用户名: 密码: 验证码:
水平轴风力机三维空气动力学计算模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力机工作在大气地表边界层环境中,流场环境常常具有三维、非定常等特性,这给水平轴风力机的三维流场研究及相应的气动性能分析带来很大的困难。除此之外,风力机作为目前地球上尺寸最大的旋转式叶轮机械(102m量级),它的气动性能与叶片表面边界层及脱落的尾涡结构(10-3m量级)密不可分。从宏观大尺度到微观小尺度,跨越多个尺度的流场结构给风力机的三维流场研究及三维气动分析提出了新的挑战。现有的风力机气动计算模型按照复杂程度及计算精度的不同主要可以分为BEM模型、涡方法模型及CFD模型。不同的计算模型具有不同的计算特点和数值特征,因而具有不同的适用范围。
     为了提高气动模型的三维计算能力,本文针对现有的BEM模型、涡方法模型及CFD模型,主要开展了以下几方面的工作:
     第一,在BEM模型方面:以三维失速延迟修正模型为研究核心,对Corten提出的无粘失速模型进行了系统地分析。得到了该模型的解析解,并基于该解析解建立了风力机三维无粘失速延迟修正模型(ISDM)。与传统的失速延迟分析不同,ISDM模型以流动分离区内展向流动导致的叶片吸力面的负压增加量为核心分析目标,通过简化Navier-Stokes方程,并引入Kirchhoff-Helmholz尾缘分离预估模型,实现在离心力及科氏力影响下的叶片三维失速延迟效应的评估。通过与NREL Phase VI风力机及MEXICO风力机的三维全尺寸风洞实验数据的对比,验证了ISDM模型的准确性。
     第二,在涡方法模型方面:对具有不同涡量表征形式及复杂程度的升力线模型和三维面元模型进行了研究。对于升力线模型,粘性涡核模型及涡核有效半径模型的引入,有效地解决了升力线模型的数值奇性问题并且提高了三维非定常自由尾涡的计算精度。其次,基于该模型,对后掠叶片的气动性能及尾涡特征进行了计算和分析:在三维面元模型方面,以直接耦合模式将三维面元模型与二维边界层计算模型相结合,构建了粘性无粘耦合模型。该模型提高了附着流工况下计算的准确性,但对于大攻角流动分离工况的计算难以收敛。总体上,涡模型依靠三维尾涡的诱导作用,在很大程度上提高了流场的三维计算能力。
     第三,在CFD模型方面:以致动模型为研究目标,在现有的致动盘模型(ADM)、致动线模型(ALM)及致动面模型(ASM)基础上,提出将粘性无粘耦合算法与致动模型相结合,建立了三维改进致动面模型(IASM)。IASM模型利用粘性无粘耦合模型的边界元特性,最大程度上完善了现有致动模型中叶片三维几何外形与流场之间的作用机制。通过对比二维、三维流场工况下IASM模型和致动线模型(ALM)的计算结果,验证了IASM模型能够提高致动模型对于近尾流区域计算的准确性。IASM模型为大尺寸、复杂几何外形风力机的三维流场计算及气动性能分析奠定了基础。
     第四,在实验方面:以中科院工程热物理所0.5m×0.5m小型闭口回流式风洞为平台,设计了后掠翼段实验研究方案,围绕展向三维流动影响下的翼型气动性能的变化开展了实验研究。为了提高实验数据的可靠性,采用了大攻角流动分离条件下的数据修正模型。后掠翼段实验结果表明:升力系数在小攻角线性段与有限直翼段的实验结果十分接近,但在失速阶段,后掠翼段升力系数的实验结果出现大尺度的波动现象,且升力系数的平均值显著地高于相应的直翼段数据。利用后掠翼段实验数据评估ISDM模型,结果显示:ISDM模型可以较准确地预估附着流及初始尾缘分离工况下的升力系数,但对于阻力系数的预估ISDM模型仍存在误差。
The wind turbine works in the atmosphere boundary layer. There the flow field is usually three-dimensional (3D) and unsteady, which makes it very difficult to analyze the3D flow field and the corresponding aerodynamic performance of the Horizontal Axis Wind Turbine (HAWT). Besides, as the largest rotating turbomachinery on the earth, the aerodynamic performance of HAWT (102m magnitude) has very close relationship with the boudary layer on the wind turbine blade and the structure of the shedding vortexes, whose magnitude is only about10"3m. From the macro large scale to the micro small scale, the multiple scale structures of the3D flow field present new challenges to the3D flow field study and the3D aerodynamic research of the HAWT. According to the computational complexity and the accuracy differencies, the existing aerodynamic computational models of HAWT can be mainly divided into three parts. They are the Blade Element and Momontum (BEM) model, Vortex Method Model and the Computational Fluid Dynamics (CFD) model. Because these models have their own independent characters and the computational features for the3D flow field analysis, they have different scopes of application.
