用户名: 密码: 验证码:
烟粉虱MED隐种温度耐受性的遗传与进化特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变化背景下,生物入侵的过程和结果面临复杂的变化。温度耐受性是变温昆虫时空分布和扩散动态的重要影响因素。生物有机体在极端条件下保持活力的能力对于生存意义重大。温度耐受性近来备受关注,因为对于温度耐受性的研究为我们深入地了解气候变化下生态学、种群分布、遗传变异和物种进化提供了新的视角。特别是对温度耐受性状的遗传力估计和进化潜力的分析是预测和解释入侵物种的生态适应和分布变化的重要手段。烟粉虱MED (Mediterranean)隐种最初于2003年被发现传入我国云南,在短短十几年内已经广泛分布在长江流域、东部沿海地区,甚至已经入侵到我国最北部省份黑龙江省,并有取代MEAM1隐种和本地近缘种的趋势。快速温度适应性进化是烟粉虱MED隐种种群迅速扩张的一个重要原因,但其遗传进化的内在机制尚不清楚。本论文以不同气候条件下烟粉虱MED隐种种群为研究对象,主要采用数量遗传学方法,综合分析和评估了入侵烟粉虱MED隐种的遗传与进化特征。主要研究结果如下:
     (1)根据目前烟粉虱MED隐种在我国的入侵现状,选择气候条件各异、并具有代表东西南北四个气候区域,最北黑龙江省、最南海南省、西北新疆吐鲁番地区和华北地区的北京市,在同一年份,选择四个地区的烟粉虱MED隐种爆发期的重叠月份内(7、8、9月),进行大田烟粉虱MED隐种的采集、筛选及相应的实验种群建立;从群体水平对不同气候条件下长期适应的烟粉虱MED隐种的耐热性进行直接高温击倒、记录击倒时间TKD的方式进行测定和比较分析,证明了不同气候条件种群的烟粉虱MED隐种在耐热性上存在显著差异;通过对同一气候条件种群中不同性别的成虫进行高温击倒记录击倒时间TKD的测定和分析,结果表明,同一种群内,烟粉虱MED四个气候条件种群的雌性成虫耐热性均显著大于雄性成虫。
     (2)对大田采集的代表我国东南西北四个方位的不同气候条件地区烟粉虱MED隐种种群,从群体水平上进行了以恒定低温击倒一定时间后记录其在常温下的恢复时间,即冷击倒恢复时间TRC,测定并分析了不同气候条件种群的耐寒性差异,证明了不同气候条件种群之间存在着两两之间的显著差异;在种群内部的比较中,烟粉虱MED隐种雌雄成虫在耐寒性上存在不同程度的差异,其中,北方的哈尔滨种群及北京种群雌性成虫的耐寒性显著大于雄性成虫,而热带地区的海口种群和西北地区的吐鲁番种群中,雌性成虫的耐寒性大于雄性成虫,但差异并不显著。
     (3)对日平均温度和日最高温度的年变化趋势相似,但温度范围差异明显的黑龙江种群和新疆种群进行亲子代杂交试验设计,测定亲本、杂交F1代及回交B1、B2代的耐热性表型值,对后代耐热性表型值进行线性剖分,并建立动物模型模型Ⅰ和模型Ⅱ。在模型似然比大于0.05情况下,应用约束最大似然法RMEL,对烟粉虱MED隐种高温耐受性遗传参数进行估计,得到了烟粉虱MED隐种基于高温45℃直接高温暴露击倒时间的耐热性遗传力和相关遗传参数,结果表明,烟粉虱MED隐种的耐热性具有高遗传力;评估了两个动物模型的似然值,认为在对烟粉虱MED隐种的高温耐受性状的遗传力估计时,建议使用模型Ⅰ进行遗传参数的估计,可以得到更为可靠的无偏估计;同时,采用半同胞组内相关法对MED隐种的遗传参数进行估计,同样得到高的狭义遗传力;鉴于烟粉虱MED隐种耐热性的高遗传力,提出该隐种在气候变暖的趋势下,烟粉虱MED隐种的高遗传力能够充分证明群体耐热表型的变异中,有很大一部分变异是可以稳定遗传的,这种稳定遗传的变异为烟粉虱耐热性进化提供了直接驱动力,是其快速适应性进化的一个有力的证据。
     (4)以给定低温击倒常温下记录恢复时间作为耐寒性测定标准,对不同种群进行亲子代杂交试验设计,测定不同亲本、杂交F1代及回交B1、B2代的耐寒性表型值相关参数,对后代耐寒性表型值进行线性剖分,并建立动物模型,本研究选取了模型Ⅰ和模型Ⅱ。在模型似然比大于0.05情况下,应用约束最大似然法RMEL,对烟粉虱MED隐种低温耐受性遗传参数进行估计,得到了烟粉虱MED隐种基于低温-5℃击倒10分钟后的常温下恢复时间的耐寒性遗传力和相关遗传参数,结果表明,烟粉虱MED隐种的耐寒性具有高遗传力;对比分析了两个动物学模型,模型Ⅰ和模型Ⅱ,认为模型Ⅰ可以更好的拟合营兼性孤雌生殖特点的烟粉虱耐寒性状的表型值线性剖分关系。
     (5)选取耐热性较高的吐鲁番种群和耐寒性较高的哈尔滨种群,分别对两个种群进行温和的高温人工选择和温和的低温人工选择,温和高温设置为31℃,温和低温设置为21℃,以高温45℃下击倒时间作为耐热性指标,对烟粉虱MED隐种在长时间多世代高低温模拟自然选择下,其耐热性在世代间的变化趋势和差异。结果表明,在温和高温的15个世代温度的正向选择后,吐鲁番种群和哈尔滨种群的耐热性均与26℃对照相比有显著提高,总体呈上升趋势;在温和低温的15个世代的温度选择后,吐鲁番种群和哈尔滨种群的耐热性均呈现先下降后上升的波动趋势,而耐热性的最低点均出现在G6代时。
     (6)同样选取耐热性较高的吐鲁番种群和耐寒性较高的哈尔滨种群,分别对两个种群进行温和的高温选择和温和的低温选择,温和高温设置为31℃,温和低温设置为21℃,以低温-5℃下击倒时间10分钟后记录其在室温下的恢复时间,即冷击倒恢复时间或者冷致昏恢复时间为耐寒性指标,对烟粉虱MED隐种在长时间多世代高低温模拟自然选择下,其耐寒性在世代间的变化趋势和差异。结果表明,在温和低温的15个世代温度正向选择后,吐鲁番种群和哈尔滨种群的耐寒性均与26℃对照相比有显著提高,总体呈上升趋势;在温和低温的15个世代的温度负向选择后,吐鲁番种群和哈尔滨种群的耐热性均呈整体降低趋势。
With advancing global change, analysis of thermal tolerance and evolutionary potential areimportant to explain ecological adaptation and the changes in the distribution of species.Thermaltolerance is an important factor in the distribution and range dynamics in insects. Thermal tolerancehave received much attention because their investigation provides new insight into the manner in whichclimate shapes variation in the ecology, distribution, hereditary variation and evolution of species. Theinvasive whitefly B. tabaci Mediterranean cryptic species, which is an important invasive pest that isspreading from Mediterranean regions in1993, and is now widely distributed across China except Tibetand Gansu province, ranging from Yangtze River basin to east coastal area even the northest of China,with the trend to replace the native species and MEAM1cryptic species. Higher thermal tolerance wasone of the factors during the invasion and rapid expand for MED cryptic species. To reveal the variationof heat resistance and evolutionary potential in the invasive Bemisia tabaci Mediterranean crypticspecies, we selected four Chinese populations, from Harbin, N China, and Turpan, S China, Beijing MChina and Hainan W China, and conducted knockdown test under static high and low temperatureconditions. Estimate of heritability and genetic variation were based on Parent-offspring design andhalf-sibling breeding design. The main research contents and conclusions are as follows:
     (1) According to the current status of invasive whitefly B. tabaci Mediterranean cryptic species inour country, we chose four populations collected from different climate regions, including Harbin,northest Heilongjiang province, Haikou, southest Hainan province, Turpan, northwest Xinjiang provinceand Beijing. The field populations of MED were collected from the above regions in July, August andSeptember2012, in which MED occoured in filed at the same time in all the four regions, and then thecorresponding experimental populations were established. Knockdown test were conducted under statichigh temperature conditions. T-test results showed that there were significant differences amongdifferent populations. The heat tolerance of southern population was higher than the three northernpopulations. Heat tolercance between male and female adults of B. tabaci MED were significantdifferent.
