用户名: 密码: 验证码:
微电网复合储能柔性控制技术与容量优化配置
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,因面临化石能源日渐短缺与枯竭以及全球气候变化等严峻现实问题,作为分布式可再生能源的有效组织形式,微电网技术在国内外得到前所未有的关注。储能作为微电网的重要组成部分,在微电网稳定控制、平抑可再生能源波动、电能质量补偿、削峰填谷、应急供电等领域可为微电网提供关键技术支撑。然而,受限于储能技术水平发展的掣肘,单一储能往往难以满足微电网内多种不同需求,发展复合储能技术,是目前在经济、技术上较为可行的解决方案。研究微电网复合储能关键技术,具有重要的现实意义和应用价值。
     本文着眼于微电网对储能技术的多种典型需求,针对微电网中复合储能的柔性控制与容量配置开展探索和创新研究,重点解决复合储能的多端口接入、储能变换器可靠容错运行、储能对微电网的关键支撑作用等基础性问题,在此基础上探讨微电网复合储能容量的多目标优化配置技术。
     以多绕组高频变压器为基础,构建了复合储能的多端口统一接入拓扑,揭示了端口间的功率传输规律及影响机制;基于超级电容和蓄电池相融合的三端口全桥复合储能等效电路,推导出三端口复合储能的平均电流小信号分析模型,并藉此获得三端口复合储能定功率传输策略;针对超级电容端口电压随储能容量波动较大的特点,研究得到一种异步占空比移相PWM算法,实现多端口变换器在功率传输过程中端口电压的匹配,可有效改善传输效率。上述研究为复合储能整体接入微电网所需的底层功率传输控制提供了技术基础。
     微电网储能装置的可靠性很大程度上取决于储能变换环节。在兼顾经济成本和控制性能的前提下,针对潜在的储能变换故障,研究三相四开关储能容错拓扑,并给出容错切换的临界条件和切换准则。准确快速地获取储能变换器的故障信息是实现故障容错的前提,针对建模中的故障信息丢失问题,引入电路状态逻辑构建了储能变换器混杂系统动态(HSD)模型,藉此获得一种基于电流状态残差演变特征的储能变换器故障诊断方法,可显著提高故障诊断的快速性。针对四开关变换器的内在缺陷,基于等效阻抗理论揭示了输出阻抗、逆变频率和辅助电容差异对输出不平衡的内在作用机制,根据调制信号与空间电压矢量作用时间的关联规律,推导出一种实现直流中点电位偏差前馈补偿的等效SVPWM控制方法,显著提高了四开关储能变换器容错运行的平衡度。
     可对微电网电能质量进行补偿的电力有源滤波器(APE),存在功能单一、造价较高等问题,而四开关储能变换器因减少了功率器件和辅助装置,在低成本功率变换领域的应用前景较好。为此,本文开展了低成本三相四开关储能型APF应用技术研究。推导出一种基于电源电流跟踪的微电网谐波和无功直接补偿策略,因无需检测谐波,可有效降低四开关APF的实现难度。进一步研究了电压跌落引起的微电网不平衡对四开关APF的影响机制,推导出基于线电压矢量合成的四开关APE电流参考值生成策略,以适应微电网中的特殊不对称情况。
     四开关储能型APF可对微电网提供多种柔性支撑。针对四开关储能型APF工作模式的自适应切换,借助坐标变换推导出不同模式下的指令电流算式,并给出切换控制的边界条件;针对四开关APF的物理实现,给出了APF关键控制参数的取值准则及定量计算方法,并得到一种基于周期积分的单相软件锁相方法,实现了对电源电流的精确滞环跟踪补偿。
     微电网复合储能容量的配置多依赖于工程经验,缺乏理论指导和定量评估标准,为此,本文深入研究了微电网复合储能容量的多目标优化配置技术。构建了以投资成本最低、功率平衡最优、可再生能源发电功率波动最小为目标的复合储能容量配置多目标优化数学模型,从滤波系数、功率限幅、储能充放电管理等角度阐明了影响复合储能优化效果的关键因素;提出一种基于目标函数适应度离差均值排序的子目标函数权重确定方法,用以重组目标函数,可有效降低粒子群优化求解算法的实施难度;为评估多目标最优解的有效性,定义了可再生能源波动系数和供求平衡匹配系数,可实现优化效果的定量评估。
     针对超级电容和蓄电池构成的典型复合储能,就容量的多目标优化配置开展算例分析,给出了典型目标函数的建立方法以及优化算法实现流程,量化比较了复合储能和单一储能的容量多目标优化配置效果,表明复合储能容量优化配置的合理性。
     基于构建的微电网实验平台,进一步开展了复合储能柔性控制实验研究。研制了三端口复合储能全桥变换器、三相四开关储能容错装置、储能型四开关APF等实验样机,给出了关键参数的优化结果和软硬件实现方法,重点开展了复合储能定功率控制、容错判断及切换、直接电流滞环跟踪、电能质量统一补偿、锁相跟踪等实验研究,验证了本文理论与方法的有效性。
     本文研究结果可为微电网复合储能装置的拓扑设计和工程应用提供理论基础和技术依据。
As an effective way of integrating distributed renewable energy, micro-grid technology has received widely attention in recent years due to the depletion of fossil energy and the threat of global climate change. Energy storage is an indispensable component in micro-grid, and it could provide critical support for micro-grid, such as stability support, renewable energy power fluctuations smoothing, power quality compensation, load shifting, emergency power, etc. However, due to the limitations of energy storage technologies, it is difficult for a single form of energy storage to meet all the requirements perfectly in micro-grid. Since hybrid energy storage technology is becoming feasible and economical for micro-grid application, it is very important and of great value to study hybrid energy technology in micro-grid.
     In order to meet various requirements of micro-grid, hybrid energy storage flexible control and storage capacity configuration techniques are mainly discussed in the dissertation, which focus on hybrid energy storage multi-port access technology, energy storage converter fault-tolerant technology, and micro-grid critical support based on hybrid energy storage technology. Based on the above discussion, hybrid energy storage capacity allocation multi-objective optimization techniques are intensively studied.