     In this paper, in order to improve the3D computational ability of the current BEM Model, Vortex Method Model and the CFD Model, the following works are carried out:
     Firstly, for the BEM model part, the3D stall delay modification model is mainly studied. The analytical solution of the Inviscid Stall Delay Model, which is proposed by Cotern, is derived. Based on the solution, the3D Inviscid Stall Delay Modification (ISDM) Model is created. In this model, we treat the stall delay effects differently by the delay of the separation point on the airfoil, and aim to capture the further negative pressure reduction in the separation area. By simplifying the Navier-Stokes equations and introducing the Kirchhoff-Helmholz trailing edge separation prediction model, the3D stall delay effect can be evaluated under the influence of the Centrifugal and Coriolis forces. At last, the ISDM model is validated by the full scale3D wind tunnel experimental results of the NREL Phase VI and MEXICO wind turbines, which verified the accuracy of the ISDM model.
     Secondly, for the Vortex Method Model part, the Lifting-Line Model and the3D Panel-Method Model, which have different forms of the vorticity representation and the computational complexity, are detailed studied. In the Lifting-Line Model, by introducing the Viscous Vortex Core model and the vortex effective radius concept, the numerical singularity can be effectively resolved and at the same time the accuracy of the3D unsteady free wake model can be improved. Based on the Lifting-Line Model, the aerodynamic performance and the wake characters of the backward-swept wind turbine blade are anaylized. In the Panel-Method Model, the2D boundary layer computational model is involved and based on the Direct Coupling Strategy a simple Viscous and Inviscid Interaction (VII) model is created. Compared with the results of the Panel Method Model, the VII model improves the accuracy of the computation under the attached flow condition. However when the Angle of Attack (AOA) becomes large enough and the flow separates from the surface, the VII model is difficult to get a convergence solution. Overall, because of the3D induced velocity of the3D wake vortex, the Vortex Model greatly improves the computational ability of the3D flow field.
     Thirdly, for the CFD model part, the study mainly focuses on the Actuator Model. Based the existing Actuator Disc Model (ADM), Actuator Line Model (ALM) and Actuator Surface Model (ASM), a new model named Improved Actuator Surface Model (IASM) is proposed, which is a kind of combination of the Actuator Model and the VII model. By making full use of the Boundary Element features of the VTI model, the IASM improves the interaction mechanism between the3D geometry of the wind turbine blade and the3D flow field to the maximum extent. By comparing the computatinoal results of the IASM and ALM, it is validated that the IASM can increase the accuracy of the flow field results in the near-wake region. The IASM provides an efficient way for the3D flow field computation and the aerodynamic analysis of the large scale wind turbine especially with complex geometry.
     Fourthly, for the experiment part, based on the0.5m X0.5m closed wind tunnul of the Institute of Engineering Thermophysics (LET), Chinese Academy of Sciences, a special swept airfoil section experiment is designed, which is aim to study the airfoil aerodynamic performance infuenced by the spanwise flow. In order to improve the reliability of the experimental data, a specialized data correction model proposed by Kang, which contains the blockage effect caused by the flow separation, is utilized in this dissertation. The swept airfoil experiment shows that the lift coefficient of the swept airfoil section is close to the results of the finite straight airfoil at small AOA condition, but at the stall stage, the lift coefficient of the swept airfoil section presents big-scale fluctuations and the average value of the lift coefficient is significantly higher than that of the straight airfoil section. Finally, based on the experimental results, the ISDM is detailed evaluaed. The results shows that the ISDM can accurately estimate the lift coefficient undert the attached flow and primary trailing edge separation conditions, but there are still errors exist in the drag coefficient estimated by ISDM.
