施用化肥使有机碳含量下降,下降速率为0.004g/kg·a~0.06g/kg·a。年均碳投入与土壤有机碳符合线性正相关(P<0.01)。与试验初始相比,灰漠土开垦为农田后有机碳储量增加了4tC/hm2~43.7tC/hm2,1995年后累积速率高于1990-1994年。不同施肥处理之间比较显示,秸秆还田碳储量反而小于对照和施化肥处理,这与秸秆还田显著影响了土壤容重有关。(2)不同施肥使灰漠土土壤有机碳组分含量和比例分配产生显著差异,与CK相比,除N处理外,施有机肥或化肥使土壤活性(AC)、缓效(SC)、惰性(RC)碳组分的含量提高了15.7%~300.86%。而NPK、NPKS仅提高了AC含量,但降低了RC和SC含量。灰漠土微生物商0.3-2.8%,小于南方水田(3.4%-4.9%)或红壤(2.5%-4.3%)。(3)室内培养和原位碳通量测试的研究结果均表明,灰漠土呼吸呈快速释放、趋缓到稳定三个阶段,单施有机肥显著高于有机无机配施秸秆还田以及对照;而平衡施肥(NPK)最低。采用一级动力学方程模拟灰漠土CO2-C的累积释放量,结果显示施用有机肥(NPKM、hNPKM)显著增加了土壤呼吸速率,其潜在释放量为4.37mg/kg、8.65mg/kg,而CK和NPK的释放量为1.81mg/kg、3.70mg/kg。灰漠土土壤呼吸速率与土壤5cm地温呈负相关关系(P<0.05)。
     (4)DNDC模型很好地模拟了化肥、CK、NPKS的SOC变化趋势,模拟与实测值RMSE<10%,但高估了有机肥SOC变化,平均偏差(M)1.49g/kg~4.04g/kg。预测灰漠土不施肥或不施氮肥的固碳潜力为-1.5tC/hm2~-0.75tC/hm2,将是净碳源;而增施氮肥的固碳潜力为0.19tC/hm2~2.41tC/hm2;施用有机物料固碳潜力达到2.37tC/hm2~83.71tC/hm2。
     综上所述,本研究阐明了导致灰漠土肥力差异的本质是不同施肥使有机碳各组分比例发生了变化。有机碳含量、组分比例差异和SMBC的变化导致了不同的CO2的释放速率。若灰漠土不施肥或不施氮肥将不能维持土壤肥力水平,而秸秆还田可以保持土壤肥力,施用有机肥能够快速提高土壤肥力。上述结果丰富了干旱区有机碳演变过程和转化机制,也为新疆灰漠土固碳减排措施的选择提供了参考。
Soil organic carbon (SOC) is not only one of the important index for soil fertility, but also has aclose relationship with global climate change, therefore it is becoming to the hot topic for scienceresearchers.For the purpose to show the effect of agricultural management on the soil fertility in GreyDesert soil, clarify the SOC dynamics and turnover mechanisms under different fertilization. Weselected five to nine treatments in the Grey Desert soil long-term experimental site in Xinjiang province,include no fertilization(Control), nitrogen(N), nitrogen plus phosphorus(NP), nitrogen plus phosphorusplus potassium(NPK),NPK plus manure(NPKM),1.5time NPKM. NPK plus straw(NPKS),Manure (M),straw(S). We analyzed of SOC dynamics and its storage, the time decrepency under different carbonfraction, the seasonal dynamics of soil microorganism biomass carbon (SMBC), and combined withDNDC model to predicted the dynamics of SOC in the future30years, and estimated the SOCsequestration. The main results followed:
     (1) The dynamics of SOC demonstrated that the SOC continue increased in NPKM, hNPKM, andNPKS plots, and the increments were0.004g/kg~0.626g/kg per year. The SOC and the annual C inputhad significantly positive relationship (P<0.05).While the SOC decreased0.056g/kg~0.024g/kg peryear in CK, NP, and NPK plots. The SOC storage rate change was small during the whole experimentalperiod in inorganic fertilizer and/or straw return plots, while it was higher during1990-1994than thatduring1995-2013in plots with manure. Compared to initial year, the SOC storage increase ranged from32.1%to152.7%in the same plot. The SOC storage was decreased as1.35tC/hm2和10.0tC/hm2in CKand NP compared with NPKS. This might caused by the declined bulk density in NPKS plot.Meanwhile, the slight SOC increase resulted to the decrease of SOC storage in NPKS had therelationship with the special climate condition and straw return style and time in Xinjiang.