     (2) Knockdown test were conducted under static low temperature conditions. ANOVA showed thatthere were significant differences among different populations on chill coma revoery time. The coldtolerance of southern population was lower than the three northern populations. Cold tolercancebetween male and female adults of B. tabaci MED were significant different both in Harbin and Beijingpopulations, but in Turpan and Haikou populations.
     (3) Hybrid experimental design were conducted between Heilongjiang and Xinjiang populations asthe average daily temperature and daily maximum temperature trend was similar in the two regions.Knockdown test were conducted under static high temperature conditions on parents, F1and backcrossB1, B2generations. Genetic parameters were estimated from the three generations design. Sex,generation (parents or offspring) and locations were added as fixed factors into this analysis using animal models with restricted maximum-likelihood, which facilitates analyses of unbalanced data setsand the inclusion of fixed effects. Animal models were implemented using REML method based onModelⅠand ModelⅡseperately. The phenotypic (VP) and additive (VA) variance in knockdownresistance were computed using all known relationships among individuals. We carried out Student’st-tests to determine whether variance components and heritability estimates differed significantly.Estimates of evolvability, the additive genetic coefficient of variance,100x(where x isthe sample mean), were computed as well. The narrow sense heritability (h2n) estimates of heattolerance based on parents-offspring regressions ranged from0.45to0.49. The additive geneticcoefficients of variation (CVA) concerning heat tolerance were higher than other speices. The narrowsense heritability (h2n) of heat tolerance traits and high CVAvalue of knockdown time showed thatnatural B. tabaci Mediterranean exhibited high adaptive potential for heat tolerance. Likelihood ratioindicated that ModelⅠwas more suitable for estimating genetic parameters of thermal resistant traits inthis case.
     (4) Knockdown test were conducted under static low temperature conditions on parents, F1andbackcross B1, B2generations between Heilongjiang and Xinjiang populations. Genetic parameters wereestimated from the three generations design. Sex, generation (parents or offspring) and locations wereadded as fixed factors into this analysis using animal models with restricted maximum-likelihood,which facilitates analyses of unbalanced data sets and the inclusion of fixed effects. Animal modelswere implemented using REML. The narrow sense heritability (h2n) of cold tolerance traits and highCVAvalue of knockdown time showed that natural B. tabaci Mediterranean exhibited high adaptivepotential for cold tolerance.
     (5) Artificial selection test were conducted in both Heilongjiang and Xinjiang populations under amoderate high temperature of31℃and a moderate low temperature of21℃to survey the varience andtrends of heat tolerance. The results showed that heat resistance were significantly improved bymoderate high temperatures selection after15generations in both Heilongjiang and Xinjiangpopulations compared to the control (26℃). Heat resistance were weakened at G6generations bymoderate low temperatures, but went up then in the following generations in both Heilongjiang andXinjiang populations compared to the control (26℃).
     (6) Knockdown test were conducted under static low temperature conditions in every threegenerations. Artificial selection were conducted in both Heilongjiang and Xinjiang populations under amoderate high temperature of31℃and a moderate low temperature of21℃to survey varience andtrends of heat tolerance. The results showed that cold resistance were significantly improved bymoderate low temperatures selection after15generations in both Heilongjiang and Xinjiang populationscompared to the control (26℃). Cold resistance were weakened after15generations moderate hightemperatures selection in both Heilongjiang and Xinjiang populations compared to the control (26℃).
引文
1.白俊艳,李金泉,贾小平,母体遗传效应对绒山羊生产性状遗传参数估计的影响.遗传,2006,28:1083-1086.
    2.陈毅峰,严云志,生物入侵的进化生物学.水生生物学报,2005,29:220-224.
    3.褚栋,张友军,毕玉平,警惕Q型烟粉虱在我国进一步扩散.植物检疫,2005,19:171-174.
    4.崔洪莹,戈峰,不同作物田烟粉虱发生的时空动态.2012,32:177-182.
    5.崔旭红,谢明,万方浩,高温胁迫下B型烟粉虱热激蛋白基因hsp70表达量的变化.昆虫学报,2007,50:1087-1091.
    6.崔旭红,谢明,万方浩,短时高温暴露对B型烟粉虱和温室白粉虱存活以及生殖适应性的影响.中国农业科学,2008,41:424-430.
    7.付雪,叶乐夫,王贵强,戈峰,黑龙江地区烟粉虱和温室白粉虱发生动态,应用昆虫学报.2011,48:32-37.
    8.耿宇鹏,张文驹,李博,陈家宽,表型可塑性与外来植物的入侵能力.生物多样性,2004,12:447-455.
    9.鞠瑞亭,李博,悬铃木方翅网蝽:一种正在迅速扩张的城市外来入侵害虫.生物多样性,2010,18:638-646.