     In order to make up feasible hybrid energy storage, the common multi-port topology for hybrid energy storage is presented based on multi windings high frequency transformer. Power transfer principle and affecting factors are revealed. For hybrid energy storage system constituted by batteries and ultra-capacitor, the average current small-signal analysis model of three-port hybrid energy storage topology is derived based on its equivalent circuit of three-port full-bridge converter; Moreover, the given power control strategy for three-port hybrid energy storage is proposed. In view of ultra-capacitor voltage verified with its capacity, an asynchronous duty cycle regulated phase shift PWM based on given power control strategy is introduced to match voltages in different ports, which helps to improve power transmission efficiency. This study provides theoretical support for hybrid energy storage bottom layer power transmission control in micro-grid application.
     The reliability of the energy storage device largely depends on its DC-AC converter. A three-phase four-switch fault-tolerant topology for energy storage application is proposed to balance cost and reliability performance. The fault tolerant critical condition and switching rules are also created. Accurate and rapid accessing to the fault information of hybrid energy storage converter is the premise of the fault tolerant control. To deal with missed fault information problem, circuit state logic is used to build hybrid system dynamic model of hybrid energy storage converter; an open circuit fault diagnosis method based on residual current vector character is introduced, which can effectively increase the speed of the fault detection technology; To overcome the inner shortcoming of three-phase four-switch fault-tolerant converter, the inherent mechanism of output impedance, inverted frequency and capacitor leading to the unbalanced output are revealed. Based on the relation of modulating signal and space vector action time, an equivalent SVPWM control method with DC bus midpoint compensation is proposed, which can significantly improve symmetry of the three-phase four-switch fault-tolerant converter.
     Due to the reduction of power components and auxiliary devices, four-switch three-phase converter shows good application prospect in low-cost converter. Furthermore, as an effective way of compensating power quality, active power filter (APF) costs much but its function is limited. Hence, a low cost four-switch shunt APF is put forward. For APF power quality control without load harmonic detection, a direct compensation method based on the supply-side current tracking is proposed, which can be used easily. Given the potential influences of power supply voltage imbalance in micro-grid, four-switch APF current reference generation strategy based on synthetic line voltage vector is proposed.
