用户名: 密码: 验证码:
飞轮电池控制策略研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞轮电池是一种具有高储能、无污染、高效率的新型机电能量转换与储能装置,它可应用于不间断电源(Uninterruptible Power Supple, UPS)、混合动力机车、电力系统及卫星双姿态控制等多个领域,是实现能源高效利用、减少环境污染的一个重要方向。本文针对我国尚无飞轮电池市场产品、国外产品价格昂贵、制约了相关技术发展的现状,以科技部专项资金支持项目“内燃机电站旋转不间断电源”(2008EG199144)为依托,对飞轮电池充放电过程的能量转换、动态建模以及控制策略等进行了系统的研究,并构建了内燃机电站旋转不间断电源模拟实验平台。主要工作包括:
     1)在对飞轮电池能量转换系统多种电力电子装置实现方案以及双向可逆电机选择方案深入分析、对比研究的基础上,确定了以双PWM变流器作为能量转换装置及永磁同步电机驱动飞轮的系统方案;并在此方案下对飞轮电池充/放电过程的能量转换、动态关系进行了研究。建立了飞轮电池在dq轴系下的数学模型,进而构建了其在充/放电过程中的等效电路模型,为后续系统控制策略的研究奠定了基础。
     2)针对飞轮电池在充电整流环节中,整流装置易造成对电网“污染”的问题,研究了一种直接电流控制的滞环控制策略,实现了PWM整流器网侧电流的正弦化及单位功率因数运行,减小了对电网的“污染”;同时考虑飞轮电池具有大惯性、时变、非线性等特点,在充电逆变环节速度环采用常规PI或PID调节器,动态平稳性不尽人意致使飞轮电机振动较大,且易受扰动和系统参数变化影响等问题,结合空间矢量PWM控制技术,设计了一种指数趋近律滑模变结构控制器,该控制器通过对控制量的切换使系统状态沿着滑模面滑动,在受到外部扰动和参数摄动时具有不变性,从而改善了飞轮电池的动态平稳性、降低了电机振动、提高了鲁棒性。
     3)针对飞轮电池在放电整流环节中,传统的整流控制设计方法易造成对飞轮电池“污染”的问题,研究了一种前馈解耦控制策略,即通过对电流的矢量控制和前馈补偿,实现了PWM整流器飞轮电池侧电流正弦化且功率因数的单位化,减小了整流装置对飞轮电机的“污染”;考虑飞轮电池负载的复杂性和多样性,在放电逆变环节输出电压环采用常规PI或PID调节器,对负载适应能力不尽满意的问题,设计了一种紧格式无模型自适应控制器,该控制器无需建立系统的数学模型,仅依据受控系统输入输出数据,增强了飞轮电池对各类负载的适应能力,降低了由现代负载引起的输出电压波形畸变,从而提高了供电品质。
     4)在对飞轮电池能量转换动态关系建模、控制策略研究以及仿真结果验证的基础上,通过分析内燃机电站旋转不间断电源的结构、工作原理及流程,搭建了以微处理器dsPIC30F3011、S7-200(CPU224)可编程控制器为控制核心、功率为3kW的模拟实验平台,并开发了以以太网为通信媒介、VB为平台的上位机集中监控系统;进而对其中的关键子系统飞轮电池侧PWM整流器充放电控制进行了实验研究,进一步验证了论文系统方案、控制策略的可行性及工程可用性。
Flywheel battery is a new type of energy conversion and storage device equipped with high energy, non-pollution and high efficiency, which can be applied to multiple areas such as uninterruptible power supply (UPS), hybrid electric vehicles, electric power system and satellite dual attitude control. It has become an important direction to achieve efficient use of energy and reduce environmental pollution. Aiming at the current situation of unavailable flywheel battery products in China market, the high price of foreign products and the restriction in the development of related technology, the thesis carried out the research on energy conversion, dynamic modeling and control strategy in the processes of charging and discharging. Meanwhile, a power plant simulation platform was build for internal combustion engine rotary uninterruptible power system. This work was supported by the special funds of Ministry of Science and Technology " Electric Power Plant with Internal Combustion Engine Rotary Uninterruptible Power System"(2008EG19914-4). The major research works were carried out by follows:
     1) Based on the in-depth analysis and comparative study of the scheme about many kinds of power electronic device in flywheel battery energy conversion system and two-way reversible motor selection, the system scheme was designed with dual PWM converter as energy conversion device and the permanent-magnet synchronous as motor drive for flywheel. Based on this scheme, the research was carried out on energy conversion, dynamic modeling and control strategy in the processes of charging and discharging. The mathematical model in d-and q-axes system of flywheel battery was built, and an equivalent circuit model of flywheel battery in charging and discharging has also been presented. These works provided the support for following research.