    10.黄国洋,王荫长,尤子平,黄地老虎耐寒性机理初探.浙江林学院学报,1990,7:140-146.
    11.景晓红,康乐,昆虫耐寒性的测定与评价方法.昆虫知识,2004,40:7-10.
    12.李杰,吐鲁番棉田烟粉虱发生规律及种群生态学[硕士学位论文],新疆:新疆农业大学,2009.29-38.
    13.吕志创,高温热激下雌雄B型烟粉虱差异表达基因的筛选和Hsps基因功能的鉴定[博士学位论文],北京:中国农业科学院,2008.19-22.
    14.孙绪艮,郭慧玲,李恕廷,桑尺蠖越冬幼虫的耐寒性研究.蚕业科学,2000,26:129-133.
    15.万方浩,郑小波,郭建英,重要农林外来入侵物种的生物学与控制.北京:科学出版社,2005.
    16.万方浩,“973”项目“农林危险生物入侵机理与控制基础研究”简介.昆虫知识,2007,44:790-797.
    17.万方浩,谢丙炎,杨国庆等,入侵生物学.北京:科学出版社,2011.285-311.
    18.闫文茜,王相晶,张友军,王少丽,北京地区蔬菜烟粉虱种群动态及其对烟碱类杀虫剂的抗药性监测.2012,38:154-157.
    19.钟景辉,松突圆阶及其天敌花角畅小蜂对极端温度的耐受性[博士学位论文].福建:福建农林大学,2009.
    20. Addo-Bediako A., Chown S.L., Gaston K.J., Thermal tolerance, climatic variability and latitude.Proceedings of the Royal Society of London-Series B: Biological Sciences2000,267:739-745.
    21. Alexandrov V.Y., Cells, molecules and temperature: conformational flexibility of macromoleculesand Ecological adaptation. Springer-Velag, NY,1977.130-136.
    22. Andersen J.P., Schwartz A., Gramsbergen J.B., Loeschcke V. Dopamine levels in the mosquitoAedes aegypti during adult development, following blood feeding and in response to heat stress.Journal of Insect Physiology2006,52:1163-1170.
    23. Ayres M.P., Lombardero M.J. Assessing the consequences of global change for forest disturbancefrom herbivores and pathogens. The Science of the Total Environment2000,262:263-286.
    24. Badyaev A.V., Martin T.E. Individual variation in growth trajectories: Phenotypic and geneticcorrelations in ontogeny of the house finch (Carpodacus mexicanus). Journal ofEvolutionary Biology2000,13:290-301.
    25. Baker H.G., Characteristics and modes of origin of weeds. In: Baker H. G.,Stebbins G. L., TheGenetics of Colonizing Species. New York: Academic Press,1965,147-168.
    26. Baker H.G., The evolution of weeds. Annual Review of Ecology and Systematics1974,5:1-24.
    27. Baker R., Cannon R., Walters K., An assessment of the risks posed by selected non-indigenouspests to UK crops under climate change. Aspects of Applied Biology1996:323-330.
    28. Bale J.S., Walters K.F.A., Overwintering biology as a guide to the establishment potential ofnon-native arthropods in the UK. In: Atkinson D., Thorndyke M. Environment and AnimalDevelopment: Genes, Life Histories and Plasticity. Oxford: BIOS Scientific Publishers Ltd,2001,343-354.
    29. Barinaga M., Is devastating whitefly invader really a new species? Science1993,259:30.
    30. Barro P., Driver F., Use of RAPD PCR to distinguish the B biotype from other biotypes of Bemisiatabaci (Gennadius)(Hemiptera: Aleyrodidae). Australian Journal of Entomology1997,36:149-152.
    31. Beek S.D., Insect Photoperiodism. New York: Academic,1980,2nd ed.387.
    32. Blackman R., Cahill M., The karyotype of Bemisia tabaci (Hemiptera: Aleyrodidae). Bulletin ofEntomological Research1998,88:213-215.
    33. Blows M.W., Hoffman A.A., The genetics of central and marginal populations of Drosophilaserrata. I. Genetic variation for stress resistance and species borders. Evolution1993,1255-1270.
    34. Bonato O., Lurette A., Vidal C., Fargues J., Modelling temperature-dependent bionomics ofBemisia tabaci (Q-biotype). Physiological Entomology2007,32:50-55.
    35. Bowler K., Cellular heat injury. Are membranes involved? In: Bowler K., Fuller B.J., eds.Temperature and animal cells. Society Experimental Biology Symposium41, Cambridge, England,1987,157-185.
    36. Bradshaw W.E., Holzapfel.C.M. The evolution of genetic architectures and the divergence ofnatural populations. Epistasis and the Evolutionary Process, Oxford University Press,2000,245-263.
    37. Bryant E.H., Meffert L.M. Nonadditive genetic structuring of morphometric variation in relation toa population bottleneck. Heredity1996,77:168-176.
    38. Bubliy O., Loeschcke V., Correlated responses to selection for stress resistance and longevity in alaboratory population of Drosophila melanogaster. Journal of evolutionary biology2005,18:789-803.
    39. Byers J. E., Impact of non-indigenous species on natives enhanced by anthropogenic alteration ofselection regimes. Oikos2002,97:449-458.
    40. Carroll S.P., Dingle H., Famula T. R., Fox C. W., Genetic architecture of adaptive differentiation inevolving host races of the soapberry bug, Jadera haematoloma. Genetica2001,112:257-272.
    41. Carroll S.P., Dingle H., The biology of post-invasion events. Biological Conservation1996.78:207-214.
    42. Cavicchi R., Suehle J., Kreider K., Gaitan M. and Chaparala P., Fast temperature programmedsensing for micro-hotplate gas sensors. Electron Device Letters, IEEE.1995,16:286-288.
    43. Chapin III F.S., Zavaleta E.S., Eviner V.T., Naylor R.L., Vitousek P.M., Reynolds H.L., HooperD.U., Lavorel S., Sala O.E., Hobbie S.E., Mack M.C., Diaz S., Consequences of changingbiodiversity. Nature2000,405:234-242.
    44. Charo-Karisa H., Rezk M.A., Bovenhuis H. and Komen H. Heritability of cold tolerance in Niletilapia, Oreochromis niloticus, juveniles. Aquaculture2005,249:115-123.
    45. Chen B. and Kang L., Cold hardiness and supercooling capacity in the pea leafminer Liriomyzahuidobremis. CryoLetters2002,23:173.
    46. Chen B. and Kang L., Variation in cold hardiness of Liriomyza huidobrensis (Diptera:Agromyzidae) along latitudinal gradients. Environmental entomology2004,33:155-164.
    47. Chen C.P., Lee R.E., Denlinger D.L., Cold shock and heat shock: acomparison of the protectiongenerated by brief pretreatment at less severe temperatures. Physiological Entomology1991,16:19-26.