     Four-switch energy storage APF could provide various flexible supports for micro-grid. The unified modes self-adaptive switching method for four-switch energy storage APF is presented, based on coordinate transformation, current references calculation method in different modes and switching critical conditions is given. To build up four-switch APF, the criteria to obtain the control parameter and calculation method are given, and a single phase software phase locking method is used to fulfill exact power current hysteresis tracking.
     Due to the lack of theoretical guidance and quantitative assessment criteria, hybrid energy storage capacity configurations in micro-grid mostly depend on engineering experience, so hybrid energy storage multi-objective capacity configuration optimization techniques are deeply discussed. For typical applications in micro-grid, hybrid energy storage capacity configuration multi-objective optimization model is established, which includes objects such as lowest cost, best power balance level, and best smoothing effect on renewable energy; by analyzing filtering coefficient, output power limit and charging constraints, factors affecting optimization results are given. To determine weights of each objective function and rebuild multi-objective optimization function, an average fitness deviation ranking method is presented, which can be easily solved by particle swarm optimization (PSO) algorithm. To evaluate the impact of energy storage application on micro-grid, quantitative assessment indices of energy storage multi-objective optimization are provided, which include renewable energy fluctuation index and power balance index.
     Hybrid energy storage (made up of ultra-capacitor and battery) capacity multi-objective optimization example is given, typical object function setting up method and PSO optimization algorithm fulfilled by MATLABare given. Based on the proposed quantitative assessment indices, single battery and hybrid energy storage multi-objective compensation effects are compared with each other. Results show that hybrid energy storage is more feasible in micro-grid application.
     Based on micro-grid platform, hybrid energy storage related experimental researches are carried out. Experiment devices including three-port full-bridge hybrid energy storage converter, four-switch fault-tolerant converter and four-switch APF are designed; critical parameter, software and hardware design method are also given. Hybrid energy storage given power control, fault-tolerance judge and control, direct current tracking, unified power quality compensation experiments are mainly carried out, which further show the validity of the theory.
     The research achievements in the dissertation have further developed the fundamental theory, analysis method and innovation techniques of hybrid energy storage in micro-grid, which will provide important reference value for hybrid energy storage design and engineering application in micro-grid.
引文
[1]U.S. Energy Information Administration (EIA). Annual Energy Outlook 2011 with Projections to 2035[R].2011.
    [2]Avid Allen, Chris Brown, John Hickey, Vinh Le, Robert Safuto. Energy storage in the New York electricity markets. A New York ISO white paper[R].2010.
    [3]中国科学技术信息研究所.国际应对气候变化科技动态[R],2012,4(31).
    [4]中华人民共和国国家发展和改革委员会.可再生能源中长期发展规划[R].2007,9.
    [5]Lasseter B. Microgrids (distributed power generation). IEEE Power Engineering Society Winter Meeting[C],2001:146-149.
    [6]盛鹍,孔力,齐智平,等.新型电网——微电网(Microgrid)研究综述.继电器[J],2007,35(6):75-81.
    [7]李振杰,袁越.智能微网-未来智能配电网新的组织形式[J].电力系统自动化,2009,33(17):42-48.
    [8]周孝信,陈树勇,鲁宗相.电网和电网技术发展的回顾与展望——试论三代电网[J].2013,33(22):1-12.
    [9]程时杰,李刚,孙海顺,文进宇.储能技术在电气工程领域中的应用与展望[J].电网与清洁能源,2009,25(20):1-8.
    [10]王成山,王守相.分布式发电供能系统若干问题研究[J].电力系统自动化,2008,30(20):1-4.
    [11]尹忠东,朱永强.基于超级电容储能的统一负荷质量调节器的研究[J].2006,21(5):122-126.
    [12]唐西胜,齐智平.应用于微电网的储能及其控制技术[J].太阳能学报,2012,33(3):517-524.
    [13]刘志文,夏文波,刘明波.基于复合储能的微电网运行模式平滑切换控制[J].电网技术,2013,37(4):906-913.
    [14]H. Turton, F. Moura. Vehicle-to-grid systems for sustainable development:An integrated energy analysis[J]. Technological Forecasting and Social Change,2008,75:1091-1108.
    [15]张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,32(7):1-9.
    [16]百度文库资料.储能行业分析报告2012[R]. http://wenku.baidu.com/view/08e1a68aa0116c175f0e4847.html.