     2) On the issues of "pollution" to power grid from flywheel battery rectifier in the charging rectifying link, hysteresis control strategy by direct current control was presented to achieve sinusoidal current of the PWM rectifier side of the flywheel battery and unitization of power factor. In the meantime, considering the large inertia, time-varying, nonlinear characteristics of flywheel battery, a conventional PI or PID controller for speed loop was not satisfied in dynamic stability and susceptible disturbance and impact from system parameter change. Combined with space vector PWM control technology, a kind of exponential reaching law sliding mode variable structure controller was designed. The controller made the system state slide along the sliding surface by switching controlled quantity. It was insured the invariance subjected to an external disturbance and parameter perturbation, improved the dynamic stability and the robustness, and reduced the vibration of the motor.
     3) On account of the "pollution" to flywheel battery from rectifier in the discharge rectifying link, a feed-forward decoupling control strategy was studied. By means of controlling the current vector and feed-forward compensation, it can realize sinusoidal current of the PWM rectifier side of the flywheel battery and unitization of power factor, as well as reduce the "pollution" to flywheel motor from rectification device. Considering the complexity and diversity of flywheel battery load, conventional PI or PID controller for output voltage loop was not content. A compact format model-free adaptive controller was designed, which depended only on the input and output data from controlled system and without mathematic model. This strategy enhanced the flywheel battery's adaptability to all kinds of load and reduced output voltage waveform distortion caused by modern load, and improved the quality of power supply.
     4) Based on the energy conversion dynamic relationship modeling, research of control strategy and verification of simulation results of the flywheel battery, through the analysis of the structure and working principle of the internal combustion engine power station rotating uninterrupted power supply, a power of3kW simulation experiment platform was built by microprocessor dsPIC30F3011and programmable controller S7-200(CUP224) as core components. And the PC centralized monitoring system has also been developed with Ethernet as the communication medium and VB as a programming tool. The critical proposed control theories about the flywheel battery side PWM rectifier charging/discharging have been carried out on the platform. The experiments further validated the feasibility, effectiveness and engineering usability of system scheme and control strategy.
引文
[1]中华人民共和国发展改革委.能源发展“十二五”规划[Online]. Available: http://www.ccchina.gov.cn/Website/ccchina/UpFile.2003,12,22.
    [2]张健.车辆高速飞轮储能系统关键技术及其优化设计[J].机械制造与研究,2007,36(4):52-54.
    [3]张宇,俞国勤,施明融,杨林青,何维国,卫春.电力储能技术应用前景分析[J].华东电力,2008,36(4):91-93.
    [4]Tomasz Siostrzonek, Adam Penczek, Stanislaw Pirog.The Control and Structure of the Power Electronic System Supplying the Flywheel Energy Storage [C]. Pow-er Electronics and Applications,2007 European Conference on,2007:1-8.
    [5]叶峰.新能源发电-实现人类的持续发展[J].能源与环境,2008(3):55-58.
    [6]Tomasz Siostrzonek, Stanislaw Pirog and Marcin Baszynski. Energy Storage Systems The Flywheel Energy Storage[C]. Power Electronics and Motion Control Conference,2008. EPE-PEMC 2008.13th,2008:1779-1783.
    [7]魏凤春,张恒,蔡红,陈东明.飞轮储能技术研究[J].洛阳大学学报,2005,20(2):81-83.