    48. Chen X.R., Shen G., Wang Y.L., Zheng X.B., Wang Y.C. Identification of Phytophthora sojaegenes upregulated during the early stage of soybean infection. FEMS Microbiology Letters2007,269,280–288.
    49. Chen Y.C., Kafle L., Shih C.J., Interspecific competition between Solenopsis invicta and two nativeant species Pheidole fervens and Monomorium chinensis. Journal of Economic Entomology2001,104:614-621.
    50. Cheng X.Y., Xie P.Z., Cheng F.X., Xu R.M., Xie B.Y., Competitive displacement of a nativespecies Bursaphelenchus mucronatus by an alien species Bursaphelenchus xylophilus(Aphelenchida: Aphelenchoididae): a case of successful invasion. Biological Invasions2008,11:205-213.
    51. Cheverud J.M., Routman E.J., Epistasis as a source of increased additive genetic variance atpopulation bottlenecks. Evolution1996,50:1042-1051.
    52. Chidawanyika F., Terblanche J.S., Rapid thermal response and thermal tolerance in adult codlingmoth Cydiapomonella (Lepidoptera: Tortricidae). Journal of Insect Physiology2011,57:108-117
    53. Chown S.L., Nicolson S., Insect physiological ecology: Mechanisms and patterns. Oxford: OxfordUniversity Press,2004, p.243.
    54. Chown S.L., Physiological variation in insects: Hierarchical levels and implications. Journal ofInsect Physiology2001,47:649-660.
    55. Chown S.L., Terblanche J.S., Physiological diversity in insects: ecological and evolutionarycontexts. Adv. Insect Physiology2006,33:50-152.
    56. Chu D., Zhang Y.J., Cong B, Xu B.Y., Wu Q.J., The invasive mechanism of a worldwide importantpest, Bemisia tabaci (Gennadius) biotype B. Acta Entomologica Sinica2004,47,400-406.
    57. Cui L., Yin W., Tang Q., Dong S., Zheng X., Zhang Z., Wang Y., Distribution, pathotypes, andmetalaxyl sensitivity of Phytophthora sojae from Heilongjiang and Fujian provinces in China.Plant Disease2010,94:881-884.
    58. Cui X., Wan F., Xie M., Liu T., Effects of heat shock on survival and reproduction of two white flyspecies, Trialeurodes vaporariorum and Bemisia tabaci biotype B. Journal of Insect Science2008,8:24.
    59. D’ Antonio C. M., Vitousek P. M., Biological invasions by exotic grasses, the grass/fire cycle, andglobal change. Annual Review of Ecology and Systematics1992,23:63-87.
    60. Daehler C., Strong D., Hybridization between introduced smooth cordgrass (Spartina alterniflora;Poaceae) and native California cordgrass (S. foliosa) in San Francisco Bay, California, USA.American Journal of Botany1997,84:607-607.
    61. Dahlgaard J., Hasson E., Loeschcke V., Behavioral differentiation in oviposition activity inDrosophila buzzatii from highland and lowland populations in Argentina: plasticity or thermaladaptation? Evolution2001,55:738-747.
    62. Dahlgaard J., Loeschcke V.,Michalak,P., Justesen, J., Induced thermotolerance and associatedexpression of the heat-shock protein Hsp70in adult Drosophila melanogaster. Functional Ecology1998.12:786-793.
    63. Darwin C., The Origin of Species by Means of Natural Selection. London: John Murray,1859.
    64. De Barro P., Driver F., Use of RAPD PCR to distinguish the B biotype from other biotypes ofBemisia tabaci (Gennadius)(Hemiptera: Aleyrodidae). Australian Journal of Entomology1997,36:149-152.
    65. De Barro P.J., Liu S.S., Boykin L.M., Dinsdale A.B., Bemisia tabaci: a statement of species status.Annual Review of Entomology2011,56:1-19.
    66. Denlinger D.L., Yocum G.D., Physiology of heat sensitivity. In: Hallman G.J, Denlinger D.L., eds.Temperature Sensitivity in Insects and Application in Integrated Pest Management, Oxford:Westview Press,1998,29.
    67. Diller K.R. Stress protein expression kinetics. Annual Review of Biomedical Engineering2006,8:403-424.
    68. Dukes J.S., Mooney H.A., Does global change increase the success of biological invaders? Trendsin Ecology&Evolution1999,14:135-139.
    69. Dunbar H.E., Wilson A.C.C., Ferguson R, Moran NA., Aphid thermal tolerance is governed by apoint mutation in bacterial symbionts. Plos Biology2007,5:1006-1016.
    70. Ekengren S., Hultmark D., A family of Turandot-related genes in humoral stress response ofDrosophila. Biochemical and Biophysical Research Communications2001,284:998-1003.
    71. Ellstrand N. C., Schierenbeck K. A., Hybridization as a stimulus for the evolution of invasivenessin plants? Proceedings of the National Academy of Sciences of the United States2000,97:7043-7050.
    72. Feng Y. L., Liao Z. Y., Zhang R., Zheng Y. L., Li Y. P., Lei Y. B., Adaptive evolution in response toenvironmental gradients and enemy release in invasive alien plant species. Biodiversity Science2009,17:340-352.
    73. Ghalambor C.K., Huey R.B., Martin P.R., Tewksbury J.J., Wang G., Are mountain passes higher inthe tropics? Janzen's hypothesis revisited. Integrative and Comparative Biology2006,46:5-17.
    74. Gibbs AG. Lipid melting and cuticular permeability: New insights into an old problem. Journal ofInsect Physiology2002,48:391-400.
    75. Gilmour A.R., Gogel B., Cullis B., Thompson R., ASReml user guide release3.0. HemelHempstead, UK: VSN International Ltd.2009.
    76. Gilmour, A.R., Gogel, B.J., Cullis, B.R., Welham, S.J., Thompson, R., ASReml User GuideRelease1.0. VSN International, Hemel Hempstead, UK,2002.
    77. Graham L. A., Liou Y.C., Walker V.K., Hyperactive antifree protein from beetles. Nature1997,388:727-728.
    78. Greenspan R.J., Finn J.A., Hall J.C., Acetylcholinesterase mutants in Drosophila and their effectson the structure and function of the central nervous system. Journal of Comparative Neurology1980,189:741-774.
    79. Grodowitz M. J., Stewart R. M., Cofrancesco A. F., Population dynamics of water-hyacinth and thebiological control agent Neochetina eichhorniae (Coleoptera, Curculionidae) at a southeast Texaslocation. Environmental Entomology1991,20:652-660.