     (2) The results of fraction of SOC in surface layer (0-20cm) and sub-layer (20-40cm) showed thatcompared with CK, the content of active carbon pool (AC), slow carbon pool (SC), and refractorycarbon pool (RC) was increased in all fertilization plots except N only plot. The increase rate rangedfrom15.7%to300.86%. Compared with the fallow plot, the three SOC pools all increased in plots withmanure; the AC and RC pool decreased while SC increased in NP plot; the AC pool increased while RCand SC decreased in NPK and NPKS plots. These results indicated that the fertilization and crop speciesinfluenced the SOC pool and change. SMBC/SOC (microbial quotient qSMBC) of Grey desert range is0.3%~2.8%, less than the southern paddy field (3.4%~4.9%) or red (2.5%~4.3%).
     (3) Cultivation and field test results show that carbon flux of grey desrt soil have three stage:quick release, slow and stability. The respiration reate of Manure treatement is significantly higher thanNPK or NPKS. the respiration rate was0.497mol/m2s in M plot.First order kinetics equation areadopted to simulate the cumulative emission of CO2–C. The result showed that organic fertilizer(NPKM, hNPKM) significantly increased the soil respiration rate, its potential to release a quantity to4.37mg/kg,8.65mg/kg, and CK and NPK to release a quantity to1.81mg/kg,3.70mg/kg. Gray desertsoil soil respiration rate and soil are negatively related5cm ground tempurature (P <0.05).
     (4)We validated the DNDC model in Grey Desert soil, it was suitable for SOC dynamics under all the plots except NPKM and hNPKM, which overestimated. The M value ranged from1.49g/kg~4.04g/kg. The SOC prediction during2010to2040showed that the SOC sequestration potential was-1.5tC/hm2~-0.75tC/hm2ranged from CK and plots without N, this indicated that it was C source underthese plots. The SOC sequestration potential ranged from0.19tC/hm2to2.41tC/hm2under plots with N,and it was2.37tC/hm2~83.71tC/hm2in plots with organic material application.
     Generally, this study based on the Grey Desert soil, analyzed the SOC evolution, the fraction, theSMBC change and soil respiration. Fertilization significantly affected the SMBC and caused thediscrepancy of soil respiration. The model simulation indicated that chemical fertilizer only was hard tomaintain SOC, while the additional straw return play an important role to maintain soil fertility, manureapplication can improve SOC in short time. The study provided a management option for mitigation andC sequestration in Grey Desert soil in Xinjiang province.
引文
1.巴特尔·巴克,彭镇华,张旭东.生物地球化学循环模型DNDC及其应用.土壤通报,2007,38(6):1208-1212.
    2.陈晨,梁银丽,吴瑞俊.黄土丘陵沟壑区坡地土壤有机碳变化及碳循环初步研究.自然资源学报,2010,25(4):668-676.
    3.陈凌静,王子芳,魏朝富.土壤有机碳、氮动态模型研究进展.土壤通报,2009,40(2):432-438.
    4.陈长青,胡清宇,孙波.长期施肥下石灰性潮土有机碳变化的DNDC模型预测.植物营养与肥料学报,2010,16(6):1410-1417.
    5.池婷,徐驰,刘茂松,张明娟,杨雪姣.干旱区沙枣-芨芨草群落土壤有机碳的空间格局.应用生态学报,2013,24(10):2725-2730.
    6.邓祥征,姜群鸥,林英志,韩健智.中国农田土壤有机碳贮量变化预测.地理研究,2010,29,93-101.
    7.邓祥征,赵永宏,战金艳.农田碳汇估算模型与应用研究述评.安徽农业科学,2009,37(35):17649-17652.
    8.樊廷录,王淑英,周广业,丁宁平.长期施肥下黑垆土有机碳变化特征及碳库组分差异.中国农业科学,2013,46(2):300-309.
    9.方华军,杨学明,张晓平.农田土壤有机碳动态研究进展.土壤通报,2003,34,562-568.
    10.高崇升,杨国亭,王建国,张兴义.利用CENTURY模型模拟不同农业经营模式下黑土农田土壤有机碳的演变.生态学杂志,2008,27,911-915.
    11.高鲁鹏,梁文举,姜勇.土壤有机质模型的比较分析.应用生态学报,2003,10(14):1804-1808.
    12.高鲁鹏,梁文举,姜勇,闻大中.利用CENTURY模型研究东北黑土有机碳的动态变化I:自然状态下土壤有机碳的积累.应用生态学报,2004,15,772-776.
    13.郭菊花,不同施肥措施对水稻土团聚体结构和有机碳稳定性的影响[博士论文].南京:南京农业大学,2007.
    14.韩冰,王效科,逯非,段晓男,欧阳志云.中国农田土壤生态系统固碳现状和潜力.生态学报2008,25:(2):612-619.
    15.韩冰,王效科,欧阳志云.中国农田生态系统土壤碳库的饱和水平及其固碳潜力.农村生态环境,2005,21:(4):6-11.
    16.韩东亮,贾宏涛,朱新萍,许咏梅,韩雅娇.DNDC模型预测新疆灰漠土农田有机碳的动态变化.资源科学,2014,36(3):,0577-0583.