引文
[1]李俊峰,蔡丰波,乔黎明等.2013中国风电发展报告[R],2013.
    [2]VERMEER L, S RENSEN J N, CRESPO A. Wind turbine wake aerodynamics [J]. Progress in Aerospace Sciences,2003,39(6):467-510.
    [3]MIKKELSEN T, SIGGAARD KNUDSEN S, SJ HOLM M, et al. WindScanner. eu-a new Remote Sensing Research Infrastructure for On-and Offshore Wind Energy [C]. Proceedings of the International Conference on Wind Energy:Materials, Engineering and Policies (WEMEP-2012), F,2012.
    [4]SANDERSE B, PIJL S, KOREN B. Review of computational fluid dynamics for wind turbine wake aerodynamics [J]. Wind Energy,2011,14(7):799-819.
    [5]DAHLBERG J, POPPEN M, THOR S. Load/fatigue effects on a wind turbine generator in a wind farm [J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,39(1): 199-209.
    [6]S RENSEN N N, HANSEN M O L. Rotor performance predictions using a Navier-Stokes method [C]. Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit, F, 1998.
    [7]BENJANIRAT S, SANKAR LN,XU G. Evaluation of turbulence models for the prediction of wind turbine aerodynamics [C]. Proceedings of the ASME 2003 Wind Energy Symposium, F, American Society of Mechanical Engineers,2003.
    [8]JIMENEZ A, CRESPO A, MIGOYA E, et al. Advances in large-eddy simulation of a wind turbine wake [C]. Proceedings of the Journal of Physics:Conference Series, F. IOP Publishing,2007.
    [9]JIM NEZ A, CRESPO A, MIGOYA E. Application of a LES technique to characterize the wake deflection of a wind turbine in yaw [J]. Wind Energy,2010,13(6):559-572.
    [10]RAJAGOPALAN R G, KLEVIAS P C, RICKERL T L. Aerodynamic interference of vertical axis wind turbines [J]. Journal of Propulsion and Power,1990,6(5):645-653.
    [11]AMMARAI, LECLERC C, MASSON C. A viscous three-dimensional differential/actuator-disk method for the aerodynamic analysis of wind farms [J]. Journal of Solar Energy Engineering,2002,124(4):345-356.
    [12]SNEL H, HOUWINK R, BOSSCHERS J. Sectional prediction of lift coefficients on rotating wind turbine blades in stall [M]. Netherlands Energy Research Foundation,1994.
    [13]CHAVIAROPOULOS P, HANSEN M O. Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver [J]. Journal of Fluids Engineering,2000,122(2):330-336.
    [14]DU Z, SELIG M S. A 3-D stall-delay model for horizontal axis wind turbine performance prediction [J]. AIAA Paper,1998,21.
    [15]BAK C, FUGLSANG P, S RENSEN N N, et al. Airfoil characteristics for wind turbines [M]. Riso-R-1065, Technical University of Denmark,1999.
    [16]CORRIGAN J, SCHILLINGS J. Empirical model for stall delay due to rotation [C]. Proceedings of the American Helicopter Society Aeromechanics Specialist Conf, F,1994.
    [17]CORTEN GP. Inviscid stall model [M], Netherlands Energy Research Foundation,2001.
    [18]MUHAMMAD G, SHAH N A, MUSHTAQ M. Merits and demerits of boundary element methods for incompressible fluid flow problems [J]. Journal of American Science,2009, 5(6):57-61.
    [19]AFJEH A A. Wake effects on the aerodynamic performance of horizontal axis wind turbines [R], NASA STI/Recon Technical Report N,1984,85(29364).
    [20]DUMITRESCU H, CARDOS. V. Predictions of unsteady hawt aerodynamics by lifting line theory [J]. Mathematical and Computer Modelling,2001,33(4):469-481.