    [8]严俊,赵立.储能技术在分布式发电中的应用[J].华北电力技术,2006(10):16-19.
    [9]程华,徐政.分布式发电中的储能技术[J].高压电器,2003,39(3):53-56.
    [10]R. Arghandeh, M. Pipattanasomporn and S. Rahman. Flywheel Energy Storage Systems for Ride-through Applications in a Facility Microgrid[J]. IEEE TRANS-ACTIONS ON SMART GRID,2012,3(4):1955-1962.
    [11]刘春和,张俊,潘龙飞.飞轮—新的储能方式[J].微特电机,2003(5):38-40.
    [12]陈习坤,汤双清,刘刚.飞轮储能电池在并网型风力发电系统中的应用[J].机械与电子,2005(3):26-28.
    [13]Chi Zhang, and King Jet Tseng. A Novel Flywheel Energy Storage System With Partially-Self-Bearing Fly wheel-Rotor [J]. IEEE Transactions On Energy Conver-sion,2007,22(2):477-487.
    [14]Miao-miao Cheng, Shuhei Kato, Hideo Sumitani, Ryuichi Shimada. A Novel Method for Improving the Overload Capability of Stand-alone Power Generating Systems Based on a Flywheel Induction Motor[C], Power Electronics Specialists Conference,2008. PESC 2008. IEEE,2008:3677-3683.
    [15]John P. Barton and David G. Energy Storage and Its Use With Intermittent Renewable energy[J].IEEE Transactions on energy conversion,2004,19(2): 441-448.
    [16]陈习坤,汤双清.新型飞轮储能电池在独立运行式风力发电系统中的应用研究[J].节能,2005(1):22-25.
    [17]Rubens de Andrade, Jr., Antonio C. Ferreira, Guilherme G. Sotelo, Jose L. Silva Neto, Luiz G. B. Rolim, Walter I. Suemitsu, Marcio F. Bessa, Richard M. Stephan, and Roberto Nicolsky. Voltage Sags Compensation Using a Superconducting Flywheel Energy Storage System[J]. IEEE Transactions On Applied Supercond-uctivity, June 2005,15(2):2265-2268.
    [18]H. Y. Chu, Y. Fan, C. S. Zhang. A Novel Design for the Flywheel Energy Storage System[C].Electrical Machines and Systems,2005. ICEMS 2005. Proceedings of the Eighth International Conference on,2005 (2):1583-1587.
    [19]John McGroarty, Jesse Schmeller, Richard Hockney. Flywheel Energy Storage System for Electric Start and an All-Electric Ship[J]. IEEE Electric Ship Techno-logies Symposium,2005:400-406.
    [20]Satish Samineni, Brian K. Johnson, Herbert L. Hess, and Joseph D. Law. Modeling and Analysis of a Flywheel Energy StorageSystem for Voltage Sag Cor-rection[J]. IEEE Transactions On Industry Applications,2006,42(1):43-52.
    [21]S.y.yoo, H.C.Lee and M.D.Noh. Optimal Design of Micro Flywheel Energy Storage System[C]. IEEE International Conference on Control, Automation and Systems,2008:492-496.
    [22]李纪刚,徐鹏云,秦红星,赵树鹏.飞轮电池在混合动力电动汽车中的应用[J].微特电机,2008(6):58-60.
    [23]Yusuke YAMAUCHI, Nobuhito UCHIYAMA, Eiji SUZUKI, Michiaki KUBOTA, Madoka FUJII, and Hiroyuki OHSAKI. Development of 50kWh-class Super-conducting Flywheel Energy Storage System[C]. SPEED AM 2006 International Symposium on Power Electronics,2006:16-18.
    [24]Chen Junling, Jiang Xinjian, Zhu Dongqi, Wei Haigang. A Novel Uninterruptible Power Supply using Flywheel Energy Storage Unit[J]. Power Electronics and Motion Control Conference,2004. IPEMC 2004. The 4th International,2004(3): 1180-1184.
