用户名: 密码: 验证码:
大型风力机塔架动响应特性及失效机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型风力发电机塔架是重要的承载部件,塔架的性能直接影响了风力发电机运行的稳定性和可靠性,随着风力发电机单机容量不断加大,风力机结构整体的强度、振动、稳定性问题日益突出。本文以国家自然科学基金项目为背景,以MW级风力发电机塔架为主要研究对象,结合工程规范、有限元分析方法、实验方法,对大型风力机塔架的动力学进行分析,并对塔架的两个主要连接失效方式,螺栓连接和焊接进行研究,给出塔架螺栓连接失效的主要评估参数和影响焊缝疲劳寿命的几何参数。
     首先分别采用工程算法和有限元分析方法对塔架的自振频率进行计算。采用有限元分析方法计算塔架自振频率时分别考虑了机舱叶轮质量、塔门、叶轮的工作载荷、作用在塔架上的随机风载荷对其的影响。采用流固耦合方法,在复杂多变的随机风载荷作用下,计算塔架表面在风场中受到的风载荷,计入其对结构刚度的影响,得到风力机塔架的自振频率,并且与实测的风力机塔架自振频率进行对比,采用风机标准对其进行校核。给出一种合理的风力机塔架有限元分析模型,用于塔架自振频率的计算。塔架动力学响应分析中,得到风力机塔架顺风向和横风向响应。在顺风向响应分析中,对风力机塔架顶端的最大位移量进行校核。在横风向响应分析中,主要对塔架尾流的脱涡情况进行分析,得到在极限风速下,塔架不同高度处横截面的涡脱落频率。在塔架的振动分析中,本文将叶轮旋转产生的激振力频率与塔架自振频率避开,在达到风机标准要求后,计算塔架尾流的脱涡频率,并且与塔架的自振频率相比较,对风机标准中塔架的振动校核进行补充,给出一种塔架振动校核的新方法。
     其次,在风力机塔架满足强度和振动要求的前提下,计算风力机塔架的疲劳寿命,工程算法只能得到指定位置的疲劳寿命值,本文通过BLADE软件得到时程疲劳载荷谱,采用有限元分析软件得到塔架在六个载荷分量下的应力分布,结合风机设计标准得到塔架材料的应力-寿命曲线,在疲劳分析中考虑材料的表面加工质量和平均应力的影响,采用局部应力应变法计算塔架结构的疲劳寿命分布。可以得到塔架各个位置的疲劳寿命值,给出通过商业软件进行塔架疲劳寿命计算的建模方法。塔架疲劳分析计算后得到塔门附近的疲劳寿命较低,为后续塔架疲劳寿命优化提供依据和计算手段。
     当塔架满足强度、振动、疲劳要求后,以大型风力机塔架为研究对象,进行塔架失效机理研究,塔架失效形式有多种,本文分析其连接部位的失效形式,即螺栓连接和焊接。对塔架的螺栓连接建立有限元分析模型,螺栓的强度和疲劳完全满足使用要求的前提下,将螺栓松动做为螺栓连接失效的主要形式进行实验研究和数值计算,得到螺栓连接结构的自振频率对螺栓松动损伤比较敏感,双螺栓试件的损伤实验结果与有限元分析数据吻合,验证有限元方法的可行性。给出塔架连接螺栓自振频率计算的有限元建模方法,得到自振频率可以做为螺栓松动的判定参数。
     最后对塔架焊接的失效机理进行分析,在随机交变风载荷的作用下,由于焊缝的承载能力一般高于母材,其主要失效形式为疲劳。焊缝的疲劳分析采用结构应力法,此方法可得到焊趾处的应力集中,建立平板对接焊焊缝模型,采用疲劳分析软件FE-SAFE得到板厚和焊缝余高与焊缝疲劳寿命的关系曲线。以塔架焊缝模型为对象,利用结构应力法计算得到塔架焊缝的疲劳寿命分布,为塔架的焊缝的疲劳设计及优化提供一种仿真建模方法。
The Large-scale wind turbine tower is an important part, the capacity of the toweraffects the stability and reliability of the wind turbine, with the wind turbine capacityincreasing, the wind turbine structure strength, vibration and stability of the whole problemhave become increasingly prominent. Based on the national natural science fundation, theMW wind turbine tower is chosen as the research object. Based on the engineeringstandard, finite element analysis method, experimental method, the dynamic characteristicsand fatigue of large wind turbine tower are analyzed. The two main connection failuremode of tower, bolt connection and weld connection failure are analyzed and get mainparameters, the tower bolt connection failure and the weld fatigue are affected by the mainparameters. A checking method of tower is given.