    17.黄从德,张健,杨万勤,唐宵.四川森林植被碳储量的时空变化.应用生态学报,2007,18,2687-2692.
    18.黄晶,高菊生,张杨珠,秦道珠,徐明岗.长期不同施肥下水稻产量及土壤有机质和氮素养分的变化特征.应用生态学报,2013,24(7):1889-1894.
    19.黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势.科学通报,2006,51,750-763.
    20.黄忠良.运用CENTURY模型模拟管理对鼎湖山森林生产力的影响.植物生态学报,2000,24,175-179.
    21.姜桂英,中国农田长期不同施肥的固碳潜力及预测[博士论文].北京:中国农科院农业资源与农业区划研究所,2013.
    22.姜小三,潘剑君,李学林.江苏表层土壤有机碳密度和储量估算和空间分布分析.土壤通报,2005,36,501-503.
    23.姜勇,庄秋丽,梁文举.农田生态系统土壤有机碳碳库及其影响因素.生态学杂志,2007,26,278-285.
    24.解丽娟,王伯仁,徐明岗,彭畅,刘骅.长期不同施肥下黑土与灰漠土有机碳储量的变化.植物营养与肥料学报,2012,18(1):98-105.
    25.赖冬梅,李志国,田长彦.干旱区棉田土壤剖面有机碳和全氮含量垂直分布特征及碳储量变化.中国棉花,2012,7,24-28.
    26.李晨华,唐立松.长期施肥对绿洲农田土壤剖面有机碳及其组分的影响.干旱区地理,2013,36(4):637-644.
    27.李东,高明.土壤有机碳循环研究进展.江西农业学报,2008,20,60-63.
    28.李虎,王立刚,邱建军.黄淮海平原河北省范围内农田土壤CO2和N2O排放量的估算.应用生态学报,2007,18(9):1994-2000.
    29.李小涵,郝明德,王朝辉.农田土壤有机碳的影响因素及其研究.干旱地区农业研究,2008,26(3):176-181.
    30.李赟,贾宏涛,董自红,蒋平安.新疆伊犁地区土壤有机碳储量估算.新疆农业大学学报,2008,31,64-66.
    31.李长生.土壤碳储量减少:中国农业之隐患--中美农业生态系统碳循环对比研究.第四纪研究,2000,20(4):345-350.
    32.李长生.生物地球化学的概念与方法-DNDC模型的发展.第四纪研究,2001,21(2):89-99.
    33.李志杰,李守正,田昌玉.土壤有机质对小麦恭贺作用系统的影响.自然资源学报,2000,15,83-86.
    34.李忠,孙波.我国东部土壤有机碳的密度和储量.农业环境保护,2001,20,386-389.
    35.李忠芳.长期施肥下我国典型农田作物产量演变特征和机制[博士论文].北京:中国农科院农业资源与农业区划研究所,2008.
    36.李忠芳,徐明岗,张会民,李慧,孙楠.长期施肥下作物产量演变特征的研究进展.西南农业学报,2012,25(6):2387-2392.
    37.廖千家骅,颜晓元.农业土壤氧化亚氮排放模型研究进.农业环境科学学报,2010,29,817-825.
    38.林飞燕,吴宜进,王绍强,周蕾,杨风亭,石浩,蔡锦涛.秸秆还田对江西农田土壤固碳影响的模拟分析.自然资源学报,2013,28,981-993.
    39.刘骅,佟小刚,许咏梅,马兴旺,王西和,张文菊,徐明岗.长期施肥下灰漠土有机碳组分含量及其演变特征.植物营养与肥料学报,2010,16(4):794-800.
    40.刘满强,胡锋,陈小云.土壤有机碳稳定机制研究进展.生态学报,2007,27,2642-2649.
    41.刘淑霞,王宇,赵兰波.冻融作用下黑土有机碳数量变化的研究.农业环境科学学报,2008,27,984-990.
    42.逯非,王效科,韩冰,欧阳志云,段晓男.郑华中国农田施用化学氮肥的固碳潜力及其有效性评价,应用生态学报,2008,19,2239-2250.
    43.骆坤,胡荣桂,张文菊,周宝库,徐明岗,张敬业,夏平平.黑土有机碳_氮及其活性对长期施肥的响应.环境科学,2013,34(2):676-684.
    44.马杰,吴玉,郑新军,唐立松,王玉刚.盐生荒漠净生态系统碳交换的涡度相关法和箱式法对比.生态学杂志2013,32(10):2627-2634.
    45.马俊永,陈金瑞,李科江.施用化肥和秸秆对土壤有机质含量及性质的影响.河北农业科学2006,10,44-47.
    46.孟凡乔,吴文良,辛德惠.高产农田土壤有机质、养分变化规律与作物产量的关系.植物营养与肥料学报,2000,6,370-374.
