用户名: 密码: 验证码:
磁悬浮永磁直线电动机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦阻力是制约数控机床直线驱动系统性能的重要因素,将磁悬浮永磁直线电动机应用于数控机床系统中,既省去了中间机械传动机构,又能够有效解决削弱高精高速数控机床摩擦阻力的问题,同时具有低功耗、装置简单、体积小重量轻等优势。本文在国家自然科学基金项目(50975181)的资助下,以磁悬浮永磁直线电动机为研究对象,针对其关键技术问题开展以下工作:
     针对削弱直线电机数控机床摩擦阻力的要求,提出了一种具有两套绕组的磁悬浮永磁直线电动机结构。在分析该电机运行机理的基础上,讨论了电枢绕组及定子的结构形式和特点。根据磁力线不能交叉及最小磁阻路径原理,依据电机尺寸确定各漏磁通的存在条件和积分区域,建立了该电机极间漏磁解析计算模型,通过解析计算与有限元计算的比较验证了理论推导的有效性。
     磁悬浮永磁直线电动机具有直线进给和垂直悬浮的复合运动形式,由于两套绕组产生的磁场共用一个磁路,推力与悬浮力之间存在耦合,基于以上特点并为了更加直观地对电磁力进行描述,在对几种数学建模方法比较的基础上,从气隙磁场能量的观点建立了电机的数学模型。针对推力与悬浮力的解耦问题,提出推力绕组采用id0,悬浮绕组采用iq0的控制方式,详细分析了该电机的解耦特征。
     基于磁悬浮永磁直线电动机内不同磁场互相耦合、动子需要同时实现进给和悬浮运行的特点,提出了该种电机的电磁设计思路和原则。采用有限元法对电机进行性能分析,考察了悬浮绕组及推力绕组电流对气隙磁场的影响,重点分析了参数对该电机性能的影响,确定了优选参数。并深入分析了电机的电感参数。一方面验证了电机设计方法的正确性,另一方面为样机的设计与研制提供必要的参考数据和技术依据。
     为了使推力、悬浮力获得更好的平稳性,计算了推力与悬浮力的波动力并进行了分量分离,获取了产生波动力的主要因素。采用优化动子铁心长度的方法削弱边缘效应引起的波动。基于毕奥-萨伐尔定理和虚位移法推导出电机悬浮力波动的表达式,证明改变永磁体结构形式可以减小悬浮力的波动,进而采用斜极的方法削弱由齿槽效应引起的波动。
     针对该电机悬浮子系统的控制问题进行研究,首先建立了悬浮子系统的数学模型,为了提高系统对输入信号跟踪特性以及对于负载扰动的鲁棒性,提出一种非线性H∞鲁棒控制策略。通过构造存储函数的方法直接推导描述悬浮系统非线性H∞鲁棒控制的控制律。仿真结果表明,控制系统跟踪给定信号的能力以及抑制扰动的能力均良好,系统具有较强的鲁棒性。
     最后,在上述理论研究的基础上制作了一台样机,搭建了系统的实验平台并对样机进行了实验。实验结果证明了电机具有较为良好的性能,验证了本文所提出的理论分析和设计方法的正确性,为进一步深入研究该种电机及其控制方法奠定了理论和技术基础。
Friction is one of the most important factor that restrict linear drive systemperformance of numerical control (NC). Magnetic suspension permanent magnet linearmotor is applied to NC,it not only eliminate transmission mechanism but also caneffectively impair the friction of NC, at the same time has many advantages, such as lowpower consumption,simple devices,small size and light weight. The systemic researchworks are done from taking the magnetic suspension permanent magnet linear motor asstudy object under the support by National Natural Science Foundation of China, the keytechnologies of study object are dicussed in this dissertation as follows:
     To satisfy the requirements of impairing the friction of NC, the magnetic suspensionpermanent magnet linear motor which has two windings in the mover is researched anddesigned. On the basis of analysis the operating principle of motor, analyze the structureand characteristics of armature windings and secondary stator. According to the magneticfield lines can not cross and the minimum reluctance path principle, determine theexistence condition and integral region of leakage fluxes, the calculation model ofinterpolar leakage fluxes of the motor is established, further its validity is verified throughthe comparison of analytical solution and finite element method.