     Firstly, the natural vibration frequency of tower are calculated by the engineeringstandard and finite element analysis method, Considering the mass of cabin and blades, thetower door, the working load of blade, and the random wind load. Got a suitablecalculation method for wind turbine tower vibration frequency, and compared results to theexperiment, using the standard to check it. During the analysis on the vibration frequencyof tower, the fluid-solid coupling method is used, the wind pressure on the surface of toweris calculated. Including its influence on the structure stiffness, get more reasonable towervibration frequency. In tower of dynamic analysis, the wind turbine wind vertical directionand horizontal direction response analysis are carried. In the horizontal direction responseanalysis, the maximum displacement at the top of wind turbine tower is calculated andcheck. In vertical wind response analysis, the tower to wake of vortex is analyzed, andunder the Extreme wind speed, tower at different height of cross section of the vortexshedding frequency is calculated. In tower vibration analysis, the natural vibrationfrequency of tower should be avoided blade rotation excitation frequency and tower vortexshedding frequency.
     Secondly, the wind turbine tower comply with the requirements of strength andvibration, the fatigue life is analysed. The fatigue load spectrum is from BLADE software,and stress distribution is calculated by the finite element analysis software, the tower underthe six load components of wind turbines blade, stress-life curve of materials is fromcertification of wind turbine standard, the local stress strain fatigue analysis of towerstructure is applied. The material surface machining quality, the average stress and theexternal load are taken into account in the fatigue analysis of tower. After fatigue analysis,the distribution of fatigue life found near the door is low, for fatigue life of toweroptimization provides a kind of analysis method.
     The large-scale wind turbine tower as the research object, after meet the requirementsof static strength, dynamic analysis and fatigue analysis. The main tower failure in theconnection parts, including bolts connection and weld connections. Tower bolt connectionanalysis model is set up, and get the bolt strength and fatigue are completely meet therequirements, will the bolt looseness as the main reason. The bolt looseness is analysedusing the experiment and simulation method. The natural vibration frequency of thestructure is the most sensitive. The experiments data and the analysis date of the doublebolt specimens is similar. The finite element method is feasibility, and then using thismethod to the natural vibration frequency of tower structure bolt connection analysis. Theparameters can serve as a judge for bolt looseness, for after the bolt looseness faultdiagnosis to provide technical foundation.
     Finally, tower welding connection failure is analysed. Welding line strength isgenerally higher than the base. The main failure of welding line is fatigue. Weld fatiguestructure stress method is adopted, which can analyse the stress concentration at weld toe.The finite element analysis software to establish model of butt welding seam, the fatigueanalysis software to calculate the thickness and the weld residual high impact on weldfatigue life. Get the relationship between the two main parameters and weld fatigue lifecurve. The tower weld model as the object, use structure stress method calculated thefatigue life of tower weld distribution, provide tower weld fatigue design and optimizationof a simulation method.
引文
[1]王超,张怀宇,王辛慧等.风力发电技术及其发展方向.电站系统工程,2006,22(2):11~13.
    [2]李本立,宋宪耕,贺德馨等.风力机结构动力学.北京:北京航空航天大学出版社,1999.1~315.
    [3] Nikolai Dotzek. Derivation of physically motivated wind speed scales. Atmospheric Research,2009(93):564~574.
    [4] Alexander Rauh, Joachim Peinke. A phenomenological model for the dynamic response of windturbines to turbulent wind. Journal of Wind Engineeringand Industrial Aerodynamics,2004(92):159~183.
    [5] J.W. Larsen, S.R.K.Nielsen, S.Krenk. Dynamic stall model for wind turbine airfoils. Journal ofFluids and Structures,2007(23):959~982.
    [6] Alireza Maheri, Siamak Noroozi, John Vinney. Decoupled aerodynamic and structural design ofWind turbine adaptive blades. Renewable Energy,2007(32):1753~1767.
    [7] Thommy Ekelund. Yaw control for reduction of structural dynamic loads in wind turbines. Journalof Wind Engineering and Industrial Aerodynamics,2000(85):241~262.
    [8] Karam Y. Maalawi. A model for yawing dynamic optimization of a wind turbine structure.International Journal of Mechanical Sciences,2007(49):1130~1138.
    [9] A.A.El-Sattar, N.H.Saad, M.Z.Shams El-Dein. Dynamic response of doubly fed induction generatorvariable speed wind turbine under fault. Electric Power Systems Research,2008(78):1240~1246.