    [21]VAN GARREL A. Development of a wind turbine aerodynamics simulation module [M]. Citeseer,2003.
    [22]CHATTOT J-J. Optimization of wind turbines using helicoidal vortex model [J]. Transactions-American Society of Mechanical Engineers Journal of Solar Energy Enginerring,2003,125(4):418-424.
    [23]CHATTOT J-J. Effects of blade tip modifications on wind turbine performance using vortex model [J]. Computers & Fluids,2009,38(7):1405-1410.
    [24]HESS J L, SMITH A.Calculation of non-lifting potential flow about arbitrary three-dimensional bodies [R]. Douglas Aircraft Co. Long Beach, CA,1962.
    [25]HESS J L, SMITH A. Calculation of potential flow about arbitrary bodies [J]. Progress in Aerospace Sciences,1967, (8):1-138.
    [26]MORINO L, CHEN L-T, SUCIU E. Steady and oscillatory subsonic and supersonic aerodynamics around complex configurations [J]. AIAA Journal,1975,13(3):368-374.
    [27]NEWMAN J. Distributions of sources and normal dipoles over a quadrilateral panel [J]. Journal of Engineering Mathematics,1986,20(2):113-126.
    [28]BRIZZOLARA S, VILLA D, GAGGERO S. A systematic comparison between RANS and panel methods for propeller analysis [C]. Proceedings of the 8th International Conference on Hydrodynamics, Nantes, France.2008.
    [29]SCHWEIGLER K. Aerodynamic analysis of the NREL 5-MW wind turbine using vortex panel method [D]. Chalmers University of Technology,2012.
    [30]仇永兴,康顺.基于面元法的水平轴风力机数值模拟[J].工程热物理学报,2012,33(2):228-231.
    [31]刘洋,李宇红,蒋洪德.风力机风轮非定常气动载荷计算[J].可再生能源,2010,28(6):31-35.
    [32]BALLEURL. Numerical viscid-inviscid interaction in steady and unsteady flows [M]. Symposium on Numerical and Physical Aspects of Aerodynamic Flows,2 nd, Long Beach, CA.1983.
    [33]NISHIDAB A. Fully simultaneous coupling of the full potential equation and the integral boundary layer equations in three dimensions [D]. Massachusetts Institute of Technology, 1996.
    [34]VELDMAN A. A numerical method for the calculation of laminar incompressible boundary layers with strong viscous-inviscid interaction [M]. National Aerospace Laboratory NLR, 1979.
    [35]DRELAM. XFOIL:An analysis and design system for low Reynolds number airfoils [M]. Springer,1989.
    [36]S RENSEN J N, LARSEN P S, PEDERSEN B M, et al. Three-level, viscous-inviscid interaction technique for the prediction of separated flow past rotating wing [D]. Technical University of Denmark, Admini strati onAdmini strati on, Office for Finance and Accounting Afdelingen for Okonomi og Regnskab,1986.
    [37]VAN GARREL A. Development of a Wind Turbine Rotor Flow Panel Method [M]. Energy research Centre of the Netherlands ECN,2003.
    [38]AMMARA I, LECLERC C, MASSON C. A viscous three-dimensional differential/actuator-disk method for the aerodynamic analysis of wind farms [J]. Transactions-American Society of Mechanical Engineers Journal of Solar Energy Enginerring,2002,124(4):345-356.
    [39]MASSON C, SMALI A, LECLERC C. Aerodynamic analysis of HAWTs operating in unsteady conditions [J]. Wind Energy,2001,4(1):1-22.
    [40]S RENSEN J, SHEN W, MUNDUATE X. Analysis of wake states by a full-field actuator disc model [J]. Wind Energy,1998,1(2):73-88.
    [41]S RENSEN J N, KOCK C W. A model for unsteady rotor aerodynamics [J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,58(3):259-275.
    [42]S RENSEN J N, MYKEN A. Unsteady actuator disc model for horizontal axis wind turbines [J]. Journal of Wind Engineering and Industrial Aerodynamics,1992,39(1): 139-149.
    [43]SORENSEN J N, SHEN W Z. Numerical modeling of wind turbine wakes [J]. Journal of Fluids Engineering,2002,124(2):393-399.