     The two movement patterns of magnetic suspension permanent magnet linear motormover are straight feed and vertical suspension. As the magnetic field generated by twosets of windings has the same magnetic path in common, the thrust is coupled with thesuspension force. Based on the above features,in order to establish mathematical model ofelectromagnetic forces accurate and intuitive, on the basis of comparison of severalmathematical modeling methods, further modeling of the motor is presented in view of the air gap energy. In order to achieve thrust and suspension force decoupling, a controlmethod is presented that thrust winding id0and suspending windingiq0, furtherelectromagnetic decoupling characteristics of the motor is researched.
     Based on the coupling of magnetic suspension permanent magnet linear motor, themover is required to realize straight feed and vertical suspension. The idea and principle ofelectromagnetic design are provided in order to meet particularity of the motor. Study ofimpact of suspension windings current and thrust windings current on the air-gap fluxdensity magnetic field is done, the effect of key parameters on performance of actuator isalso investigated, and inductance characteristics are analyzed. On the one hand it confirmsthe correctness of motor design method, on the other hand it provides necessary referencedata and technical base for the experimental prototype design and manufacture.
     Aiming at the stability of electromagnetic force, the force ripple is made variableseparation for obtaining the major factors that impact the performance of theelectromagnetic force. The method of optimization iron-cored length is adopted to designthe motor for reducing force ripple caused by end effect. In order to reduce force ripplecaused by cogging effect, obtained analytical suspension force ripple model based on BiotSavart law and virtual displacement method, and prove that effect of suspension forceripple after altering permanent magnet configuration, further thrust and suspension forceripple is reduced by applying skewing pole.
     In the aspect of control strategy of the suspension subsystem, firstly mathematicalmodel of suspension subsystem is established. For improving the tracking performance andthe robustness, a nonlinear H∞robust control strategy is presented. Two controllaw used indescribing nonlinear H∞robust controllers are obtained by defining proper storage function.The results of simulation indicate that controllers can guarantee a good disturbancerestraint as well as the tracks of input signals, the robustness of the suspension subsystemis improved.
     Finally, the experiment platform of magnetic suspension permanent magnet linearmotor system is built,and some experiments of prototype motor are done. Correctness andfeasibility of theoretical analysis and design method are partly verified through theexperiment results, and foundation of theory and technology is laid on further research onthis kind of machine.
引文
[1]卢琴芬,叶云岳.混合励磁直线同步电机的磁场与推力.中国电机工程学报,2005,25(10):127~130.
    [2]杨正新,陈志华,涂阳虎等.直接驱动的发展与未来.中国机械工程,2000,11(10):1180-1182
    [3]刘建华,王秋良,严陆光.一种超导磁悬浮系统的设计及悬浮力特性分析.电工技术学报,2010,25(10):1~5.
    [4] Dong-Yeup Lee, Chun-Gil Jung, Kang-Jun Yoon. A study on the efficiency optimum design of apermanent magnet type linear synchronous motor. Transactions on Magnetics,2005,41(5):1860~1863.
    [5]叶云岳.直线电机原理与应用.北京:机械工业出版社,2000.
    [6] Tian Lulin, Zhang Kaoshe, Wang Deyi, et, al. Research on the levitation and guidance magneticforce of permanent magnetic guideway.Trans on China Electro-technical Society,2008,28(21):135~139.
    [7]张伯霖,黄晓明,范梦吾.高速机床进给系统的发展趋势.组合机床与自动化加工技术,2002(10):7~11.