    47.孟磊,蔡祖聪,丁维新.长期施肥对土壤碳储量和作物固定碳的影响.土壤学报,2006,42,769-776.
    48.欧阳扬,李叙勇.干湿交替频率对不同土壤CO2和N2O释放的影响.生态学报2013,3(4):1251-1259.
    49.潘根兴.中国土壤有机碳库及其演变与应对气候变化.气候变化研究进展,2008,4,282-289.
    50.潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全.地球科学进展,2005,20,384-392.
    51.潘剑玲,代万安,尚占环,郭瑞英.秸秆还田对土壤有机质和氮素有效性影响及机制研究进展.中国生态农业学报,2013,21(5):526-535.
    52.秦璐,吕光辉,何学敏,杨建军,何静,张燕.艾比湖地区土壤呼吸测定代表性时段.生态学杂志,2013,32(11):3109-3116.
    53.秦小光,李长生,蔡炳贵.气候变化对黄土碳库效应影响的敏感性研究.第四纪研究,2001,21(2):153-161.
    54.邱建军,王立刚,李虎.农田土壤有机碳含量对作物产量影响的模拟研究.中国农业科学,2009,42(1):154-161.
    55.申卫军,彭少麟,邬建国.南亚热带鹤山主要人工林生态系统C、N累积及分配格局的模拟研究.植物生态学报,2003,27,690-699.
    56.史亦,陈欣,杨雪莲.土壤“慢”性有机碳库研究进展.生态学杂志,2003,22,108-112.
    57.孙文娟,黄耀,张稳,于永强.农田土壤固碳潜力研究的关键科学问题.地球科学进展,2008,23(9):996-1004.
    58.佟小刚.长期施肥下我国典型农田土壤有机碳库变化特征[博士论文].北京:中国农业科学院农业资源与农业区划研究所,2008.
    59.佟小刚,黄绍敏,徐明岗,卢昌艾,张文菊.长期不同施肥模式对潮土有机碳组分的影响.植物营养与肥料学报,2009,15(4):831-836.
    60.佟小刚,徐明岗,张文菊,卢昌艾.长期施肥对红壤和潮土颗粒有机碳含量与分布的影响.中国农业科学,2008,41(11):3664-3671.
    61.汪业勖,赵士洞.陆地碳循环研究中的模型方法.应用生态学报,1998,9(6):658-664.
    62.王成己,施肥和耕作长期试验下农田土壤有机碳及作物生产力变化的统计研究[博士论文].南京:南京农业大学,2009.
    63.王立刚,邱建军.高产粮区农业生态系统土壤碳氮循环的模拟研究--以河北省曲周县为例.中国农业大学学报,2003,增刊,31-35.
    64.王玲莉,韩晓日,杨劲峰,王晔青,马玲玲,娄翼来长期施肥对纵容有机碳组分的影响.植物营养与肥料学报,2008,14(1):79-83.
    65.王秋兵,段迎秋,魏忠义,韩春兰,孔令苏,窦立珠.沈阳市城市土壤有机碳空间变异特征研究.土壤通报,2009,40,252-257.
    66.王淑芳,王效科,欧阳志云.密云水库上游地区农田土壤有机碳储量及变化模拟.生态环境学报2009,18(5):1923-1928.
    67.魏燕华,赵鑫,翟云龙,张二朋,陈阜,张海林.耕作方式对华北农田土壤固碳效应的影响.农业工程学报,2013,29(17):87-95.
    68.吴乐知,蔡祖聪.基于长期试验资料对中国农田表土有机碳含量变化的估算.生态环境,2007,16(6):1768-1774.
    69.熊汉锋,陈治平,黄世宽.梁子湖湿地农田碳氮循环的模拟研究.农业环境科学学报,2006,25(增刊):533-536.
    70.徐明岗,梁国庆,张夫道.中国土壤肥力演变[M].北京:中国农业科学技术出版社:2006.
    71.徐明岗,于荣,王伯仁.土壤活性有机质的研究进展.土壤肥料,2000,6,3-7.
    72.徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002,39,89-95.
    73.许文强,陈曦,罗格平,蔺卿,2011.土壤碳循环研究进展及干旱区土壤碳循环研究展望.干旱区地理34,614-620.
    74.许文强,陈曦,罗格平,张清,张豫芳,唐飞.基于CENTURY模型研究干旱区人工绿洲开发与管理模式变化对土壤碳动态的影响.生态学报2010,30(14):3707-3716.
    75.许咏梅,刘骅,王西和.长期不同施肥下新疆灰漠土土壤呼吸特征研究区.新疆农业科学,2012,49(7):1294-1300.
    76.杨长明,欧阳竹,董玉红.不同施肥模式对潮土有机碳组分及团聚体稳定性的影响.生态学杂志2005,24,887-892.