    [44]SHEN W Z, S RENSEN J N, ZHANG J. Actuator surface model for wind turbine flow computations [C].2007 European Wind Energy Conference and Exibition,2007.
    [45]SHEN W Z, ZHANG J H, SORENSEN J N. The actuator surface model:a new Navier-Stokes based model for rotor computations [J]. Journal of Solar Energy Engineering, 2009,131(1):011002.
    [46]WU OW S, SITZKI L, HAH M T.3D-simulation of the turbulent wake behind a wind turbine [M]. Journal of Physics:Conference Series. IOP Publishing.2007:012033.
    [47]R THOR P-E. Wind turbine wake in atmospheric turbulence [D]. Technical University of DenmarkDanmarks Tekniske Universitet, Riso National Laboratory for Sustainable Energy, 2009.
    [48]STOVALL T, PAWLAS G, MORIARTY P. Wind farm wake simulations in OpenFOAM [C]. 48th AIAA Aerospace Sciences Meeting, AIAA 2010,2010.
    [49]CHURCHFIELD M J, LEE S, MORIARTY P J, et al. A large-eddy simulation of wind-plant aerodynamics [C]. Proceedings of 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.2012:09-12.
    [50]SMAGORINSKY J. General circulation experiments with the primitive equations:I. the basic experiment [J]. Monthly Weather Review,1963,91(3):99-164.
    [51]PIOMELLI U, BALARAS E. Wall-layer models for large-eddy simulations [J]. Annual Review of Fluid Mechanics,2002,34(1):349-374.
    [52]LEISHMAN J Q BEDDOES T S. A generalised model for airfoil unsteady aerodynamic behaviour and dynamic stall using the indicial method [C].42-th Annual Forum of the American Helicopter Society. Washington.1986:243-265.
    [53]SHENG W, GALBRAITH R A M D, COTON F N. On the S809 airfoil's unsteady aerodynamic characteristics [J]. Wind Energy,2009,12(8):752-767.
    [54]HAND M M, SIMMS D, FINGERSH L, et al. Unsteady aerodynamics experiment phase V: test configuration and available data campaigns [M]. National Renewable Energy Laboratory,2001.
    [55]LINDENBURG C. Investigation into rotor blade aerodynamics [R]. Energy Research Centre of the Netherlands, report ECN-C-0--025,2003.
    [56]GUNTUR S, B AK C, S RENSEN N N. Analysis of 3D stall models for wind turbine blades using data from the MEXICO experiment [C].13th International Conference on Wind Engineering, ICWE. Amsterdam Holland.2012.
    [57]SCHRECK S, SANT T, MICALLEF D. Rotational augmentation disparities in the mexico and uae phase vi experiments[C]. Proceedings of the 3rd Torque 2010 The Science of making Torque from Wind Conference,(FORTH, Heraklion, Crete, Greece), F,2010.
    [58]BECHMANN A, S RENSEN NN, ZAHLE F. CFD simulations of the MEXICO rotor [J], Wind Energy,2011,14(5):677-689.
    [59]KATZ J, PLOTKXN A. Low-speed aerodynamics [M]. Cambridge University Press,2001.
    [60]LEISHMAN J G. Principles of helicopter aerodynamics [M]. Cambridge University Press, 2006.
    [61]RAMASAMY M, LEISHMAN J G. A generalized model for transitional blade tip vortices [J]. Journal of the American Helicopter Society,2006,51(1):92-103.
    [62]RAMASAMY M, LEISHMAN J G. A reynolds number-based blade tip vortex model [J]. Journal of the American Helicopter Society,2007,52(3):214-223.
    [63]LARWOOD S M. Dynamic analysis tool development for advanced geometry wind turbine blades[D]. University of California,2009.
    [64]AMANO R, MALLOY R. CFD analysis on aerodynamic design optimization of wind turbine rotor blades [J]. World Academy of Science, Engineering and Technology,2009, 60:71-75.