    [8]刘彬,房建成,刘刚,樊亚洪.磁悬浮飞轮不平衡振动控制方法与试验研究.机械工程学报,2010,46(12):188~194.
    [9]郭庆鼎,赵希梅.数控机床直线伺服驱动控制的若干问题与展望.沈阳工业大学学报,2006,28(3):273~276.
    [10] H. Polinder, Slootweg, Hoejmakers. Modeling of a linear PM machine including magneticsaturation and end effect:Maxmum force to current ratio. IEEE Transactions on Industry,2003,39(6):1681~1688.
    [11] K. Boughrara, D. Zarko, R. Ibtiouen, et al. Magnetic field analysis of inset and surface-mountedpermanent-magnet synchronous motors using Schwarz-Christoffel transformation. IEEETransactions on Magnetics,2009,45(8):3166~3178.
    [12]潘开林.永磁直线电机的驱动特性理论及推力波动优化设计研究:(博士学位论文).杭州:浙江大学,2003.
    [13]曾理湛.永磁同步直线电机复杂机电耦合系统分析与控制方法:(博士学位论文).武汉:华中科技大学,2011.
    [14] Z.Z.Liu, F.L.Luo, M.H. Rashid. Robust high speed and high precision linear motor direct-driveXY-table motion system. Proc. IEEE Control Theory and Application,2004,151(2):166~173.
    [15]陈宇,卢琴芬,叶云岳.长定子直线同步电机的设计及其优化.电工技术学报,2003,18(2):18~21.
    [16]徐月同.高速精密永磁直线同步电机进给系统及控制技术研究:(博士学位论文).杭州:浙江大学,2004.
    [17]秦伟,范瑜,李硕等.电磁电动式磁悬浮装置的磁场分析和力特性研究.电机与控制学,2012,16(1):67~71.
    [18]张颖.永磁同步直线电机磁阻力分析及控制策略研究:(博士学位论文).武汉:华中科技大学,2008.
    [19]张松.无轴承电机发展综述.现代科学仪器,2012(4):24~29.
    [20]周益,刘放,何岚等.长定子中低速磁浮直线电机动力学数值分析与优化设计.机械设计与制造,2012(5):36~38.
    [21] Morrison C R, Siebert M W, Ho E J. Electromagnetic forces in a hybrid magnetic-bearingswitched-reluctance motor. IEEE Transactions on Magnetics,2008,44(12):4626~4638.
    [22] Alter, D. M. Tsao, Tsu Chin. Control of linear motors for machine tool feed drives: Design andimplementation of H∞optimal feedback control. Transactions of the ASME, Journal of DynamicSystems, Measurement, and Control,1996,118(6):649~656.
    [23]严陆光.关于我国高速磁悬浮列车发展战略的思考.中国工程科学,2002(12):40~46.
    [24] H. S. Choi, I. H. Park, and S. H. Lee. Concept of virtual air gap and its application for forcecalculation. IEEE Trans on Magnetics,2006,42(4):663~666.
    [25]曹建荣,虞烈,谢友柏.主动磁悬浮的解耦控制.西安交通大学学报,1999,33(12):44~48.
    [26] Fengxiang Wang, Longya Xu. A novel bearingless motor with hybrid rotor structure and levitationforce control.37th IEEE IAS,2002:212~215.
    [27]万尚军,倪光正,徐善纲等.电动悬浮型磁悬浮列车悬浮与导向技术剖析.中国电机工程学报,2000,20(9):22~25.
    [28]金志颖,杨仕友,倪光正.EMS型磁悬浮列车电磁系统动态电磁场的有限元分析及其悬浮与牵引力特性的研究.中国电机工程学报,2004,24(10):133~137.
    [29] Shu hua Wang, Xudong Wang, et al.Study on minimizing the detent force of PM linear brushlessDC motors, Electrical Machines and Systems. ICEMS2008:3430~3434.