    80. Groeneveld E., Kovac M. and Wang T. PEST, a general purpose BLUP package for multivariateprediction and estimation. Proceedings of the4th World Congress on Genetics Applied toLivestock Production, Edinburgh23-27July1990, XIII Plenary lectures, molecular genetics andmapping, selection, prediction and estimation, pp:488-491.
    81. Hahn J.S., Hu Z.Z., Thiele D.J., Iyer V.R. Genome-wide analysis of the biology of stress responsesthrough heat shock transcription factor. Molecular and Cellular Biology2004,24:5249-5256.
    82. Hazel J.R. Thermal adaptation in biological membranes: Is homeoviscous adaptation theexplanation? Annual Review of Physiology1995,57:19-42.
    83. Hellmann J.J., Byers J.E., Bierwagen B.G., Dukes J.S., Five potential consequences of climatechange for invasive species. Conservation Biology2008,22:534-543.
    84. Hendrix D.L., Salvucci M.E., Polyol metabolism in homopterans at high temperatures:accumulation of mannitol in aphids (Aphididae: Homoptera) and sorbitol in whiteflies(Aleyrodidae: Homoptera). Comparative Biochemistry and Physiology-Part A1998,120:487-494.
    85. Henry D., Prange H.D., Evaporative cooling in insects. Journal of Insect Physiology1996,42:493-499.
    86. Hepburn H.R. Structure of the integument. In: Kerkut G.A., Gilbert L.I., eds. ComprehensiveInsect Physiology, Biochemistry and Pharmacology,1985,3:1-58.
    87. Hoffmann A.A, S rensen J.G, Loeschcke V., Adaptation of Drosophila to temperature extremes:bringing together quantitative and molecular approaches. Journal of Thermal Biology2003,28:175-216.
    88. Hoffmann A.A., Blows M.W., Species borders: Ecological and evolutionary perspectives. Trends inEcology&Evolution1994,9:223-227.
    89. Hoffmann A.A., Hallas R. Sinctair C., Rapid loss of stress resistance in Drosophila melanogasterunder adaptation to laboratory culture. Evolution2001,55:436-438.
    90. Holmstrup M., Hedlundb K., Borissc H., Drought acclimation and lipid composition in Folsomiacandida: Implications for cold shock, heat shock and acute desiccation stress. Journal of InsectPhysiology2002,48:961-970.
    91. Holzapfel A.M., Vinebrooke R.D., Environmental warming increases invasion potential of alpinelake communities by imported species. Global Change Biology2005,11:2009-2015.
    92. Houle D., Comparing evolvability and variability of quantitative traits. Genetics1992,130:195-204.
    93. Hu J., De Barro P., Zhao H., Wang J., Nardi F., et al., An extensive field survey combined with aphylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoSOne,6: e16061.doi:10.1371/journal.pone.0016061,2011.
    94. Huang D., Haack R.A. and Zhang R., Does global warming increase establishment rates ofinvasive alien species? A centurial time series analysis. PloS one6: e24733.,2011.
    95. Huey R., Crill W., Kingsolver J., Weber K., A method for rapid measurement of heat or coldresistance of small insects. Functional Ecology1992,489-494.
    96. Hufbauer R. A., Torchin M.E., Integrating ecological and evolution theory of biological invasions.In: Nentwig W., Biological Invasions. Heidelberg: Springer,2007.79-96.
    97. Ivanovic J. Metabolic response to stressors. In: Ivanovic J., Jankovic M., Hladni, eds. Horm onesand metabolism in insect stress. Boca Raton. Florida, CRC Press,1991,27-67
    98. Jaenicke R., Protein stability and molecular adaptation to extreme conditions. European Journal ofBiochemistry1991,202:715-728.
    99. Janzen D.H., Why mountain passes are higher in the tropics. The American Naturalist1967,101:233-249.
    100. Jiang M.X., Way M.O., Du X.K., Ji X.H., He Y., Reproductive biology of summer/fall populationsof rice water weevil (Lissorhoptrus oryzophilus Kuschel) in southeastern Texas. SouthwesternEntomologist2008,33,129-137.
    101. Jing X.H., Kang L. Geographical variation in egg cold hardiness: A study on the adaptationstrategies of the migratory locust Locusta migratoria L..Ecological Entomology2003,28:151-158.
    102. Ju R.T., Chen G.B., Wang F., Li B. Effects of heat shock, heat exposure pattern, and heat hardeningon survival of the sycamore lace bug, Corythucha ciliata (Say)(Hemiptera: Tingidae).Entomologia Experimentalis et Applicata.2011b,41:168-177.
    103. Ju R.T., Gao L., Zhou X.H., Li B., Tolerance to high temperature extremes in an invasive lace bug,Corythucha ciliata (Hemiptera: Tingidae), in subtropical China. PLoS One8: e54372.doi:10.1371/journal.pone.0054372,2013.
    104. Ju R.T., Li B., Sycamore lace bug, Corythucha ciliata, an invasive alien pest rapidly spreading inurban China. Biodiversity Science2010,18,638-646.
    105. Ju R.T., Wang F., Li B., Effects of temperature on the development and population growth of thesycamore lace bug, Corythucha ciliata. Journal of Insect Science.2011a,11:16.
    106. Ju R.T., Xiao Y.Y., Li B. Rapid cold hardening increases cold and chilling tolerances more thanacclimation in the adults of the sycamore lace bug, Corythucha ciliata (Say)(Hemiptera: Tingidae).Journal of Insect Physiology.2011b,57,1577-1582.
    107. Ju R.T., Xiao Y.Y., Wang F., Li B. Supercooling capacity and cold hardiness of the adults of thesycamore lace bug, Corythucha ciliata (Hemiptera: Tingidae). CryoLetters2010c,31,445-453.
    108. Kang L., Chen B., Wei J.N., Liu T.X., Roles of thermal adaptation and chemical ecology inLiriomyza distribution and control. Annual Review of Entomology2009,54:127-145.
    109. Kang L., Chen X., Zhou Y., Liu B., Zheng W., The analysis of large-scale gene expressioncorrelated to the phase changes of the migratory locust. Proceedings of the National Academy ofSciences of the United States of America2004,101:17611-17615.
    110. Kareiva P.M., Kingsolver J.G., Huey R.B., Biotic Interactions and Global Change. Sunderland:Sinauer Associates.1993.259-276.
    111. Kellermann V., van Heerwaarden B., Sgro C.M., Hoffmann A.A., Fundamental evolutionary limitsin ecological traits drive Drosophila species distributions. Science2009,325:1244-1246.
    112. Kimura M.T., Cold and heat tolerance of drosophilid flies with reference to their latitudinaldistributions. Oecologia2004,140:442-44.