    [65]SUZUKI K, SCHMITZ S, CHATTOT J-J. Analysis of a swept wind turbine blade using a hybrid navier-stokes/vortex-panel model [M]. Computational Fluid Dynamics 2010. Springer,2011:213-218.
    [66]MAGGIO T, GRASSO F, COIRO D. Numerical study on performance of innovative wind turbine blade for load reduction [J]. EWEA, EWEC2011, Bruxelles,2011,14-17.
    [67]VERELST D R, LARSEN T J. Load consequences when sweeping blades-a case study of a 5 MW pith controlled wind turbine [R]. Danmarks Tekniske Universitet, Riso Nationallaboratoriet for Baeredygtig Energi,2010.
    [68]ADEBIYI A. On the existence of steady helical vortex tubes of small cross-section [J]. The Quarterly Journal of Mechanics and Applied Mathematics,1981,34(2):153-177.
    [69]HARD IN J C. The velocity field induced by a helical vortex filament [J]. Physics of Fluids, 1982,25(11):1949-1952.
    [70]ALEKSEENKO S, KUIBIN P, OKULOV V, et al. Helical vortices in swirl flow [J]. Journal of Fluid Mechanics,1999,382(1):195-243.
    [71]KUIBIN P, OKULOV V. Self-induced motion and asymptotic expansion of the velocity field in the vicinity of a helical vortex filament [J]. Physics of Fluids,1998,10(3):607-614.
    [72]LANDMAN M J. On the generation of helical waves in circular pipe flow [J]. Physics of Fluids A:Fluid Dynamics,1990,2(5):738-747.
    [73]ROSENBLUTH M N, MONTICELLO D, STRAUSS H, et al. Numerical studies of nonlinear evolution of kink modes in tokamaks [J], Physics of Fluids,1976,19(12): 1987-1996.
    [74]刘翔,黄其柏,廖道训等.匀动螺旋集中涡的流函数解析表达及证明[J].华中科技大学学报:自然科学版,2004,32(8):1-4.
    [75]FUKUMOTO Y, OKULOV V. The velocity field induced by a helical vortex tube [J]. Physics of Fluids,2005,17(10):107101.
    [76]SHEN W Z, HANSEN M O, S RENSEN J N. Determination of the angle of attack on rotor blades [J]. Wind Energy,2009,12(1):91-98.
    [77]XU Q SANKAR L N. Application of a viscous flow methodology to the NREL phase VI rotor; proceedings of the ASME 2002 Wind Energy Symposium, F [C]. American Society of Mechanical Engineers,2002.
    [78]LI Y, PAIK K-J, XING T, et al. Dynamic overset CFD simulations of wind turbine aerodynamics [J]. Renewable Energy,2012,37(1):285-298.
    [79]DOBREV I, MASSOUH F, RAPIN M. Actuator surface hybrid model [C]. Proceedings of the Journal of Physics:Conference Series, F. IOP Publishing,2007.
    [80]MAS SON C, WAITERS C S. Moving actuator surfaces:A new concept for wind turbine aerodynamic analysis [C]. Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ08), F,2008.
    [81]赵承庆,姜毅.气体射流动力学北京:北京理工大学出版社[M].1998,
    [82]TROLDBORG N, S RENSEN J N, MIKKELSEN R F. Actuator line modeling of wind turbine wakes [D]. Technical University of DenmarkDanmarks Tekniske Universitet, Department of Energy EngineeringInstitut for Energiteknik,2008.
    [83]JIN W. Numerical simulation of wind turbine wakes based on actuator line method in NEK5000 [D]. Royal Institute of Technology,2013.
    [84]PEET Y, FISCHER P, CONZELMANN Q et al. Actuator line aerodynamics model with spectral elements [C]. Proceedings of the 51 st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, F,2013.
    [85]MARTINEZ L A, LEONARDI S, CHURCHFIELD M J, et al. A comparison of actuator disk and actuator line wind turbine models and best practices for their use [J]. AIAA Paper, 2012(2012-0900).
    [86]SHIVES M, CRAWFORD C. Mesh and load distribution requirements for actuator line CFD simulations [J]. Wind Energy,2013,16(8):1183-1196.