    [30] N. Bianchi, S. Bolognani, and A. D. F. Cappello, Reduction of cogging force in PM linear motorsby pole-shifting,IEE proc.-Electr. Power.2005,152(3):703~709.
    [31] Tomono H, Kiwaki H. Controllability improvement of zero-power magnetically levitated systemby dither. Power Electronics Specialists Conference, PESC98Record,29th Annual IEEE,1998(1):588~593.
    [32] Z. J. Liu and J. T. Li. Accurate prediction of magnetic field and magnetic forces in permanentmagnet motors using an analytical solution. IEEE Transactions on Energy Conversion,2008,23(3):717~726.
    [33]王宝国,王凤翔.磁悬浮无轴承电机悬浮力绕组励磁及控制方式分析.中国电机工程学报,2002,22(5):105~108.
    [34]年珩,贺益康.感应型无轴承电机磁悬浮力精确模型及其反馈控制.中国电机工程学报,2003,23(11):139~144.
    [35]邓智泉,严仰光.无轴承交流电机的基本理论和研究现状.电工技术学报,2000,15(2):29~34.
    [36]朱熀秋,J.Hugel.无轴承电机研究和应用前景(国外技术前沿).科技日报,2004.3.27.
    [37]王凤翔,王宝国,徐隆亚.一种新型混合转子结构无轴承电动机磁悬浮力的矢量控制.中国电机工程学报,2005,25(5):98~103.
    [38] Y. j. Kim, M. Watada and H. Dihmeki. Reduction of the cogging force at the outlet edge of astationary discontinuous primary linear synchronous motor, IEEE Trans on Magn,2007(43):40-45.
    [39] D. Zarko, D. Ban, T. A. Lipo. Analytical solution for cogging torque in surface permanent-magnetmotors using conformal mapping. IEEE Transactions on Magnetics,2008,44(1):52~65.
    [40]谢德馨,杨仕友.工程电磁场数值分析与综合.北京:机械工业出版社,2008.
    [41]李志强,罗应立,蒙亮.基于有限元的虚位移原理在汽轮发电机局部电磁力计算中的应用.中国电机工程学报,2007,27(15):47~52.
    [42] Steve McFee. A classical virtual work force method for Time-harmonic Eddy-currentanalysis.IEEE Transactions on Magnetics,1996,32(3):1673~1676.
    [43]李志强,罗应立.基于有限元和虚位移原理的电机内电磁力密度计算新方法.中国电机工程学报,2009,29(3):71~77.
    [44] Fu W N, Zhou P, Lin D et al.Magnetic force computation in permanent magnets using a localenergy coordinate derivative method.IEEE Trans on Magnetics,2004,40(2):683~686.
    [45]戴魏,余海涛,胡敏强.基于虚功法的直线同步电机电磁力计算.中国电机工程学报,2006,26(22):110~114.
    [46] Kowal D., Sergeant P., Dupre L., et al. A comparison of non-oriented and grain-oriented materialin an axial flux permanent-magnet machine. IEEE Trans on Magnetics,2010,46(2):279~285.
    [47] S. M. Abu Sharkh, S. H. Lai, S. R. Turnock. A structurally integrated brushless PM motor forminiature propeller thrusters. IEE Proc.-Electr Power Appl,2004,151(5):513~519.
    [48]卢琴芬.直线同步电机的特性研究:(博士学位论文).杭州:浙江大学,2005.
    [49] Ronghai Qu, Lipo. T.A., Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machines.IEEE Trans on Industry Applications,2003,39(6):1665~1673.
    [50] Sang-Yong jung,Jae-Kwang kim,Hyun-Kyo Jung,Cheol-Gyun Lee. Size optimization ofsteel-cored PMLSM aimed for rapid and smooth driving on short reciprocating trajectory usingauto-tuning niching genetic algorithm. IEEE Transaction on Magnetics,2004,40(2):750~753.