    [25]Perry Tsao, Matthew Senesky, and Seth R. Sanders. An Integrated Flywheel Energy Storage System With Homopolar Inductor Motor/Generator and High-Frequency Drive[J]. IEEE Transactions On Industry Applications, Nov./Dec. 2003,39(6):1710-1725.
    [26]Jack G. Bitterly. Flywheel Technology Past, Present, and 21 St Century Proje-ctions[J]. IEEE AES System Magazine, August 1998,13-16.
    [27]K.Veszpremi and I.Schmid. Flywheel Energy Storage Drive for Wind Turbines[C]. Power Electronics and Drive Systems,2007. PEDS'07.7th International Confer-ence on,2007:916-923.
    [28]黄宇淇,姜新建,邱阿瑞,朱俊星.飞轮并联运行于放电模式时的控制策略[J].微电机,2008,41(5):20-23.
    [29]田会方,毛元坤,周祖德.飞轮储能装置及其充放电控制的研究[J].机械与电子,2007(6):36-38.
    [30]汤双清,阎丽芬,廖道训,吴海.飞轮电池在分布式发电系统中的应用研究[J].水力发电,2004,30(2):58-62.
    [31]冯香枝,吴庆彪.卫星用储能/姿控两用飞轮[J].微计算机信息,2004,20(10):9-30.
    [32]戴兴建,李奕良,于涵.高储能密度飞轮结构设计方法[J].清华大学学报,2008,48(3):380-383.
    [33]Roger E. Horner, Neil J. Proud. The Key Factors in the design and construction of advanced Flywheel Energy Storage Systems and their application to improve telecommunication power back-up[C].18th International Telecommunications Energy Conference,INTELEC'96,1996:668-675.
    [34]James A. Kirk, Gregory C. Walsh, Lou P. Hromada.The Open Core Composite Flywheel[C]. Proceedings of the 32nd Intersociety on Energy Conversion Engine-ering Conference,IECEC97,1997(3):594-601.
    [35]戴兴建,孟亚锋.复合材料储能飞轮结构强度技术研究进展[J].机械工程师,2005(4):8-9.
    [36]Rubens de Andrade, Jr., Guilherme G. Sotelo, Antonio C. Ferreira, Luis G. B. Rolim, Jose L. da Silva Neto, Richard M. Stephan, Walter I. Suemitsu, and Roberto Nicolsky.Flywheel Energy Storage System Description and Tests[J]. IEEE Transactions On Applied Superconductivity,2007,17(2):2154-2157.
    [37]Mochimitsu Komori, and Yokiya Uchimura. Improving the Dynamics of Two Types of Flywheel Energy Storage Systems With SMBs[J]. IEEE Transactions On Applied Superconductivity, June 2005,15(2):2261-2264.
    [38]Frank N. Werfel, Uta Floegel-Delor, Thomas Riedel, Rolf Rothfeld, Dieter Wippich, Bernd Goebel,Gerhard Reiner, and Niels Wehlau. A Compact HTS 5 kWh/250 kW Flywheel Energy Storage System[J]. IEEE Transactions On Applied Superconductivity, June 2007,17(2):2138-2141.
    [39]Kang Won Lee, Ji-eun Yi, Bongsu Kim, Junseok Ko,Sangkwon Jeong, Myoungyu Noh, and Seung S. Lee.Micro.Generator using Flywheel Energy Storage System with High-Temperature Superconductor Bearing[C]. Micro Electro Mechanical Systems,2007. MEMS. IEEE 20th International Conference on,2007:875-878.
    [40]苏云,郑益飞.超导技术在飞轮储能系统中的应用及前景[J].超导技术,2008,36(7):29-30.
    [41]Hyun-Ok Kang,Uhn Joo Na,Dong-Dae Lee,Kyung-Hwan Seo.Design and Control of Energy Efficient Magnetic Bearings[C]. International Conference on Control, Automation and Systems,2008:1220-1223.
    [42]王健,戴兴建,李奕良.飞轮储能系统轴承技术研究新进展[J].机械工程师,2008(4):71-73.