    [10] Xue yong Zhao, Peter Mai Xer, Jing yanWu. A new multibody modeling methodology for windturbine structures using a cardanic joint beam element. Renewable Energy,2007(32):532~554.
    [11] Mahmood M. Shokrieh, Roham Rafiee. Simulation of fatigue failure in a full composite windturbine blade. Composite Structures,2006(74):332~342.
    [12] Christoph W. Kensche. Fatigue of composites for wind turbines. International Journal ofFatigue,2006(28):1363~1374.
    [13] Jayantha A. Epaarachchi, Philip D, Clausen. The development of a fatigue loading spectrum forsmall wind turbine blades. Journal of Wind Engineering and Industrial Aerodynamics,2006(94):207~223.
    [14] M.Jureczko, M.Pawlak, A.Mezyk. Optimisation of wind turbine blades. Journal of MaterialsProcessing Technology,2005(167):463~471.
    [15] M.A.Yurdusev, R.Ata, N.S.Cetin. Assessment of optimum tip speed ratio in wind turbines usingarticial neural networks. Energy,2006(31):2153~2161.
    [16] Andrew Kusiak, Haiyang Zheng, Zhe Song. Power optimization of wind turbines with data miningand evolutionary computation. Renewable Energy,2010(35):695~702.
    [17] Knut O.Ronold, Gunner C. Larsen. Reliability-based design of wind-turbine rotor blades againstfailure in ultimate loading. Engineering Structures,2000(22):565~574.
    [18] Wijarn Wangdee, Roy Billinton. Reliability assessment of bulk electric systems containing largewind farms. Electrical Power and Energy Systems,2007(29):759~766.
    [19] Haitao Guo, Simon Watson, Peter Tavner, Jiangping Xiang. Reliability analysis for wind turbineswith incomplete failure data collected from after the date of initial installation. ReliabilityEngineering and System Safety,2009(94):1057~1063.
    [20]张礼达,任腊春.恶劣气候条件对风电机组的影响分析.水力发电,2007,33(10):67~69.
    [21]王介龙,陈彦,薛克宗.大型水平轴风力发电机桨叶稳定性研究.工程力学,2002,19(2):83~86.
    [22]曹人靖,刘霞,马昊冥.基于压力表示法的水平轴风力机风轮气动弹性稳定性模型及应用.太阳能学报,2003,24(2):227~231.
    [23]刘雄,陈严,叶枝全.水平轴风力机气动性能计算模型.太阳能学报,2005,26(6):792~800.
    [24]李德源,叶枝全,陈严.风力机旋转叶片的多体动力学数值分析.太阳能学报,2005,26(4):473~481.
    [25]吴春梅,田瑞.小型水平轴风力机叶片的振动性能的研究.能源技术,2006,27(5):205~207.
    [26]李德源,叶枝全,包能胜等.风力机旋转风轮振动模态分析.太阳能学报,2004,25(1):72~77.
    [27]周勃,费朝阳,王楠等.恒频变速风力发电机组桨叶的动态特性分析.机械科学与技术,2006,11:1308~1310.
    [28]李声艳,徐玉秀,周晓梅.风力发电机风轮的动态特性分析.天津工业大学学报,2006(6):65~67.
    [29]王应军,裴鹏宇.风力发电机叶片固有振动特性的有限元分析.华中科技大学报,2006,23(2):44~46.
    [30]何婧,何玉林,金鑫等.失速型风力发电机系统振动仿真分析.重庆大学学报,2007,30(5):91~95.
    [31]黄立松,余国城.能量法计算大型风力发电机组的固有频率.新能源及工艺,2007(1):38~40.
    [32]尹景勋.水平轴风力机结构动力学研究:(硕士学位论文).保定:华北电力大学,2009.
    [33]李德源,叶枝全,陈严等.风力机玻璃钢叶片疲劳寿命分析.太阳能学报,2004,25(5):592~598.
    [34]李德源,叶枝全,陈严等.风力机叶片载荷谱及疲劳寿命分析.工程力学,2004,21(6):118~123.
    [35]王碧石,孙黎,王春秀.风力发电机齿轮箱扭力轴的疲劳分析.机械设计与制造,2009(9):155~157.
    [36]李春祥,胡文悌,代泽兵等.基于频域分析垂直轴风力发电机组旋转主轴的风致动力疲劳.振动与冲击,2009,39(7):166~168.