    [51] Jan-Peter Jastrzembski, Bernd Ponick, different methods for reducing detent force in a permanentmagnet linear synchronous motor,IECON2010-36th Annu. Conf. on IEEE Industrial ElectronicsSociet:823~828.
    [52]李庆雷,王先逵.永磁同步直线电机推力波动分析及改善措施.清华大学学报,2000,40(5):33~36.
    [53] Hong Soon Choi, Se Hee Lee, Young Sun Kim. Implementation of virtual work principle in virtualair gap.IEEE Trans on Magnetics,2008,44(6):1286~1289.
    [54] Benhama A, Williamson A C, Reece A B J. Virtual work approach to the computation of magneticforce distribution from finite element field solutions. IEE Proceedings Electric Power Applications,2000,147(6):437~442.
    [55] Sung Whan Youn, Jong Jin Lee, et al. A new cogging-free permanent-magnet linear motor, IEEETrans on Magnetics,2008,44(7):1785~1790.
    [56] Wang Xudong, Yuan Shiying, Jiao Liucheng, WangZhaoan. Dynamic mathematical model of apermanent magnet linear synchronous motor. Proceedings of international conference onELECTRICAL MACHINES,2000.
    [57] M.Aydin, Ronghai Qu, T.A. Lipo. Cogging torque minimization technique for multiple-rotor,axial-flux, surface-mounted-PM motors: alternating magnet pole-arcs in facing rotors.38th IASAnnual Meeting,2003(1):555~561.
    [58]封孝辉,付子义,吕刚,杨海柱.遗传算法在永磁直线同步电机优化设计中的应用.微电机,2003,36(2),13~15.
    [59] D. C. J. Krop, L. Encica, and E.A. Lomonova, Analysis of a Novel Double Sided Flux SwitchingLinear Motor Topology, XIX Int. Conf. on Electrical Machines-ICEM2010, Rome.
    [60] Takeo Ishakawa,Chun chen et al. Optimal design of thrust characteristics of permanent magnettype linear motor using orthogonal table andmultiregression analysis. IEEE Transaction onMagnetics,2004,40(2),1220~1223.
    [61] Haran K, Andrew M K. Investigation and simulation of fields in large salient-pole synchronousmachines with skewed stator slots. IEEE Transactions on Energy conversion,2005,20(3):604~610.
    [62] L. Zhu, S. Z. Jiang, Z. Q. Zhu. Analytical methods for minimizing cogging torque inpermanent-magnet machines. IEEE Transactions on Magnetics,2009,45(4):2023~2031.
    [63]徐月同,傅建中,陈子辰.永磁直线同步电机推力波动优化及实验研究.中国电机工程学报,2005,25(12):122~126.
    [64]冀溥,王秀和,王道涵,等.转子静态偏心的表面式永磁电机齿槽转矩研究.中国电机工程学报,2004,24(9):188~191.
    [65]王兴华,励庆孚.永磁无刷直流电机空载气隙磁场和绕组反电势的解析计算.中国电机工程学报,2003,23(3):126~130.
    [66]诸嘉慧,邱阿瑞,陶果.转子偏心及定子斜槽凸极同步发电机支路感应电动势的数值计算.清华大学学报(自然科学版),2008,48(4):453~456.
    [67]朱莉,姜淑忠,诸自强等.表面式永磁电机齿槽转矩解析模型比较.微电机,2010,43(1):10~15
    [68] Zhu Z Q, Xia Z P. Howe D et al. Reduction of cogging force in slotless linear permanent magnetmotors.Electric Power Applications, IEE Proceedings,1997,144(4):277~282.
    [69]周俊杰,范承志,叶云岳,卢琴芬.基于斜磁极的盘式永磁电机齿槽转矩削弱方法.浙江大学学报(工学版),2010,44(8):1548~1522.
    [70] Wei Shi, Chong Xiao, et al. Optimization on Thrust Ripple of an Axial-Flux Permanent-MagnetLinear Synchronous Machine. ICEMS,2011:1~6.