    [43]Uta Floegel-Delor, Rolf Rothfeld, Dieter Wippich, Bernd Goebel, Thomas Riedel, and Frank N. Werfel. Fabrication of HTS Bearings With Ton Load Performance[J]. IEEE Transactions On Applied Superconductivity,2007,17(2):2142-2145.
    [44]张刻,赵雷,赵鸿宾.磁悬浮飞轮低功耗控制方法仿真研究[J].清华大学学报(自然科学版),2004,44(3):301-303.
    [45]M.-H. Wang and H.-C. Chen. Transient stability control of multimachine power systems using flywheel energy injection[J]. IEE Proc.-Gener. Transm. istrib., 2005,152(5):589-596.
    [46]Long-Chan Park, Guy-Ha Choe, Young-Sik Kim, Bayasgalan Dugarjav, Zayaba-atar Baljinnyam, lae-PH Lee. Analysis and Design of PWM Inverter System for Flywheel Energy Storage System[J].The 7th international conference on power Electronics, IEEE 2008:169-173.
    [47]王健,王昆,陈全世.风力发电和飞轮储能联合系统的模糊神经网络控制策略[J].系统仿真学报,2007,19(17):4017-4020.
    [48]Xiang-Dong Sun,Mikihiko Matsui, Yasuo Nakamura. V/f Fuzzy Control of an Induction Motor for a DC Grid Power Leveling System Using a Flywheel Energy Storage Equipment[J]. The 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON),2007:2092-2097.
    [49]李志雄,汤双清,蒋宇,苏志刚.改进算法单神经元PID在飞轮储能系统中的研究[J].水力发电,2008,34(8):53-55.
    [50]杨俊华.无刷双馈风力发电系统及其控制研究[D].博士学位论文,华南理工大学,2006.
    [51]李远景,张安.飞轮电池控制技术与发展[J].科技信息,2008(30):38-39.
    [52]汤双清.飞轮储能技术及应用[M].武汉:华中科技大学出版社,2007.
    [53]陈峻岭,姜新建,朱东起,卫海岗.基于飞轮储能技术的新型UPS的研究[J].清华大学学报(自然科学版),2004,44(10):1321-1324.
    [54]刘刚,王志强,房建成.永磁无刷直流电机控制技术与应用[M].北京:机械工业出版社,2008.
    [55]Y. M. Meng, PhD, T. C. Li, and L. Wang. Simulation of Controlling Methods to Flywheel Energy Storage on Charge Section[C]. Electric Utility Deregulation and Restructuring and Power Technologies,2008. DRPT 2008. Third International Conference on,2008:2598-2602.
    [56]Linjun Shi, Zhong Chen, Haifeng Wang, Guoqing Tang. P-H Model of Power Systems Installed with a Flywheel Energy Storage for the Dynamic Analysis[C]. Electric Utility Deregulation and Restructuring and Power Technologies,2008. DRPT 2008. Third International Conference on,2008:1436-1440.
    [57]CHENG Shi-jiel,YU Wen-huil,WEN Jin-yul,SUN Hai-shunl,WANG Hai-feng2. Energy Storage and its Application in Power System Stability Enhancement[J].电网技术,2007,31(20):97-107.
    [58]张亚崇,孙国基,张亚军.电力储存用飞轮系统的控制模型研究[J].机械设计与制造工程,2002,31(4):23-25.
    [59]蒙永民,李铁才.基于飞轮储能系统的控制方法仿真研究[J].电力电子技术.2008,42(7):37-39.
    [60]Junxing Zhu, Xinjian Jiang, Lipei Huang. A Novel Dynamic Voltage Restorer with Flywheel Energy Storage System[C]. Electrical Machines and Systems,2008. ICEMS 2008. International Conference on,2008:1995-1999.
    [61]Satish Samineni, Brian K. Johnson, Herbert L. Hess, and Joseph D. Modeling and Analysis of a Flywheel Energy Storage System for Voltage Sag Correction[J]. IEEE Transactions On Industry Applications,Jan./Feb.2006,42(1):42-52.