    [37]张铮,陈欣.风力机疲劳问题分析.华北水利水电学院学报,2008,11(3):41~43.
    [38]肖劲松,张传经.风力机叶片在拍打方向的载荷估计与可靠性分析.北京工业大学学报,2005,31(6):617~621.
    [39]张锦源.风力机可靠性研究:(硕士学位论文).汕头:汕头大学,2006.
    [40]秦大同,刑子坤,王建宏.基于动力学和可靠性的风力发电机齿轮传动系统参数优化设计.机械工程学报,2008,6(7):24~31.
    [41]刘雄,陈严,叶枝全.风力机桨叶总体优化设计的复合形法.太阳能学报,2001,22(2):157~161.
    [42]刘雄,陈严,叶枝全.遗传算法在风力机风轮叶片优化设计中的应用.太阳能学报,2006,27(2):180~185.
    [43]刘万琨.风力发电与风轮机优化设计.东方电气评论,2006,20(4):24~34.
    [44] Hani M.Negm,KaramY.Maalawi. Structural design optimization of wind turbine towers.Computers and Structures,2000(74):649~666.
    [45] N.Bazeos, G.D.Hatzigeorgiou, I.D.Hondros et. Static, seismic and stability analyses of a prototypewind turbine steel tower. Engineering Structures,2002(24):1015~1025.
    [46] P.J.Murtagh, B. Basu, B.M.Broderick. Along-wind response of a wind turbine tower with bladecoupling subjected to rotationally sampled wind loading. Engineering Structures,2005(27):1209~1219.
    [47] Dimos J.Polyzois, Ioannis G.Raftoyiannis, Nibong Ungkurapinan. Static and dynamiccharacteristics of multi-cell jointed GFRP wind turbine towers. Composite Structures,2009(90):34~42.
    [48] Ning Lin, Chris Letchford, Yukio Tamura,et. Characteristics of wind forces acting on tall buildings.Journal of Wind Engineering and Industrial Aerodynamics,2005(93):217~242.
    [49] Luong Van Binh, Takeshi Ishihara, Pham Van Phuc, Yozo Fujino. A peak factor for non-Gaussianresponse analysis of wind turbine tower. Journal of Wind Engineering and IndustrialAerodynamics,2008(96):2217~2227.
    [50] Lin-lin Zhang, Jie Li, Yongbo Peng, Dynamic response and reliability analysis of tall buildingssubject to wind loading. Journal of Wind Engineering and Industrial Aerodynamics,2008(96):25~40.
    [51]黄珊秋,陆萍.ZOND Z_40风力机塔架的模态分析.太阳能学报,2001,22(2):153~156.
    [52]郭威,徐玉秀.离网型风力发电机塔架振动问题的模态分析.可再生能源,2006(129):65~67.
    [53]贾玉琢,祝贺.基于湍流模型定制的风机塔架结构动力特性分析.中国电力,2008,41(11):71~73.
    [54]赵荣珍,吕钢.水平轴风力发电机塔架的振动模态分析.兰州理工大学学报,2009,35(2):33~36.
    [55]王孟,王璋奇,江文强.基于传递矩阵法的风力发电机组塔架结构分析.中国工程机械学报,2009,7(2):131~136.
    [56]李华明.基于有限元法的风力发电机组塔架优化设计与分析:(硕士学位论文).新疆:新疆农业大学,2004.
    [57]赵吉文,刘永斌,陈军宁等.基于混沌搜索的600KW风力机塔架结构优化设计.系统仿真学报,2007,19(11):2425~2428.
    [58]赵吉文,谢芳,刘永斌等.600KW风力机塔架结构参数粒子群优化设计.中国机械工程,2007,18(15):1776~1779.
    [59]徐奴文,李俊杰,王卫争.基于遗传算法的风力机塔架最优化设计方法.可再生能源,2008,26(1):13~16.
    [60]宫靖远.风电场工程技术手册.北京:机械出版社,2004.1~206.
    [61]张相庭.工程结构风荷载理论和抗风计算手册.北京:机械工业出版社,1983.1~150.
    [62]张相庭.结构风压和风振计算.上海:同济大学出版社,1985.1~103.
    [63]中国船级社.风力发电机组规范.北京:中国标准出版社,2008.1~159.
    [64]中国工程建设标准化协会.建筑结构荷载规范.北京:中国建筑工业出版社,2012.1~206.
    [65]贺广零.考虑土-结构相互作用的风力发电高塔系统地震动力响应分析.机械工程学报,2009,45(7):87~94.