    [17]陈伟,石晶,任丽,等.微电网中的多元复合储能技术[J].电力系统自动化,2010,30(1):112-115.
    [18]Sandeep Yeleti, Yong Fu. Impacts of energy storage on the future power system[C]. North American power symposium,2010:1-7.
    [19]Jozef Paska, Piotr Biczel, Mariusz Klos. Technical and economic aspects of electricity storage systems co-operating with renewable energy sources[C]. International Conference on Electrical Power Quality and Utilisation,2009:1-6.
    [20]Smith S.C., Sen P.K., Kroposki B. Advancement of energy storage devices and applications in electrical power system[C]. IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008:1-8.
    [21]H. Paloheimo, M. Omidiora. A feasibility study on compressed air energy storage system for portable electrical and electronic devices[C]. International conference on clean electrical power, 2009:352-366.
    [22]Yongqiang Zhu, Tengfei Wang, Jun Tian. Means selection and capacity configuration of energy storage[C]. International Conference on Sustainable Power Generation and Supply,2009:1-4.
    [23]Cheng Liu, Jinjun Liu, Linyuan Zhou. Novel Control Strategy for Hybrid Energy Storage System to Relieve Battery Stress[C]. IEEE International Symposium on Power Electronics for Distributed Generation Systems,2010:929-934.
    [24]Briat O., Vinassa J.M., Lajnef W., et al. Principle, design and experimental validation of a flywheel-battery hybrid source for heavy-duty electric vehicles[J]. Electric Power Applications, 2007,1(5):665-674.
    [25]K. Wang, C. Y. Lin, L. Zhu, et al. Bi-directional DC to DC converters for Fuel Cell Systems[C]. Proc. IEEE Workshop on Power Electronics in Transportation,1998:47-51.
    [26]Shigenori Inoue, Hirofumi Akagi. A Bidirectional DC-DC converter for an Energy Storage System With Galvanic Isolation[J]. IEEE Transaction on Power Electronics,2007,22: 2299-2306.
    [27]Bryan G. Dobbs, Patrick L. Chapman. A Multiple Input DC-DC Converter Topology[J]. IEEE power electronics letters,2003,1:6-9.
    [28]Solero, Luca, Caricchi, Federico, Crescimbini, Fabio, et.al. Performance of a 10 kW power electronic interface for combined wind/PV isolated generating systems[C]. IEEE Power Electronics Specialists Conference,1996:1027-1032.
    [29]J. L. Duarte, M. Hendrix, M. G. Simoes. Three-port bidirectional converter for hybrid fuel cell systems[J]. IEEE Transaction on Power Electronics,2007,22(2):480-487.
    [30]Y. M. Chen, Y. C. Liu, and F. Y. Wu. Multi-input DC/DC converter based on the multiwinding transformer for renewable energy applications[J]. IEEE Transaction on Industrial Application, 2002,38(4):1096-1104.
    [31]H. Tao, A. Kotsopoulos, J.L. Duarte, et al. Family of Mutiport Bidirectional DC-DC Converter[J]. IEE proceeding of electric power application,2006,153(3):451-458.
    [32]H. Krishnaswami, N. Mohan. A Current-fed Three-port Bi-directional DC-DC Converter[C]. Telecommunications Energy Conference,2007:523-526.
    [33]董伟杰,白晓民,朱宁辉,等.电力有源滤波器故障诊断与容错控制研究[J].中国电机工程学报,2013,33(18):65-72.
    [34]胡文祥,程明,朱孝勇,等.驱动用微特电机及其控制系统的可靠性技术研究综述[J].电工技术学报,2007,22(4):38-46.
    [35]赵杰,张艳霞,宣文博,徐陆宇.分布式电源中逆变器的故障特征和保护方案[J].电力系统自动化,2012,36(1):51-54.
    [36]张兰红,胡育文,黄文新.三相变频驱动系统中逆变器的故障诊断与容错技术[J].电工技术学报,2004,19(12):1-9.
    [37]Ribeiro R L A, Jacobina C B, Silva E R C, et al. Fault-Tolerant Voltage-Fed PWM Inverter AC Motor Drive Systems[J]. IEEE Transactions on Industrial Electronics,2004,51(2):439-446.