    77.尹云峰,蔡祖聪,钦绳武.长期施肥条件下潮土不同组分有机质的动态研究.应用生态学报,2005,16,875-878.
    78.尤孟阳,李海波,韩晓增.土地利用变化与长期施肥对黑土有机碳密度的影响.水土保持学报2010,24(2):155-159.
    79.于锐,王其存,朱平,刘强,王恒,孙崇玉.长期不同施肥对黑土团聚体及有机碳组分的影响.土壤通报,2013,44(3):594-600.
    80.张东秋,石培礼,张宪洲.土壤呼吸主要影响因素的研究进展.地球科学进展,2005,20(7):779-783.
    81.张凡,李长生.气候变化影响的黄土高原农业土壤有机碳与碳排放.第四纪研究,2010,30(3):566-570.
    82.张凡,李长生,王政.耕作措施对陕西耕作土壤碳储量的影响模拟.第四纪研究,2006,26(6):1021-1028.
    83.张国,曹志平,胡婵娟.土壤有机碳分组方法及其在农田生态系统研究中的应用.应用生态学报,2011,22(7):1921-1930.
    84.张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标.生态环境2003,12,500-504.
    85.张林,王礼茂,王睿博.长江中上游防护林体系森林植被碳贮量及固碳潜力估算.长江流域资源与环境,2009,18,111-115.
    86.张璐,张文菊,徐明岗.长期施肥对中国3种典型农田土壤活性有机碳的影响.中国农业科学2009,42(5):1646-1655.
    87.张明园,魏燕华,孔凡磊.耕作方式对华北农田土壤有机碳储量及温室气体排放的影响.农业工程学报,2012,28(6):203-209.
    88.张庆忠,吴文良,王明新.秸秆还田和施氮对农田土壤呼吸的影响.生态学报,2005,25(11):205-209.
    89.周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展.地球科学进展,2005,20,99-105.
    90.周涛,史培军,罗巾英,邵振艳.基于遥感与碳循环过程模型估算土壤有机碳储量.遥感学报,2007,11,127-136.
    91.诸葛玉平,张旭东,刘启.长期施肥对黑土呼吸过程的影响.土壤通报,2005,36(3):391-394.
    92. Aguilar, R.E., Kelly, F., Hei, R.D.1988.Effects of cultivation on soils in northern great plains rangeland.1988.Soil Sci Soc Am J,52,1081-1085.
    93. Banger, K., Kukal, S.S., Toor, G.2009. Impact of long-trem additions of chemical fertilizers andfarm yard maunur on carbon and nitrogen sequestration under rice-cowpea cropping system insemi-aric tropics. Plant and Soil,318,27-35.
    94. Batjes, N.H.1996.Total carbon and nitrogen in soils of the world..European Journal of SoilScience,47,151-163.
    95. Bhattacharyya, T., Pal, D.K., Easter, M., willians, S., K, P., Milne, E., Chandran, P., Ray, S.K.,Mandal, C., Coleman, K., Fallon, P., Powlson, D., Gajbhiye, K.S.2007.Evaluating the Century Cmodel using long-term fertilizer trials in the Indo-Gangetic Plains, India. Agriculture Ecosystemsand Environment,122,73-83.
    96. Bronick, C.J., Lal, R.2005.Soil structure and management. Geoderma,124,3-22.
    97. Christian, P., Giardina, Ryan, M.G.2000.Evidence that decomposition rates of organic carboninmineral soil do not vary with temperature. Nature,404,858-861.
    98. Craine, J.M., Gelderman, T.M.2011.Soil moisture controls on temperature sensitivity of soilorganic carbon decomposition for a mesic grassland. Soil Biology and Biochemistry,43,455-457.
    99. Curtis, P.S., Vogel, C.S., Gugh, C.M., Schmid, H.P. Su, H.B.2005.Respiratory carbon losses andthe carbon-use efficiency of a northern hardwood forest,1999-2003. New Phytologist,167,437-456.
    100. Diaz-Zorita, M., Buschiazzo, D.E., Peinemann, N.1999.Soil organic matter and wheat productivityin the semiaric argentine pampas. Agro.J,91,276-279.
    101. Doran, J.W., Safley, M.1997.Defining and assessing soil health and sustainable productivity. CBAIntemational, New York.
    102. Fang, C., Moncrieff, J.B.2001.The dependence of soil CO2efflux on temperature. Soil Bilolgy andBiochemistry,33,155-165.
    103. Feller, C., Beare, M.H.1997.Physical control of soil organic matter dynamics in the tropics.Geoderma,79,69-116.
    104. Gregorich, E.G., Drury, C.F., Baldock, J.A.2000.Change in soil carbon under long-term maize inmonoculture and legume-based rotation. Canadian Journal Soil Science,80,179-192.