    [71] Oshima M, Chiba A, Fukao T, et al. Characteristics of a permanent magnet type bearingless motor.IEEE Trans on IA,1996,32(2):363~370.
    [72] M.Inoue, K.Sato. An approaeh to a suitable stator length for minimizing the detent force ofpermanent magnet linear synchronous motor. IEEE transactions on magnetics,2000,36(46),1890~1893.
    [73] Coto, A., Okamoto, T., et al. A New Linear Actuator utilizing Flux Concentration Type PermanentMagnet Arrangement. ICEMS,2011:1500~1505.
    [74] Z. Q. Zhu, L. J. Wu, Z. P. Xia. An Accurate Sub-domain Model for Magnetic Field Computation inSlotted Surface-Mounted Permanent-Magnet Machines. IEEE Transactions on Magnetics,2010,46(4):1100~1115.
    [75] Hwang S M, Eom J B, Hwang G B et al. Cogging torque and acoustic noise reduction inpermanent magnet motors by teeth pairing. IEEE Trans.on Magnetics,2000,36(5):3144~3146.
    [76] F. Dubas, C. Espanet. Analytical solution of the magnetic field in permanent-magnet motors takinginto account slotting effect: No-load vector potential and flux density calculation. IEEETransactions on Magnetics,2009,45(5):2097~2109.
    [77] Yu-Wu Zhu, Sang-Min Jin, et al., Control-Based Reduction of Detent Force for Permanent MagnetLinear Synchronous Motor, IEEE Trans on Magn,2009,45(6):2827-2830.
    [78] Yanli Zhang,Jingguo Yuan,et al.Shape optimization of a PMLSM using kriging and geneticalgorithm,20105th IEEE Conference on Industrial Electronics and Applications.1496~1499.
    [79] G. Martinez, J. Atencia, et al. Reduction of detent force in flat permanent magnet linearsynchronous machines by means of three different methods. IEEE Int. IEMDC, Jun.2003:1105~1110.
    [80]严陆光.高速磁浮列车技术及其在国客运交通中的战略地位.国际技术经济研究.1999.4:17~18.
    [81]王莉.混合EMS磁悬浮系统研究:(博士研究生论文).成都:西南交通大学,2006.
    [82] Kee-Bong Choi, Young Geun Cho, Tadahiko Shinshi. Stabilization of one degree-of-freedomControl type levitation table with permanent magnet repulsive forces. Mechatronics,2003,13(6):587~603.
    [83] Kang Gyu hong, Hong Jungpyo, Kim Gyutak, Design and Analy-sis of AirCore Type PermanentMagnet Linear Brushless Motor by Using Equivalent Magnetizing Current, IEEE IndustryApplications Conference.2000:29~35.
    [84]田录林,张靠社,王德意等.永磁导轨悬浮和导向磁力研究.中国电机工程学报,2008,28(21):135~139.
    [85]年珩.无轴承电机的设计与控制研究:(博士学位论文).杭州:浙江大学,2005.
    [86]刘同娟,徐正国,金能强.可控永磁悬浮系统动态特性的研究.系统仿真学报,2006,18(7):1890~1902.
    [87]邓智泉,张宏全,王晓琳等.基于气隙磁场定向的无轴承异步电机非线性解耦控制.电工技术学报,2002,17(6):19~24.
    [88] Inoue M, Sato K, An approach to a suitable stator length for minimizing the detent force ofpermanent magnet linear synchronous motors, IEEE Transactions on Magnetics,2000,36(4):1890~1893.
    [89]邓智泉,王晓琳.无轴承异步电机悬浮子系统独立控制的研究.中国电机工程学报,2003,23(9):107~111.
    [90]Oshima M, Chiba A, Fukao T, et al. Characteristics of a permanent magnet type bearing less motor.IEEE Trans on IA,1996,32(2):363~370.