    [38]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
    [39]Blaabjerg F, Pedersen J K, Jaeger U, et al. Single current sensor technique in the DC link of three-phase PWM-VS inverters:a review and a novel solution[J]. IEEE Transactions on Industry Applications,1997,33(5):1241-1253.
    [40]Peuget R, Courtine S, Rognon J P. Fault detection and isolation on a PWM inverter by knowledge-based model[J]. IEEE Transactions on Industry Applications,1998,34(6): 1318-1326.
    [41]Mendes A M S, Marques Cardoso A J. Voltage source inverter fault diagnosis in variable speed AC drives, by the average current Park's vector approach[C]. IEEE International Electric Machines and Drives Conference,1999:704-706.
    [42]杨忠林,吴正国,李辉.基于直流侧电流检测的逆变器开路故障诊断方法阴.中国电机工程学报,2008,28(27):18-22.
    [43]Brouji H E, Poure P, Saadate S. A Fast Reliable Fault Diagnosis Method for Fault Tolerant Shunt Three-Phase Active Filter[C]. Proceedings of the IEEE International Symposium on Industrial Electronics,2006:1688-1693.
    [44]Yu O K, Park N J, Hyun D S. A Novel Fault Detection Scheme for Voltage Fed PWM Inverter[C]. Proceedings of the IEEE 32nd Annual Conference on Industrial Electronics,2006: 2654-2659.
    [45]Ribeiro R L A, Jacobina C B, Silva E R C, et al. Fault-Tolerant Reversible AC Motor Drive System[C]. IEEE Industry Applications Conference,2001,4:2345-2351.
    [46]Bolognani S, Zordan M, Zigliotto M. Experimental Fault-Tolerant Control of a PMSM Drive[J]. IEEE Transactions on Industrial Electronics,2000,47(5):1134-1141.
    [47]孙丹,何宗元,I Y Blanco,等.四开关逆变器供电永磁同步电机直接转矩控制系统转矩脉动抑制[J].中国电机工程学报,2007,27(21):47-52.
    [48]Mendes A M S, Cardoso A J M. Fault-Tolerant Operating Strategies Applied to Three-Phase Induction-Mot or Drives[J]. IEEE Transactions on Industrial Electronics,2006,53(6): 1807-1817.
    [49]Correa M B R, Jacobina C B, Silva E R C, et al. An Induction Motor Drive System with Improved Fault Tolerance[J]. IEEE Transactions on Industry Applications,2001,37(3): 873-879.
    [50]Naidu M, Gopalakrishnan S, Nehl T W. Fault-Tolerant Permanent Magnet Motor Drive Topologies for Automotive X-by-Wire Systems[J]. IEEE Transactions on Industry Applications, 2010,46(2):841-848.
    [51]Liu T H, Fu J R, Lipo T A. A Strategy for Improving Reliability of Field-Oriented Controlled Induction Motor Dirves[J]. IEEE Transactions on Industry Applications,1993,29(5):910-918.
    [52]谭兴国,王辉,张黎.经济型储能变换器及其在微电网中的应用[J].电力电子技术, 2012,46(10):51-53.
    [53]赵克,安群涛,孙力,叶伟.容错逆变器PMSM无位置传感器控制系统[J].电机与控制学报,2010,14(4):25-30.
    [54]何宗元,孙丹,贺益康PMSM DTC系统的三相四开关容错运行[C].电力电子技术,2007(2):4-7.
    [55]黄传金,宋海军,陈铁军,刘宏超.三相四开关APF的SVPWM优化策略研究[J].电力电子技术,2012,46(8):44-46.
    [56]段玉兵.微电网潮流分析与柔性控制技术研究[D].济南:山东大学,2011
    [57]姚勇,朱桂萍,刘秀成.电池储能系统在改善微电网电能质量中的应用[J].电工技术学报,2012,27(1):85-89.
    [58]曾正,赵荣祥,杨欢,等.多功能并网逆变器及其在微电网电能质量定制中的应用[J].电网技术,2013,36(5):58-67.
    [59]谢石骁.混合储能系统控制策略及容量配置研究[D].杭州:浙江大学,2012.
    [60]Fangcheng Liu, Jinjun Liu, Linyuan Zhou. A Novel Control Strategy for Hybrid Energy Storage System to Relieve Battery Stress[C]. IEEE International Symposium on Power Electronics for Distributed Generation Systems,2010:929-934.