    [66] NEWMARK N M. ROSENBLUETH E. Fundamentals of earthquake engineering. NewJersey:Prentice Hall.,1971.
    [67] STEJSKA J V, VALASEK M. Kinematics and dynamics of machinery. New York:Marcel Dekker,Inc.,1996.
    [68] WOLF J P. Spring-dashpot-mass models for foundation vibrations. Journal of EarthquakeEngineering&Structural Dynamics,1997,26(9):931~949.
    [69] MULLIKEN J S, KARABALIS D L. Discrete model for dynamic through-the-soil coupling of3-Dfoundations and structures. Earthquake Engineering&Structural Dynamics,1998,27(7):687~710.
    [70]李宗福.风力机塔架结构动力学问题探讨及分析程序的研制:(硕士学位论文).哈尔滨:哈尔滨工业大学,2007.
    [71]赵立新.风力发电机塔架的有限元分析与优化设计:(硕士学位论文).吉林:吉林大学,2008.
    [72]崔阳.大型风力机组塔架静动态有限元分析:(硕士学位论文).沈阳:沈阳工业大学,2010.
    [73]刘日新.风力机组塔架的设计方法研究:(硕士学位论文).沈阳:沈阳工业大学,2010.
    [74]程海燕.MW级风力发电机组塔架的有限元分析:(硕士学位论文).重庆:重庆大学,2009.
    [75]吕钢.基于有限元法的水平轴风力机塔架动态响应与优化问题研究:(硕士学位论文).兰州:兰州理工大学,2009.
    [76]高俊云,连晋华.风电机组塔筒振动的分析与测量.风能技术,2011(2):54~56.
    [77]贺德罄.风工程与工业空气动力学.北京:国防工业出版社,2006.1~798.
    [78]王欣.水平轴风力机气动性能与结构动力特性分析:(硕士学位论文).兰州:兰州理工大学,2012.
    [79]王世村.高耸结构风振响应和风振疲劳研究:(博士学位论文).杭州:浙江大学,2005.
    [80]黄本才,汪从军.结构抗风分析原理及应用.上海:同济大学出版社,2008.1~439.
    [81]李娟.水平轴风力发电机组钢管塔架风致响应分析:(硕士学位论文).济南:山东大学,2009.
    [82]陈晓春,王元.绕钝体分离流动的非定常数值模拟研究.空气动力学学报,2007,25(4):513~520.
    [83]张相庭.结构风压与风振计算.上海:同济大学出版社,1985.
    [84]蒋洪平,张相庭.高耸结构的耦联阵风响应.应用力学学报,1993,10(3):65~74.
    [85]楼文娟,孙炳楠.风与结构的耦合作用及风振响应分析.工程力学,2000,17(5):16~22.
    [86]薛松涛,范存新,陈镕等.高耸结构考虑风与结构耦合作用的非线性风振响应.苏州大学学报,2003,19(1):35~41.
    [87]陈新平,常慧英,何玉林.QT350-22L铸造风力机主机架疲劳特性分析.热加工工艺,2010,39(17):59~61.
    [88]汤炜梁.大型风力机疲劳计算方法研究.电力技术,2010,19(17):125~136.
    [89]吴芳和.近海风机基础结构选型优化与疲劳分析:(硕士学位论文).大连:大连理工大学,2009.
    [90]蒋培.全轴随机振动环境的疲劳强化机理研究:(博士学位论文).长沙:国防科学技术大学,2003.
    [91]王明珠.结构振动疲劳寿命分析方法研究:(博士学位论文).南京:南京航空航天大学,2009.
    [92]刘婷婷.柔性结构风振响应及疲劳研究:(博士学位论文).大连:大连理工大学,2012.
    [93]冯胜,程燕平,赵亚丽等.非线性疲劳损伤累积理论研究.哈尔滨工业大学报,2003(12):101~103.
    [94] Carten.H.T,Dolan.T.Jk.Cumulative fatigue damage.Proceedings of and international conference onfatigue metals,1956(12):235~246.
    [95]杨艳红.发动机构件多轴疲劳寿命分析与实验载荷谱编制方法研究:(硕士学位论文).南京:南京航空航天大学,2004.
    [96]王雷,王德俊.一种随机多轴疲劳的寿命预测方法.机械强度,2003(2):203~206.
    [97]王英玉,姚卫星.材料多轴疲劳破坏准则回顾.机械强度,2003(3):246~250.