    105. Gupta, A.P., Narwal, R.P., Antil, R.S.2003.Influence of soil organic matter on the productivity ofpear-millet-Wheat cropping system. Archives of Agronomy and Soil Science,49,325-332.
    106. Huang, Y., Sun, W.J.2006.Changes in topsoil organic carbon of croplands in mainland China overthe last two decades. Chinese Sci Bull,51,1785-1803.
    107. Janzen, H., Lamey, F.J., Olson, B.M.1992. Soil quality factors of problem soils in Albcrta.Proceedings of the Alberta. Soil Science Workshop,35,17-28.
    108. Jenkinson, D.S.1991.The Rothamsted long-term experiments:Are they still of use. AgronomyJournal,83,2-10.
    109. Jenkinson, D.S., Adams, D.E., Wild, A.1991. Model estimates of CO2emissions from soil inresponse to global warming. Nature,351,304-306.
    110. Juarez, S., Nunan, N., Duday, A.-C., Pouteau, V., Schmidt, S., Hapca, S., Falconer, R., Otten, W.,Chenu, C.2013.Effects of different soil structures on the decomposition of native and addedorganic carbon. European Journal of Soil Biology,58,81-90.
    111. Kelly, R.H., Parton, W.J., Crocker, G.J.1997.Simulating trends in soil organic carbon in long-termexperiments using th CENTURY model. Geoderma,81,75-90.
    112. Kirschbaum, M.2006.The temperature dependence of organic-matter decomposition—still a topicof debate. Soil Biology and Biochemistry,38,2510-2518.
    113. Knorr, W., Prentic, I.C., House, J.I., Holland, E.A.2005.Long-term sesitivity of soil carbonturnover to warming. Nature,433,298-301.
    114. Lal,R.2002.Soil carbon sequestration in China through agricultural intensification, and restorationof degraded and desertified ecosystems. Land Degradation and Development,13,469-478.
    115. Larson, W.E., Pierce, F.J., Dowdy, R.H.1983.The trend of soil erosion to ling-term crop production.Science,219,458-465.
    116. Leavitt, S.W., Follett, R.F., Paul, E.A., EstiMRT.1996.field of the slow and fast cycling soilorganic carbon pools from6N HCl hydrolysis. Radiocarbon,38,230-231.
    117. Li, D., Shao, M.A.2014.Soil organic carbon and influencing factors in different landscapes in anarid region of northwestern China. Catena,116,95-104.
    118. Li, H., QIU, J.J., WANG, L.G., XU, M.Y., LIU, Z.Q., Wang, W.2012.Estimates of N2O Emissionsand Mitigation Potential from a Spring Maize Field Based on DNDC Model. Journal of IntegrativeAgriculture,11,2067-2078.
    119. Liao, Q.L., Zhang, X.H., Li, Z.P., Pan, G.X., Wu, X.M.2009.Increase in soil organic carbon stockover th last two decades in China's Jiangsu Province. Glo.Change Biol,15,4,861-875.
    120. Liski, J., Ilvesniemi, H., Makela, A., Westman, C.J.,.1999.CO2emissions form soil in response toclmatic warming are overestimated-The decomposition of old soil organic matter is tolerant oftemperature. Ambro,28,171-174.
    121. Liu, D.L., Chan, K.Y., Conyers, M.K.2009.Soil and Simulation of soil organic carbon underdifferent tillage and stubble management practices using the Rothamsted carbon model. TillageResearch,104,65-73.
    122. Liu, X.B., Han, X.Z., Song, C.Y.2003.Soil organic carbon dynamics in Black so il of China underdiffer ent agricultura l management systems. Communications in Soil Science and Plant Analysis,34,973-984.
    123. Loveland, P., Webb, J.2003.Is there a critical level of organic matter in the agricultural soils oftemperate regions: a review. Soil and Tillage Research,70,1-18.
    124. Luo, Y., Wan, S., HUi, D., Wallace, L.2001.Accllimatization of soil respiration t warming in a tallgrass prairie. Nature,414.
    125. Luo, Y., Zhou, X.2007.Soil Respiration and the Environment. Higher Education, Beijing
    126. Lykov, A.,.1978.The effect of the organic matter of edmo podzolic soil on the yields of field crops.Problemy Zemledeliya Referentivnyi Zhurnal Seriya,5,195-202.
    127. Malhi, S.S., Haraplak, J.T., Nyborg, M.2003.Total and light fraction organic C in a thin BlackChemozemic grassland soil as affected by27annual applications of six rates of fertilizer. FertilizerResearch,66,33-41.
    128. Mando, A., Ouattara, B., Somado, A.E., Wopereis, M., stroosnijder, L., Breman, H.2005.Long-term effects of fallow, tillage and manure application on soil organic matter andnitrogen fractions and on sorghum yieled under Sudano-Sahelian conditions. Soil Use Manage21,25-31.