    [87]JHA P K, CHURCHFIELD M J, MORIARTY P J, et al. Accuracy of state-of-the-art actuator-line modeling for wind turbine wakes [J]. AIAA Paper,2013 (2013-0608):
    [88]HANSEN M O. Aerodynamics of wind turbines [M]. Routledge,2013.
    [89]BURTON T, JENKINS N, SHARPE D, et al. Wind energy handbook [M]. John Wiley & Sons,2011.
    [90]HASHEMI TARI P. Near-wake flow dynamics of a horizontal axis wind turbine [D]. The University of Western Ontario,2012.
    [91]SCHRECK S. The NREL full-scale wind tunnel experiment Introduction to the special issue [J]. Wind Energy,2002,5(2):77-84.
    [92]SNEL H, SCHEPERS J, MONTGOMERIE B. The MEXICO project (Model Experiments in Controlled Conditions):The database and first results of data processing and interpretation[C]. Proceedings of the Journal of Physics:Conference Series. IOP Publishing, 2007,75(1):012014.
    [93]OYE S. Tjaereborg wind turbine, first dynamic inflow measurements [R]. AFM Notak Vk-189, Technical University of Denmark,1991.
    [94]IVANELL S, MIKKELSEN R, HENNINGSON D. Numerical computations of wind turbine wakes [M]. Springer Berlin Heidelberg,2007.
    [95]MASKELL E. A theory of the blockage effects on the bluff bodies and stalled winds in a closed wind tunnel [R]. Aeronautical Research Council, Lundon,1963.
    [96]程厚梅.风洞实验干扰与修正[M].国防工业出版社,2003.
    [97]KANG S-H, SHIN E S, RYU K-W, et al. Separation blockage-correction method for the airfoil of a wind turbine blade [J]. Journal of Mechanical Science and Technology,2013, 27(5):1321-1327.
    [98]TIMMER W. Two-dimensional low-Reynolds number wind tunnel results for airfoil NACA 0018 [J]. Wind Engineering,2008,32(6):525-537.
    [99]黄宸武.基于相似理论风力机气动性能预测研究[D].中国科学院研究生院(工程热物理研究所),2012.
    [100]YEN S-C. Aerodynamic performance and shedding characteristics on a swept-back wing [J]. Journal of Marine Science and Technology,2011,19(2):162-167.
    [101]EMSLIE K, HOSKING L, MARSHALL W. Some experiments on the flow in the boundary layer of a 45° sweptback untapered wing of aspect ratio 4 [R]. Delft University of Technology,1953.
    [102]JONES R T. Effects of sweepback on boundary layer and separation [M]. National Advisory Committee for Aeronautics,1947.
    [103]SUTTON F B, DICKSON J K. The longitudinal characteristics at Mach numbers up to 0.92 of several wing-fuselage-tail combinations having sweptback wings with NACA four-digit thickness distributions [M]. National Advisory Committee for Aeronautics,1955.
    [104]GRAHAM RR. Low-speed characteristics of a 45 sweptback wing of aspect ratio 8 from pressure distributions and force tests at Reynolds Numbers from 1,500,000 to 4,800,000 [J]. RML51H13,1951.
    [105]CAHILL J F, GOTTLIEB S M. Low-speed aerodynamic characteristics of a series of swept wings having NACA 65A006 airfoil sections [M]. National Advisory Committee for Aeronautics,1950.
    [106]WEBER J, BREBNER G. Low speed tests on a 45-deg swept back wings, Part-I:pressure measurements on wings of aspect ratio 5 [J]. Reports and Memoranda,1958,2882.
    [107]WOODWARD D, LEAN D. The lift and stalling characteristics of a 35 sweptback wing designed to have identical chordwise pressure distributions at all spanwise stations when near maximum lift [J]. RAE Technical Report,1971,71050.
    [108]RAGHAV V, MAYO M, LOZANO R, et al. Evidence of vortex-induced lift on a yawed wing in reverse flow [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,2013,09544100-13511597.
    [109]HOERNER S F, BORST H V. Fluid-dynamic lift:practical information on aerodynamic and hydrodynamic lift [J].Hoerner Fluid Dynamics, Vancouver, WA,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700