    [98] CARPINTERI A., BRIGHENTI R., SPAGNOLI A..A fracture plane approach in multiaxialhigh-cycle fatigue of metals. Fatigue Fract. Engng Mater. Struct,2000(23):355~364.
    [99] PAPADOPOULOS I.V.Critical plane approaches in high-cycle fatigue:on the definition of theamplitude and mean value of the shear stress acting on the critical plane, Fatigue Fract. EngngMater.Struct,1998(21):269~285.
    [100]张莉,周新伟,郭颖.基于临界面法的疲劳损伤累积规律研究.哈尔滨理工大学学报,2003(3):131~134.
    [101]陈真,杜静,何玉林等.采用VDI2230风力发电机组塔筒法兰联接处螺栓强度分析.现代制造工程,2011(5):125~129.
    [102]汤炜梁.大型风力机疲劳计算方法研究.电力技术,2010,19(17):125~136.
    [103]杜静.风力发电机塔筒顶部法兰的有限元分析.现代制造工程,2010(4):54~58.
    [104]严晓林,刘希凤.基于ABAQUS的风力机塔筒螺栓连接接触非线性分析.科学技术与工程,2011,11(28):6842~6845.
    [105]俞文文,刑志,曹进华等.塔架固定螺栓状态质量可拓评估方法研究.装备指挥技术学院学报,2010,21(3):105~110.
    [106]瞿伟廉,秦文科,郭佳凡等.高耸塔架结构节点联结螺栓松动等效模型研究.武汉理工大学学报,2007,29(1):139~141.
    [107]沈文浩,张森文,李长友等.基于试验模态振型的结构损伤检测参数比较.暨南大学学报,2008,29(3):268~271.
    [108]彭细荣,路新瀛,隋允康等.基于应变模态及结构优化技术的结构损伤程度识别方法.北京工业大学学报,2009,35(2):145~150.
    [109]梅波勇.输电塔法兰联接节点螺栓脱落损伤诊断的试验研究:(硕士学位论文).武汉:武汉理工大学,2008.
    [110]查小鹏.高耸结构风致疲劳安全预警的理论和方法:(博士学位论文).武汉:武汉理工大学,2008.
    [111]秦文科.钢管输电塔法兰联结节点螺栓脱落损伤诊断的研究:(博士学位论文).武汉:武汉理工大学,2008.
    [112] CAWLEY P, ADAMS R D. The location of defects in Structures from measurements of thenatural frequencies. Journal of Strain Analysis,1979,14(2):49~57.
    [113]康桂东,黄映云,李鹏飞等.基于有限元和实验模态的螺栓连接板分析.航海工程,2010,39(5):14~16.
    [114]艾延廷,翟学,乔永利.基于有限元法的螺栓连接结构模态参数识别.中国机械工程,2012,23(8):957~960.
    [115]赵丹,艾延廷,翟学等.盘_盘螺栓连接结构模态频率分析.航空发动机,2012,38(5):55~57.
    [116]吴志广,乔永利.螺栓连接件力学特性计算与模态试验对比分析.机械工程师,2011,38(2):100~101.
    [117]陈国龙.疲劳裂纹扩展及基于风险的检测维修计划研究:(博士学位论文).哈尔滨:哈尔滨工程大学,2005.
    [118]林国湘,叶进宝,邱长军.焊缝材料抗疲劳断裂的可靠性计算方法.焊接学报,2008,28(1):50~52.
    [119]师小红,徐章遂,孙钦蕾.基于灰色神经网络的发射塔架疲劳裂纹扩展预测.电测与仪表,2006,43(4):21~22.
    [120]宫龙颖.焊接结构疲劳性能仿真实验研究.煤矿机械,2010,31(8):87~90.
    [121] DONG P, H ONG J K, CAO Z. A New Mesh-Insensitive Procedure for Characterizing StressConcentration at Welds.2001ASME Pressure Vessels and Piping Conference. Atlanta: TheAmerican Society o f Mechanical Engineers,2001:85~103.
    [122] DONG P. A Structural Stress Definition and Numerical Implementation for Fatigue Analysis ofWelded Joints. International Journal of Fatigue,2001,23(10):865~876.
    [123] DONG P, HONG J K, OSAGED, et al. Master SN Curve Method for Fatigue Evaluation ofWelded Components. New York: Welding Research Council,2002:1~50.
    [124] DONG P, HONG J K, CAO Z. Stresses and Stress Intensities at Notches: Anomalous CrackGrowth Revisited. International Journal of Fatigue,2003,25(9):811~825.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700