    129. Manlay, R.J., Masse, D.,.2002.Carbon, nitrogen and phosphor us allocation in ag ro-ecosy stems of a West African savanna. III. Plant and soil components under continuous cultivation. Agriculture,Ecosystems and Environment,88,249-269.
    130. McTaggart, I.P., Smith, K.A.1993.Estimation of potentially mineralizable nitrogen in soils by KCLextraction.II. Comparison with plant uptake in the field. Plant and Soil,157,175-184.
    131. Oorts, K.2002.Charge characteristics and organic matter dynamics in weathered soils of the tropics.University Leuvon Belgium
    132. Pan, G.X., Li, L.Q., Wu, L.S.,.2003a. Storage and sequestration potenitial of topsoil organic carbonin China's paddy soils. Glo.Change Biol.,10,79-92.
    133. Pan, G.X., LI, L.Q., Zhang, X.H.2003b.Soil organic carbon storage of china and the sequestrationdynamics in agricultural lands. Advances in Earth Science,18,609-618.
    134. Pan, G.X., Smith, P., Pan, W.N..2009.The role of soil organic matter in maintaining theproductivity and yield stability of cereals in China. Agric Ecosyst Environ,129,344-348.
    135. Parshotam, A., Saggar, S., Searle, P.L.2000.Carbon residence times obtained from labeledregrass,decomposition in soils under contrasting environmental conditions. Soil Bilolgy&Biochemistry,32,75-83.
    136. Parton,W.J.,Ras Mussen,P.E.1994.Long-term effects of crop management inwheat-fallow:CENTURY model simulations. soil Sci Soc Am J,58,530-536.
    137. Pilus Zambi, M.M., Yaacob, A.J., Kamal, M., Paramananthan, S.,.1982.The detemination of soilfactors on growth of cashew on bri soil. Part Pertanika,5,200-206.
    138. Plante, A.F., Conant, R.T., Carlson, J., Greenwood, R., Shulman, J.M., Haddix, M.L., Paul, E.A.2010.Decomposition temperature sensitivity of isolated soil organic matter fractions. Soil Biologyand Biochemistry,42,1991-1996.
    139. Post, W.M., Izarurralde, R.C., Mann, L.K.2001.Montoring and verifying changes of organiccarbon in soil. Climatic Chage,51,73-79.
    140. Qiu, J.-j., Wang, L.-g., Li, H., Tang, H.-j., Li, C.-s., Van Ranst, E.,.2009.Modeling the Impacts ofSoil Organic Carbon Content of Croplands on Crop Yields in China. Agricultural Sciences inChina,8,464-471.
    141. Ras Mussen, P.E., R.R., A.M., Roager, J.N.C.1980.Crop residue influeces on soil carbon andnitrogen in a wheat-fallow system Soil Sci Soc Am J,44,596-600.
    142. Rasmussen, P.E., Collins., H.P.,.1991.Long-term impacts of tillage, fertilizer, and crop residue onsoil organic matter in temperate semiarid regions. Adv. Agron.45,93–134.
    143. Rovira, P., Jorba, M., Romanyà, J.,.2010.Active and passive organic matter fractions inMediterranean forest soils. Biology and Fertility of Soils,46,355-369.
    144. Rovira, P., Ramón Vallejo, V.,.2007.Labile, recalcitrant, and inert organic matter in Mediterraneanforest soils. Soil Biology and Biochemistry,39,202-215.
    145. Sass, R., Fisher, F., Lewis, S., Jund, M., Turner, F.1994.Methane emissions from rice fields: Effectof soil properties. Global Biogeochemical Cycles,8,135-140.
    146. Scharpf, H.1967. Correlations between the humus content of the soil and the yields of severalcrops, as revealed by a long term fertilization trial. Albrecht-Thaer-Arch,11,61-67.
    147. Schimel, D.S., Coleman, D.C., Horton, K.A.1985.Soil organic matter dynamics in pairedrangeland and cropland toposequences in North Dakota. Geoderma,36,201-214.
    148. Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M.,Kogel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S.,Trumbore, S.E.,.2011.Persistence of soil organic matter as an ecosystem property. Nature,478,49-56.
    149. Schwenke, G.D., Shah, Z., Shah, S.H., Peoples, M.B., Herridge, D.F.1998.Crop residue andfertilizer N effects on nitrogen fixation and yields of legume-cerealrotations and soil organicfertility. Field Crops Research,83,1-11.
    150. Singh, J.S., Gupta, S.R.1997.Plant decomposition and soil respiration in terrestrial ecosystems.Bot. Rev,,43,449-450.
    151. Skjemstad, J.O., Spouncer, L.R., Cowie, B., Swift, R.S.,.2004.Calibration of the Rothamstedorganic carbon turnover model (RothC ver.26.3), using measurable soil organic carbon pools.Australian Journal of Soil Research,42,79-88.