    [62]王健,康龙云,曹秉刚,王昆.新能源分布式发电系统的控制策略[J].太阳能学报,2006,27(7):704-707.
    [63]Bingsen Wang. Giri Venkataramanan. Dynamic Voltage Restorer Utilizing a Matr-ix Converter and Flywheel Energy Storage[J]. Industry Applications, IEEE Trans-actions on,Jan.2009,45(1):222-231.
    [64]Active Power. Clean Source Site Preparation and Installation Manual.
    [65]C.S Hearn, M.M. Flynn, M.C. Lewis, R.C. Thompson, B.T. Murphy, R.G. Lon-goria. Low Cost Flywheel Energy Storage for a Fuel Cell Powered Transit Bus[J]. Vehicle Power and Propulsion Conference,2007. VPPC 2007. IEEE. Sept.2007: 829-836.
    [66]蒋启龙,连级三.飞轮储能在地铁系统中的应用[J].变流技术与电力牵引,2007(4):13-15.
    [67]Wensen Wang Heath Hofmann, Charles E. Bakis. Ultrahigh Speed Permanent Magnet Motor/Generator for Aerospace Flywheel Energy Storage Applications[C]. Electric Machines and Drives,2005 IEEE International Conference on,May 2005: 1494-1500.
    [68]A.S. Nagorny, N.V. Dravid, R.H Jansen, B.H. Kenny. Design Aspects of a High Speed Permanent Magnet Synchronous Motor/Generator for Flywheel Appli-cations [J]. Electric Machines and Drives,2005 IEEE International Conference on, 2005:635-641.
    [69]刘治华.双功能飞轮控制方法的研究[D].博士学位论文,中国科学院研究生院,2005.
    [70]刘治华,王春丽,于正林,贾宏光.双功能飞轮控制方法的研究[J].长春理工大学学报,2007,30(2):1-5.
    [71]Barbara H. Kenny, Peter E. Kascak, Ralph Jansen, Timothy Dever, and Walter Santiag. Control of a High-Speed Flywheel System for Energy Storage in Space Applications[J]. IEEE Transactions On Industry Applications, July/August 2005, 41(4):1029-1037.
    [72]Junxing Zhu, Xinjian Jiang, Lipei Huang. A Novel Dynamic Voltage Restorer with Flywheel Energy Storage System[C]. Electrical Machines and Systems,2008. ICEMS 2008. International Conference on,2008:1995-1999.
    [73]J.S.Bemandes, M.F.Stumborg. Analysis of a capacitor-Based Pulsed Power Sys-tem for Driving Long Range EM Guns[J]. Naval Surface Warface Center, Dahi-gren Division publication.
    [74]Hamid A. Toliyat, Salman Talebi,Patrick McMullen, CO Huynh,Alexei Filatov. Advanced High-speed Flywheel Energy Storage Systems for Pulsed Power Appli-cations[J].2005 IEEE Electric Ship Technologies Symposium,2005:379-386.
    [75]阮军鹏,张建成,汪娟华.飞轮储能系统改善并网风电场稳定性的研究[J].电力科学与工程,2008,24(3):5-8.
    [76]暨绵浩.永磁同步电动机及其调速系统综述和展望[J].微特电机,2007(3):49-52.
    [77]唐任远,等著.现代永磁电机理论设计[M].北京:机械工业出版社,1997.
    [78]Neto, J.L.S.,De Anrade, R.,Rolim, L.G.B., Ferreira, A.C.,Sotelo, G.G.,Suemitsu, W. Experimental Validation of a Dynamic model of a SRM used in superconduc-ting bearing flywheel energy storage system[J]. Industrial Electronics,2006 IEEE International Symposium on.July 2006 (3):2492-2497.
    [79]Jae-Do Park, Claude Kalev, and Heath Hofmann. Modeling and Control of Solid-Rotor Synchronous Reluctance Machines Based on Rotor Flux Dynamics[J]. IEEE Transactions On Magnetics,2008,44(12):4639-4647.