    [91] M. Oshimaa, K. Yamaida. An improved conrtol method of buried-type IPM bearingless motorsconsidering magnetic saturationg and magnetic pull variation. IEEE Trans on Energy Conversion,2004,19(3):569~575.
    [92] D. Dorrell, M. Oshima, A. Chiba. Forcr analysis of a buried permanent-magnet bearingless motor.IEEE International Electric Machines and Drives Conference,2003(2):1091~1097.
    [93] Fulford C,Maggiore M,Apkaran J. Control of a5DOF magnetically levitated positioning stage.IEEE Transactions on Control System Technology,2009,17(4):844~852.
    [94] Ooshima M, Takeuchi C. Magnetic suspension performance of a bearingless brushless DC motorfor small liquid pumps. IEEE Transactions on Industry Applications,2011,47(1):72-78.
    [95] Kwon H.N, Lee J.H, Takahashi K, Toshiyoshi H. Micro XY stages with spider-leg actuators fortwo-dimensional optical scanning. Sensors and Actuators a-Physical,2006,130:468~477.
    [96] Feng G, A survey on analysis and design of model-based fuzzy control systems, IEEE Trans onFuzzy Systems,2006,14(5):676~697.
    [97] Chintae Choi, Tsu-Chin Tsao, Atsushi Matsubara. Control of linear motor machine tool feed drivesfor end milling: Robust MIMO Approach. Proceedings of the American control conference, SanDiego, California,1999,118(6):3723~3727.
    [98]左文全,吕艳博,付向东等.无轴承永磁薄片电机径向悬浮力精确数学建模.中国电机工程学报,2012,33(3):103~110.
    [99] Kuo.K, Shan X. M.,Menq C. H. Large travel ultra precision x-y-theta motion control ofMagnetic-suspension stage. IEEE/ASME Transactions on Mechatronics,2003,8(3):334~341.
    [100]杨进,尹文生,朱煜等.超精密微动台控制器带宽优化研究.机械工程学报,2011,47(16):9~13.
    [101]高春能,沈艳霞,纪志成.永磁直线同步电机的模型参考模糊自适应控制.系统仿真学报,2008,20(7):1817~1820.
    [102] Baik I, Kim K, Youn M. Robust nonlinear speed control of PM synchronous motor usingboundary layer integral sliding mode control technique. IEEE Transact on control systemtechnoloy,2008,10(1):47~54.
    [103] Hwang C L. A novel Takagi-Sugeno-based robust adaptive fuzzy sliding mode controller, IEEETrans on Fuzzy Systems,2004,12(5):676~687.
    [104]汪木兰,张崇巍,林健.数控机床用直线电机伺服试验平台开发及应用.中国机械工程,2012,23(3):274~277.
    [105] Yao Bin,Xu Li.2DOF control for the motion of a magnetic suspension positioning stage d rivenby inverter-fed linear motor. Mechatronics,2003,13(7):677~697.
    [106]张宏伟,余发山,卜旭辉等.基于鲁棒迭代学习的永磁直线电机控制.电机与控制学报,2012,16(6):81~86.
    [107]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.北京:清华大学出版社,2003.
    [108] Carsten W, Scherer. Multiobjective H2/H∞control. IEEE Trans on Automatic Control,1995,40(6):1054~1062.
    [109]李义强,周惠兴,王先逵等.直线电机伺服定位系统时间最优鲁棒控制.电机与控制学报,2011,15(3):13~18.
    [110]孙晓东.无轴承永磁同步电机及其非线性控制研究:(博士学位论文).镇江:江苏大学,2011.
    [111]张婷婷,曹莉,刁小燕等.五自由度无轴承同步磁阻电机逆系统解耦控制.系统仿真学报,2012,24(4):748~755.
    [112]黄雷,赵光宙,年珩,贺益康.永磁型无轴承电机悬浮系统的H∞鲁棒控制.控制理论与应用,2008,25(4):711~716.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700