    152. Smith, O.H., Petersen, G.W., Needelman, B.A.1999.Environemtal indicators of agroecosystems.Adv Agron,69,75-97.
    153. Smith, P., Martino, D., Cai, Z.C.2007.Policy and technological constraints to implementation ofgreenhouse gas mitigation options in agriculture. Agric Ecosyst Environ,118,6-21.
    154. Smith, P., Smith, J.U., Powlason, D.S.1997a.A comparison of the performance of nine soil organicmatter models using datasets from seven long-term experiments. Geoderma,81,153-225.
    155. Smith, P., Smith, J.U., Powlson, D.S., McGill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K.,Franko, U., Frolking, S., Jenkinson, D.S., Jensen, L.S., Kelly, R.H., Klein-Gunnewiek, H.,Komarov, A.S., Li, C., Molina, J.A.E., Muller, T., Parton, W.J., Thornley, J.H.M., Whitmore, A.P. A1997b.comparison of the performance of nine soil organic matter models using datasets from sevenlong-term expeiments. Geoderma,81,153-225.
    156. Stanford, G., Smith, S.J.1972.NitrogenM ineralizat ion poten tials of soil. Soil Sc.i Soc.Am.Proc,36,465-472.
    157. Stefen, W.L.W., B. H. Ungram, J. S..1992.Global changes andterrestrial ecosystems, TheOperational Plan. IGBP Report21,International Geosphere-Biosphere Programme, Stockholm, p.,118.
    158. Stuart, G.A., G.A., P., Erich, M.2002.Organic amendment and rotation crop effects on the recoveryof soil organic matter and aggregation potato cropping system. Soil Sci Soc Am J,66,1311-1319.
    159. Tiessen, H., Cuevas, E., Chacon, P.1994.The role of soil orgainc matter in sustaining soil fertility.Nature,371,783-785.
    160. Todorovic, R., G., S., M., Tatzber, M., Katzlberger, C., Spiegel, H., Zehetner, F., Gerzabek, M.H.2010.Soil-carbon turnover under different crop management: Evaluation of RothC-modelpredictions under Pannonian climate conditions. Journal of Plant Nutrition and Soil Science,173,662-670.
    161. Vanlanwe, B., N, S., mercks, R.1998.Soil organic matter dynamics after addition of nitrogen-15labelled Leucaena and Dactyladenia residues. Soil Sci Soc Am J,62.
    162. Whitbread, A., Blair, G.J., Lefroy, R.D.B.2000.Managing legumeleys, residues and fertilizers toenhance the sustainability of wheat cropping systems in Australia:1The effects on wheat yieldsand nutrient balance. Soil and Tillage Research,54,63-75.
    163. Whitbread, A., Lefroy, R., Blair, G.1998.A survey of the impact of cropping on soil physical andchemical properties in north-western New South Wales. Australian Journal of Soil Research,36,669-682.
    164. Wu, H.B., Guo, Z.T., Peng, C.H.2003.Distribution and storage of soil organic carbon in China.Global Biogeochemical Cycles,17,32-44.
    165. Xu, X.W.,.2008.Distuibution and dynamics of soil organic carbon of cropland at differdnt spacescales of China(in Chinese). Nanjin Agric. University, Nanjing, pp.54-81.
    166. Yang, X., Li, P., Zhang, S., Sun, B., Xinping, C.2011.Long-term-fertilization effects on soilorganic carbon, physical properties, and wheat yield of a loess soil. Journal of Plant Nutrition andSoil Science,174,775-784.
    167. Zhang, H.M., Wang, B.R., Xu, M.G., Fan, T.L.2009a.Crop yield and soil responses to long-termfertilization on a red soil in southern China. Pedosphere,19,199-207.
    168. Zhang, W., Xu, M., Wang, B., Wang, X.2009b.Soil organic carbon, total nitrogen and grain yieldsunder long-term fertilizations in the upland red soil of southern China. Nutr Cycl Agroecosyst,84,59-69.
    169. Zhang,Y.,LI, C., Zhou, X.2002a.A simulation model linking cropgrowth and soil biogeochemistryfor sustainable agriculture. Ecol.Model,151,75-108.
    170. Zhang, Y., LI, C., TRETTIN, C.C.,.2002b. An integrated model of soil hydrology and vegetationfor carbon dynamics In wetland ecosystems. Global Biogeochem. Cycle,16,1011-1018.
    171. Zhu, B., Cheng, W.,.2011.Constant and diurnally-varying temperature regimes lead to differenttemperature sensitivities of soil organic carbon decomposition. Soil Biology and Biochemistry,43,866-869.
    172. Zsolnay, A., Gorliz, H.1991.Water extractable organic matter in arable soil:effect of drough andlong-term fertilization. Soil Bilolgy and Biochemistry,16,1257-1261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700