    [61]Chad Abbey, Kai Strunz, Joos, Geza. A Knowledge-Based Approach for Control of Two-Level Energy Storage for Wind Energy Systems. IEEE Transactions on Energy Conversion,2009, 24(2):539-547.
    [62]Toshifumi I, Masanori K, Akira T. A Hybrid Energy Storage with a SMES and Secondary Battery[J]. IEEE Transactions on Applied Superconductivity,2005,2(15):1915-1918.
    [63]Ross M, Hidalgo R, Abbey C, et al. Analysis of Energy Storage Sizing and Technologies[C]. IEEE Electric Power and Energy Conference,2010:1-6.
    [64]谢石骁,杨莉,李丽娜.基于机会约束的混合储能优化配置方法[J].电网技术,2012,36(5):79-84.
    [65]李成,杨秀,张美霞,王海波,叶建华,陈洁.基于成本分析的超级电容器和蓄电池混合储能优化配置方案[J].电力系统自动化,2013,37(18):20-24.
    [66]Tao H., Kot so poulos, A. Duarte, et al. Multi-input bidirectional dc-dc converter combining dc-Link and magnetic-coupling for fuel cells ystems[J]. Proc. IEEE 40th Industry Application Society Conf. and Annual Meeting, Hong Kong,2005.
    [67]Solero L., Lidozzi A., Pomilio J.A. Design of multiple-input power converter for hybrid vehicles[C]. IEEE Applied Power Electronics Conf,2004,2:1145-1151.
    [68]Su G.J., Peng F.Z. A low cost, triple-voltage bus DC-DC converter for automotive applications[C]. IEEE Applied Power Electronics Conf. and Exposition,2005,2:1015-1021.
    [69]Danwei LIU. Topology, development, and control of a three-port triple-half-bridge dc-dc converter for hybrid energy storage application[D]. Florida:Florida state university,2006.
    [70]H. krishnaswami, N. Mohan. Constant switching frequency series resonant three-port bi-directional DC-DC converter[C]. IEEE power electronics specialists conference,2008: 1522-1526.
    [71]Gang Chen, Dehong Xu, Lee Y.-S. A family of soft-switching phase-shift bidirectional DC-DC converters:synthesis, analysis, and experiment[C]. Proceedings of the Power Conversion Conference,2002,1:122-127.
    [72]H.Tao, A.Kotsopoulos, J. L.Duarte, M.A.M.Hendrix. A soft switched three-port bidirectional converter for fuel cell and supercapacitor application[C]. IEEE 36th power Electronics Specialists Conference,2005:2487-2493.
    [73]Chuanhong ZHAO. Isolated three-port bidirectional dc-dc converter[D]. Zurich:ETH Zurich, 2010.
    [74]Dehong Xu, Chuanhong Zhao, Haifeng Fan. A PWM plus phase-shift control bidirectional DC-DC converter[J]. IEEE Transactions on Power Electronics,2004,19(3):666-675.
    [75]H.Tao, A.Kotsopoulos, J. L.Duarte, M.A.M.Hendrix. Design of a Soft-Switched Three-Port Converter with DSP Control for Power Flow Management in Hybrid Fuel Cell Systems[C]. Proc.llth European conference on Power Electronics and Applications, Dresden, Germany: 1-10.
    [76]赵修科.实用电源技术手册磁性元器件分册[M].沈阳:辽宁科学技术出版社,2002.8
    [77]安群涛,孙醒涛,赵克,孙力.容错三相四开关逆变器控制策略[J].中国电机工程学报,2010,30(3):14-20.
    [78]安群涛.三相电机驱动系统中逆变器故障诊断与容错控制策略研究[D].哈尔滨:哈尔滨工业大学,2011:15-21.
    [79]Bianchi N, Bolognani S, Zigliotto M, et al. Innovative Reme dial Strategies for Inverter Faults in IPM Synchronous Motor Dr ives[J]. IEEE Transactions on Energy Conversion,2003,18(2): 306-314.
    [80]谭兴国,王辉,张黎.经济型储能变换器及其在微电网中的应用[J].电力电子技术,2012,46(10):51-53.