    113. Kimura M.T., Ohtsu T., Yoshida T., Climatic adaptations and distributions in the Drosophilatakahashii species subgroup (Diptera; drosophilidae). Journal of Natural History1994,28:401-409.
    114. Terblanche J.S., Sinclair B.J., Jaco Klok C., McFarlane M.L. and Chown S.L., The effects ofacclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodicachalcoptera (Coleoptera: Chrysomelidae). Journal of Insect Physiology2005,51:1013-1023.
    115. Krainacker D., and Carey J., Maternal heterogeneity in primary sex-ratio of three tetranychid mites.Experimental&Applied Acarology.1988,5:151-162.
    116. Krebs, R.A., Loeschcke, V., Effect of Exposure to short-term heat stress on fitness components inDrosophila melanogaster, Journal of Evolutionary Biology1994,7:39-49.
    117. Kruuk L.E., Estimating genetic parameters in natural populations using the "animal model".Philosophical transactions of the Royal Society of London. Series B, Biological sciences2004,359:873-890.
    118. Laayouni H., García F.F., Chávez S.B.E., Thermal evolution of gene expression profiles inDrosophila Subobscura. BMC Evolutionary Biology2007, doi:10.1186/1471-2148-7-42.
    119. Leemans R., Egger B., Loop T., Kammermeier L., Haiqiong H., Hartmann B., Certa U., Hirth F.,Reichert H., Quantitative transcript imaging in normal and heat-shocked Drosophila embryos byusing high-density oligonucleotide arrays. Proceedings of the National Academy of Sciences of theUnited States of America,200097:12138-12143.
    120. Lerman D.N., Feder M.E. Laboratory selection at different temperatures modifies heat-shocktranscription factor (HSF) activation in Drosophila melanogaster. Journal of Experiment Biology2001,204:315-323.
    121. Levitt, J., Responses of plants to environmental stresses. New York and London: Academic Press1972.
    122. Li S.J., Xue X., Ahmed M.Z., Ren S.X., Du Y.Z., Wu J.H., Cuthbertson A.G., Qiu B.L., Host plantsand natural enemies of Bemisia tabaci (Hemiptera: Aleyrodidae) in China. Insect Science2011,18:101-120.
    123. Li Y.P., Sumiko O., Goto M., Physiology of diapause and cold hardiness in overwintering pupae ofthe apple leaf miner Phyllonorycter ringoniella in Japan. Physiology Entomology2002,27:92-96.
    124. Lin Y.J., Seroude L., Benzer S., Extended life-span and stress resistance in the Drosophila mutantmethuselah. Science1998,282:934-946.
    125. Lockwood J.L., Cassey P., Blackburn T. The role of propagule pressure in explaining speciesinvasions. Trends in Ecology and Evolution2005,20:223-228.
    126. Lockwood J.L., Cassey P., Blackburn T., The role of species traits in the establishment success ofexotic birds. Global Change Biology2009,15:2852-2860.
    127. Loeschcke V., Hoffmann A.A., Consequences of heat hardening on a field fitness component inDrosophila depend on environmental temperature. The American Naturalist2007,169:175-183.
    128. Loeschcke V., Sorensen J.G., Hoffmann A., Adaptation of Drosophila to temperature extremes:Bringing together quantitative and molecular approaches. Journal of Thermal Biology2003,28:175-216.
    129. Loeschcke, V, Sorensen, J.G., Acclimation, heat shock and hardening-a response fromevolutionary biology. Journal of Thermal Biology2005,30,255-257.
    130. Loveridge J.P., The control of water loss in Locusta migratoria migratorioides R. and E.II. waterloss through the spiracles. Journal of Experimental Biology1986,49:15-29.
    131. Lü Z.C., Gao Q.L., Yu H., Guo J.Y., Wan F.H., Increased survival and prolonged longevity mainlycontribute to the temperature-adaptive evolutionary strategy in invasive Bemisia tabaci MiddleEast Asia Minor1. Journal of Insect Science2014.(in press)
    132. Lü Z.C., Wan F.H., Using double-stranded RNA to explore the role of heat shock protein genes inheat tolerance in Bemisia tabaci (Gennadius). Journal of Experimental Biology2011,214:764-769.
    133. Lü Z.C., Wan F.H., Differential gene expression in whitefly (Bemisia tabaci) B-biotype females andmales under heat-shock condition. Comparative Biochemistry and Physiology Part D: Genomics andProteomics2008,3:257-262.
    134. Masaki S., Geographical variation of life cycle in crickets (Ensifera: Grylloidea). European Journalof Entomology1996,93:281-302.
    135. McColl G., Hoffmann A.A., McKechnie S.W., Response of two heat shock genes to selection forknockdown heat resistance in Drosophila melanogaster. Genetics1996,143:1615-1627.
    136. Meyer K. Restricted maximum likelihood to estimate variance components for animal models withseveral random effects using a derivative-free algorithm. Genetics Selection Evolution1989,21,317-340
    137. Meyer, K.,2007. Multivariate analyses of carcass traits for Angus cattle fitting reduced rank andfactor-analytic models. Journal of Animal Breeding and Genetics124:50-64.
    138. Mitchell K.A., Hoffmann A.A., Thermal ramping rate influences evolutionary potential and speciesdifferences for upper thermal limits in Drosophila. Functional Ecology2010,24:694-700.
    139. Mooney H. A., Cleland E.E. The evolutionary impact of invasive species. Proceedings of theNational Academy of Sciences, USA2001,98:5446-5451.
    140. Mooney H.A., Biological invasions and global change. In: Sandlund O.T., Schei P.J., Viken A.Proceedings of the Norwayr UN Conference on Alien Species. Trondheim, Norway: Directorate forNature Management and Norwegian Institute for Nature Research.1996,123-126.
    141. Mooney H.A., Hobbs R.J., Invasive species in a changing world. Washington, DC: Island Press2000, p.421.
    142. Morcillo G., Gorab E., Tanguay R.M., Díez J.L., Specific intranucleolar distribution of Hsp70during heat shock in polytene cells. Experimental Cell Research1997,236:361-370.
    143. Moriones E., Navas-Castillo J., Tomato yellow leaf curl virus, an emerging virus complex causingepidemics worldwide. Virus Research2000,71:123-134.
    144. Mousseau T.A., Fox C.W., The adaptive significance of maternal effects. Trends in Ecology&Evolution1998,13:403-407.
    145. Muniz M., Nombela G., Differential variation in development of the B-and Q-biotypes of Bemisiatabaci (homoptera: Aleyrodidae) on sweet pepper at constant temperatures. EnvironmentalEntomology2001,20:720-726.
    146. Mu iz M., Nombela G., Barrios L., Within-plant distribution and infestation pattern of the B-andQ-biotypes of the whitefly, Bemisia tabaci, on tomato and pepper. Entomologia Experimentalis etApplicata2002,104:369-373.
    147. Mutero A, Bride J.M., Pralavorio M., Fournier D. Drosophila melanogaster acetylcholinesterase:Identification and expression of two mutations responsible for cold and heat-sensitive phenotypes.Molecular and General Genetics1994,243:699-705.
    148. Neven L.G., Physiological responses of insects to heat. Postharvest Biology and Technology2000,21:103-111.
    149. Newsome A.E, Noble I.R., Ecological and physiological characters of invading species. In: GrovesR.H., Burdon J.J. Ecology of Biological Invasions. Cambridge: Cambridge University Press.1986,pp:166.
    150. Ohtsu T., Katagiri C., Kimura M.T., Biochemical aspects of climatic adaptations in Drosophilacurviceps, D. immigrans, and D. albomicans (Diptera: Drosophilidae). Environment Entomology1999,28:968-972.
    151. Owens C.S., Smart R.M., Stewart R.M., Low temperature limits of Giant salvinia. Journal ofAquatic Plant Management2004,42:91-94.
    152. Papaconstantinou M., Wu Y., Pretorius H.N., Menin is a regulator of the stress response inDrosophila melanogaster. Molecular and Cellular Biology2005,25:9960-9972.
    153. Pappert R.A, Hamrick J.L., Donovan L.A., Genetic variation in Puerarial lobata (Fabaceae), anintroduced, clonal, invasive plant of the southeastern United States. American Journal of Botany2000,87:1240-1245.
    154. Parmesan C., Ecological and evolutionary responses to recent climate change. Annual Review ofEcology and Systematics2006,637-669.
    155. Patterson H., Thompson R., Maximum likelihood estimation of components of variance. ProcEighth International Biochem Conf.1974, pp.197-209.
    156. Petchey O.L., McPhearson P.T., Casey T.M., Morin P.J., Environmental warming alters food-webstructure and ecosystem function. Nature1999,402:69-72.
    157. Pigliucci M., Kolodyska A., Phenotypic plasticity and integration in response to flooded conditionsin natural Accessions of Arabidopsis thaliana (L.) Heynh (Brassicaceae). Annals of Botany2002,90:1-9.
    158. P rtner H., Climate change and temperature-dependent biogeography: Oxygen limitation ofthermal tolerance in animals. Naturwissenschaften2001,88:137-146.
    159. Pratt H.D., Bruner P.L., Berrett D.G. A field guide to the birds of Hawaii and the tropical Pacific.Priceton: Princeton University Press, NJ.1987.46-56.
    160. Quinlan M.C., Hadley N.F. Gas exchange, ventilatory patterns, and water loss in two lubbergrasshoppers: Quantifying cuticular and respiratory transpiration. Physiological Zoology1993,66:628-642.
    161. Rensing L, Ruoff P., Temperature effect on entrainment, phases shifting, and amplitude ofcircadian clocks and its molecular bases. Chronobiology International2002,19:807-864.
    162. Reznick, D.N., Shaw, F.H., Rodd, F.H., Shaw, R.G., Evaluation of the rate of evolution in naturalpopulations of guppies (Poecilia reticulata). Science1997,275,1934-1937.
    163. Riska B., Rutledge J.J., Atchley W.R., Covariance between direct and maternal effects in mice:with a modal of persistent environmental influences. Genetics Research1995,45:287-297.
    164. Roff D.A., Evolutionary quantitative genetics. New York: Chapman&Hall1997, p.493.
    165. Sala O.E., Chapin F.S., Armesto J.J., Global biodiversity scenarios for the year2100. Science2000,287:1770-1774.
    166. Salin C., Vernon P., Vannier G., Effects of temperature and humidity on transpiration in adults ofthe lesser mealworm, Alphitobiu diaperinus (Coleoptera: Tenebrionidae). Journal of InsectPhysiology1999,45:907-914.
    167. Sambucetti P., Loeschcke, V., Norry, F.M., Developmental time and size related traits inDrosophila buzzattii along ati altitudinal gradient from Argentina. Hereditas2006,143,77-83.
    168. Sanborn A.F., Heath J.E., Heat M.S., Thermoregulation and evaporative cooling in the cicadaOkanagodes gracilis (Homoptera: Cicadidae). Comparative Biochemistry and Physiology-Part A1992,102:751-757.
    169. Sarup P., S rensen J.G., Dimitrov K., Barker J., Loeschcke V., Climatic adaptation of Drosophilabuzzatii populations in southeast Australia. Heredity.2006,96:479-486.
    170. Sax D.F., Brown J.H., The paradox of invasion. Global Ecology and Biogeography2000,9:363-371.
    171. Sejerkilde M., S rensen J.G., Loeschcke V., Effects of cold-and heat hardening on thermalresistance in Drosophila melanogaster. Journal of Insect Physiology2003,49:719-726.
    172. Sharma P., Singh D.P., Fatma N., Chylack L.T.J., Shinohara T., Activation of LEDGF gene bythermaland oxidative-stresses. Biochemical and Biophysical Research Communications2000,276:1320-1324.
    173. Silveri A., Dunwiddie P.W., Michaels H.J., Logging and edaphic factors in the invasion of an Asianwoody vine in a mesic North American forest. Biological Invasions2001,3:379-389.
    174. Simberloff D., Von Holle B., Positive interactions of nonindigenous species: invasional meltdown?Biological Invasions1999,1:21-32.
    175. Sinclair B.J., Roberts S.P., Acclimation, shock and hardening in the cold. Journal of ThermalBiology2005,30:557-562.
    176. Singer S.J., The molecular organization of membranes. Annual Review of Biochemistry1974,43:805-833.
    177. Sisodia S., Singh B.N., Influence of developmental temperature on cold shock and chill comarecovery in Drosophila ananassae: Acclimation and latitudinal variations among Indianpopulations. Journal of Thermal Biology2010,35:117-124.
    178. Sisodia, S., Bashisth. N., Effect of exposure to short-term heat stress on survival and fecundity inDrosophila ananassae. Canadian Journal of Zoology2006,84,895-899.
    179. Smith S.D., Huxman T.E., Zitzer S.F., Charlet T.N., Housman D.C., Coleman J.S., FenstermakerkL.K., Seemann J.R., Nowak R.S., Elevated CO2increases productivity and invasive speciessuccess in an arid ecosystem. Nature2000,408:79-82.
    180. Somero, G.N., Proteins and temperature. Annual Review of Physiology1995,57,43-68
    181. Somme L., The physiology of cold hardiness in terrestrial arthropods. European Journal ofEntomology1999,96:1-10.
    182. Sorensen J.G., Dahlgaard J., Loeschcke V., Genetic variation in thermal tolerance among naturalpopulations of Drosophila buzzatii: down regulation of Hsp70expression and variation in heatstress resistance traits. Functional Ecology2001,15:289-296.