    [81]Tzann-Shin Lee, Jia-Hong Liu. Modeling and Control of a Three-Phase Four-Switch PWM Voltage-Source Rectifier in d-q Synchronous Frame[J]. IEEE Transactions on Power Electronics,2011,26(9):2476-2489.
    [82]Rui Wang, Jin Zhao, Yang Liu. A Comprehensive Investigation of Four-Switch Three-Phase Voltage Source Inverter Based on Double Fourier Integral Analysis[J]. IEEE Transactions on Power Electronics,2011,99:1-25.
    [83]谭兴国,李庆民,王辉,徐琳.三相四开关并联型APF参数优化设计[J].电气技术,2011(s):520-524.
    [84]杨坤,赵金,王瑞,刘洋.桥臂损坏下三相PWM整流器的容错及其控制策略[J].电气传动,2010,40(8):42-45.
    [85]谭兴国,李庆民,王辉,徐琳.三相四开关并联型APF参数优化设计[C].2011中国电工技术学会学术年会,北京,2011.
    [86]唐欣,罗安,涂春鸣.有源滤波器中输出滤波器的参数设计及优化[J].电力电子技术,2005,39(5):91-94.
    [87]杜雄,周雒维,谢品芳.直流侧AP F主电路参数与补偿性能的关系[J].电源世界,2005,1:30-33,29.
    [88]于丽娜,赵克,孙力,安群涛.四开关空间矢量脉宽调制控制算法及母线电容电压不平衡问题的研究[J].电机与应用控制,2010,37(10):25-30.
    [89]Keliang Zhou, Danwei Wang. Relationship Between Space-Vector Modulation and hree-Phase Carrier-Based PWM:A Comprehensive Analysis[J]. IEEE TRANSACTIONS ON NDUSTRIAL ELECTRONICS,2002,49(1):186-196.
    [90]Q.T. An, L. Sun, K. Zhao, T.M. Jahns. Scalar PWM algorithms for four-switch three-phase inverters[J]. ELECTRONICS LETTERS,2010,46(13):1-2.
    [91]谢斌.并联型有源电力滤波器谐波检测及控制技术研究[D].武汉:华中科技大学,2010.
    [92]陈国柱,王智强,谢川,等.高补偿精度并联型有源电力滤波器的控制策略[J].高电压技术,2010,36(8):505-512.
    [93]周林,庄华,张凤,栗秋华.三相有源电力滤波器控制方法的研究[J].高电压技术,2007,33(3):152-155.
    [94]王兆安,杨君,刘进军.谐波抑制与无功功率补偿-第2版[M].北京:机械工业出版社,2010:220-238.
    [95]李建奇,罗安,汤赐,唐杰.一种新型负序基波电流检测方法及其应用[J].电力系统自动化,2008,32(15):71-74.
    [96]黄宇淇,孙卓,姜新建,邱阿瑞.FBD法及复合控制在有源滤波器中的应用[J].电力系统自动化,2006,30(7):65-68.
    [97]H. Akagi, Y. Kanazawa, A. Nabae. Instantaneous reactive power compensators comprising switching devices without energy storage components[J]. IEEE Transaction on Industry Applications,1984, IA-20(3):625-631.
    [98]Vasco Soares, Pedro Verdelho and Gil Marque s. Active Power Filter Control Circuit based on the Instantaneous Active and Reactive Current iq-id method[J]. Power Electronics Specialists Conference,1997,2:1096-1101.
    [99]王辉,李庆民,吴明雷.用于强非线性负荷的瞬时无功与谐波电流检测算法研究[J].继电器,2006,34(21):18-23.
    [100]王存平,尹项根,熊卿,等.一种改进的ip-iq无功电流检测方法及其应用[J].电力系统保护与控制,2012,40(13):121-126.
    [101]王广柱.有源电力滤波器谐波及无功电流检测的不必要性探讨(Ⅰ)[J].电工技术学报,2007,22(1):137-141.
    [102]王广柱.有源电力滤波器谐波及无功电流检测的不必要性探讨(Ⅱ)[J].电工技术学报,2007,27(19):132-136.
    [103]李承,邹云屏.串联型有源电力滤波器的单周控制方法[J].电力系统自动化,2005,29(15):49-52.