    183. S rensen J.G., Nielsen M.M., Kruh ffer M., Full genome gene expression analysis of the heatstress response in Drosophila melanogaster. Cell Stress and Chaperones2005,10:312-328.
    184. Stratman R., Markow I.A., Resistance to thermal stress in desert Drosophila. Functional Ecology1998,12:965-970.
    185. Strecker A.L., Cobb T.P., Vinebrooke R.D., Effects of experimental greenhouse warming onphytoplankton and zooplankton communities in fishless alpine ponds. Limnology andOceanography2004,49:1182-1190.
    186. Sultan S. E., Phenotypic plasticity and plant adaptation. Acta Botanica Neerland1995,44:363-383.
    187. Terblanche J.S., Deere J.A., Clusella-Trullas S., Janion C., Chown S.L., Critical thermal limitsdepend on methodological context. Proceedings of the Royal Society B: Biological Sciences2007,274:2935-2942.
    188. Terblanche J.S., Sinclair B.J., Jaco Klok C., McFarlane M.L., Chown S.L., The effects ofacclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodicachalcoptera (Coleoptera: Chrysomelidae). Journal of Insect Physiology2005,51:1013-1023.
    189. Thomas C.D., Bodsworth E.J., Wilson R.J., Simmons A.D., Davies Z.G., Musche M., Conradt L.,Ecological and evolutionary processes at expanding range margins. Nature2000,411:577-581.
    190. Thompson J.D., The biology of an invasive plant: what makes Spartina anglica so successful?Bioscience1991,41:393-401.
    191. Tolson E.C. Water profligacy as an adaptation to hot deserts: water loss and evaporative cooling inthe Sonoran desert cicada Diceroptera apache (Homoptera: Cicadidae). Physiological Zoology1987,60:379-385.
    192. Ursula B., Stress out! Effects of environmental stress on mRNA metabolism. FEMS YeastResearch2006,6:160-170.
    193. Vitousek P.M., Global environmental change: An introduction. Annual Review of Ecology andSystematics1992,23:1-14.
    194. Vitousek P.M., D’Antonio C.M., Loope L.L., Westbrooks R., Biological invasions as globalenvironmental change. American Scientist1996,84:468-478.
    195. Wan F.H., Zhang G.F., Liu S.S., Luo C., Chu D., Zhang Y.J., Zang L.S., Jiu M., Lü Z.C., Cui X.H.,Zhang L.P., Zhang F., Zhang Q.W., Liu W.X., Liang P., Lei Z.R., Zhang Y.J. Invasive mechanismand management strategy of Bemisia tabaci (Gennadius) biotype B: progress report of973Program on invasive alien species in China. Science in China, Series C: Life Sciences2009,52,88-95.
    196. Wang Y., Dou A., Wang X., Li A., Sheng Y., Hua C., Cheng B., Chen X, Zheng X., Wang Y. ThePsCZF1gene encoding a C2H2zinc finger protein is required for growth, development andpathogenesis in Phytophthora sojae. Microbial Pathogenesis2009,47,4778-4786.
    197. Wang Y., Li A., Wang X., Zhang X., Zhao W., Dou A., Zheng X., Wang Y., GPR11, a putativeseven-transmembrane G protein coupled receptor, controls zoospore development and virulence ofPhytophthora sojae. Eukaryotic Cell2010,9,242-250.
    198. Wayne P., Foster S., Connolly J., Bazzaz F., Epstein P., Production of allergenic pollen by ragweed(Ambrosia artemisiifolia L.) is increased in CO2enriched atmospheres. Annals of Allergy, Asthma&Immunology2002,88:279-282.
    199. Williams S.E., Bolitho E.E., Fox S., Climate change in Australian tropical rainforests: Animpending environmental catastrophe. Proceedings of the Royal Society B: Biological Sciences2003,270:1887-1892.
    200. Williamson M., Biological Invasions. London: Chapman&Hall.1996.100-116.
    201. Wilson A.C.C., Dunbar H.E., Davis G.K., Hunter W.B., Stern D.L., Moran N.A., A dual-genomemicroarray for the pea aphid, Acyrthosiphon pisum, and its obligate bacterial symbiont, Buchneraaphidicola. BMC Genomics2006,7:50-60.
    202. Wu X.L., Zhao J.M., Sun S., Yang F., Wang Y.C., Gai J.Y., Xing H., A survey of soybeangermplasm for resistance to Phytophthora sojae. Euphytica2010,176,261-268.
    203. Yocum G.D., Differential expression of two HSP70transcripts in response to colds hock,thermoperiod, and adult diapause in the Colorado potato beetle. Journal of Insect Physiology2001,47:1139-1145.
    204. Yoder J.A., Denlinger D.L., Water balance in flesh fly pupae and water vapor absorption associatedwith diapause. Journal of Experimental Biology1991,157:273-286.
    205. Yoshinori, S. Yukio, I. Relationship between rapid cold-hardening and cold acclimation in the eggsof the yellow-spotted longicom beetle, Psacothea hilaris. Journal of Insect Physiology2007,53,1055-1062.
    206. Yu H., Wan F.H., Cloning and expression of heat shock protein genes in two whitefly species inresponse to thermal stress. Journal of Applied Entomology2009,133:602-614.
    207. Yu H., Wan F.H., Guo J.Y., cDNA cloning of heat shock protein genes and their expression in anindigenous cryptic species of the whitefly Bemisia tabaci complex from China. Journal ofIntegrative Agriculture2011,11:293-302.
    208. Yu H., Wan F.H., Guo J.Y., Different thermal tolerance and hsp gene expression in invasive andindigenous sibling species of Bemisia tabaci. Biological Invasions2012,14:1587-1595.
    209. Zachariassen K.E., Husby J.A., Antifreeze effect of thermal hysteresis agent’s proteins highlysupercooled insects. Nature1982,285-287.
    210. Zangerl A., Bazzaz F., Effects of short-term selection along environmental gradients on variation inpopulations of Amaranthus retroflexus and Abutilon theophrasti. Ecology1984,207-217.
    211. Zerebecki R.A., Sorte C.J., Temperature tolerance and stress proteins as mechanisms of invasivespecies success. PLoS One6: e14806.doi:10.1371/journal.pone.0014806,2011.
    212. Zhou Z.S., Rasmann S., Li M., Guo J.Y., Chen H.S., Cold temperatures increase cold hardiness in thenext generation Ophraella communa beetles. PloS one8: e74760.doi:10.1371/journal.pone.0074760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700