    [104]王广柱.有源电力滤波器两种补偿目标的分析和比较[J].中国电机工程学报,2007,27(19):115-120.
    [105]周林,曾意,郭珂,等.具有电能质量调节功能的光伏并网系统研究进展[J].电力系 统保护与控制,2012,40(9):137-145.
    [106]汪海宁,苏建徽,张国荣,丁明.具有无功功率补偿和谐波抑制的光伏并网功率调节器控制研究[J].太阳能学报,2006,27(6):540-544.
    [107]王兆安,杨君,刘进军,王跃.谐波抑制和无功功率补偿[M].北京:机械工业出版社,2005.10.
    [108]刘宏超,彭建春.三相四开关并联型有源电力滤波器的指令电流确定方法[J].中国电机工程学报,2009,29(16):108-113.
    [109]Math H.J.BOLLEN. Characterizations of voltage sags experienced by three-phase adjustable speed drivers[J]. IEEE Transactions on power delivery,1997,12(4):1666-1671.
    [110]谭兴国,李庆民,王辉.电压不平衡情况下三相4开关并联型APF参考值[J].高电压技术,2012,38(11):3101-3108.
    [111]巫付专,万健如,沈虹.基于不同电流跟踪方式APF连接电感选取与设计[J].电力电子技术,2009,43(8):7-9.
    [112]史媛,江道灼,周月宾.统一潮流控制器同步锁相技术研究[J].电力系统保护与控制,2012,40(7):37-42.
    [113]王宝诚,伞国成,郭小强,邬伟扬.分布式发电系统电网同步锁相技术[J].中国电机工程学报,2013,33(1):50-55.
    [114]吉正华,韦芬卿,杨海英.基于dq变换的三相软件锁相环设计[J1.电力自动化设备,2011,31(4):104-107.
    [115]古俊银,廖茂宇,陈国呈.一种高效的非线性电网数字锁相环[J].中国电机工程学报,2012,32(33):53-58.
    [116]杨珺,张建成,周阳,等.针对独立风光发电中混合储能容量优化配置研究[J].电力系统保护与控制,2013,41(4):38-44.
    [117]杨秀,陈洁,朱兰,等.基于经济调度的微网储能优化配置[J].电力系统保护与控制,2013,41(1):53-60.
    [118]王成山,于波,肖峻,等.平滑可再生能源发电系统输出波动的储能系统容量优化方法[J].中国电机工程学报,2012,32(16):1-8.
    [119]李碧辉,申洪,汤涌,等.风光储联合发电系统储能容量对有功功率的影响及评价指标[J].电网技术,2011,35(4):123-128.
    [120]刘霞,江全元.风光储混合系统的协调优化控制[J].电力系统自动化,2012,36(14):95-100.
    [121]徐大明,康龙云,曹秉刚.基于NSGA-Ⅱ的风光互补独立供电系统多目标优化[J].太阳能学报,2006,27(6):593-598.
    [122]崔逊学.多目标进化算法及其应用[M].北京:国防工业出版社,2008.
    [123]雷德明,严新平编著,多目标智能优化算法及其应用[M].北京:科学出版社,2009.
    [124]许昆,李智勇.改进的量子粒子群多目标优化算法[J].计算机工程与设计,2009(1):164-167.
    [125]何井龙,杨红梅.基于合作协同进化和IMPSO算法的多阶段多目标电网规划[J].电力系统保护与控制,2008,36(20):10-14.
    [126]王震,陈云芳.基于人工免疫的多目标优化研究综述[J].计算机应用研究,2009,7:2422-2426.
    [127]胡毓达.实用多目标最优化[M].上海:上海科学技术出版社,1990.4.
    [128]纪震,廖惠连,吴青华.粒子群算法及应用[M].北京:科学出版社,2009.
    [129]李丽,牛奔.粒子群优化算法[M].北京:冶金工业出版社,2009.
    [130]唐忠.粒子群算法惯性权重的研究[J].广西大学学报:自然科学版,2009,34(5):640-644.
    [131]龚纯,王正林.精通MATLAB最优化计算(第2版)[M] 北京:电子工业出版社,2012.
    [132]李军,许丽佳,游志宇.一种带压缩因子的自适应权重粒子群算法[J].西南大学学报:自然科学版,2011,33(7):118-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700