    [80]Jae-Do Park, Claude Kalev, and Heath F. Hofmann Analysis and Reduction of Time Harmonic Rotor Loss in Solid-Rotor Synchronous Reluctance Drive[J]. IEEE Transactions On Power Electrunics,2008,23(2):985-992.
    [81]黄宇淇,姜新建,邱阿瑞.飞轮储能能量回馈控制方法[J].清华大学学报(自然科学版),2008,48(7):1085-1088.
    [82]Jasinski,M.;Antoniewicz,P.;Kazmierkowski,M.P. VECTOR CONTROL OF PWM RECTIFIER-INVERTER FED INDUCTION MACHINE[J]A COMPARISON[C]. Compatibility in Power Electronics,2005:1-5.
    [83]Kenichi Iimori, Katsuji Shinohara, Kichiro Yamamoto, Study of Dead Time of PWM Rectifier of Voltage-Source Inverter Without DC-Link Components and Its Operating Characteristics of Induction Motor[C].IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,42(2),2006,518-525.
    [84]Li,Dongsheng; Notohara,Yasuo; Ando,Tatsuo.Sensorless control for a three-phase PWM rectifier-inverter system with single-chip micro-controller[C].Proceedings-The 12th International Conference on Electrical Machines and Systems, ICEMS 2009.
    [85]Yingchao, Zhang;Zhengming, Zhao;Ting, Lu;Liping, Jin. An Integrated Control Method for Three-Level NPC Based PWM Rectifier-Inverter[C], Power Electro-nics for Distributed Generation Systems (PEDG), Hefei, China,2010:616-620.
    [86]Akira Sato, Toshihiko Noguchi, Voltage-Source PWM Rectifier-Inverter Based on Direct Power Control and Its Operation Characteristics[J]IEEE TRANSACTIONS ON POWER ELECTRONICS,26(5),2011,5,1559-1567.
    [87]Lin, Chai;Huikang, Liu. The adaptive control based on inverter output of PWM rectifier feedback[C].Electrical and Control Engineering (ICECE), Wuhan, China. 2010:2249-2252.
    [88]Lei Shi, Haiping Xu, Dongxu Li, Zengquan Yuan. A Novel High Power Factor PWM Rectifier Inverter for Electric Vehicle Charging Station[C]. International Conference on Electrical Machines and Systems,2011.
    [89]Lu Yin;Zhengming Zhao;Ting Lu;Sheng Yang;Gaoyu Zou.An Improved DC-Link Voltage Fast Control Scheme for a PWM Rectifier-Inverter System[C], Ener-gy Conversion Congress and Exposition (ECCE),2012, IEEE,Raleigh, NC,2012: 1669-1675.
    [90]Jin Xu;Sato, Y. An Investigation of Minimum DC-link Capacitance in PWM Rectifier-Inverter Systems Considering Control Methods[C].Energy Conversion Congress and Exposition (ECCE),2012 IEEE,Raleigh NC,2012:1071-1077.
    [91]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2005.
    [92]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000.
    [93]王成元,夏加宽,杨俊成,孙宜标.电机现代控制技术[M].北京:机械工业出版社,2008.
    [94]H.AkagiandH.Sato.Advanced high-speed Flywheel Energy Storage Systems for pulsed power application.IEEE Transactions on Power Electronics,2008,17 (1):109-116.
    [95]Xiaojing Sun, Xinggui Wang,Haitao Zhou and Rui Shi. Control Design of Flywheel Battery for UPS Applications[C].2012 Second International Conference on Elect-ric Information and Control Engineering,2012:485-487.
    [96]Xiao Jing Sun, Xing Gui Wang and Dao Ming Wang. Research on the Control of Aircraft Energy System Based on Flywheel Battery[C].Advanced Materials Rese-arch,2013,753:2621-2627.
    [97]李春龙,沈颂华,卢家林,张建荣,白小青,石涛.基于状态观测器的PWM整流器电流环无差拍控制技术[J].电工技术学报,2006,21(12):84-89.
    [98]王恩德,黄声华.三相电压型PWM整流的新型双闭环控制策略[J].中国电机工程学报,2012,32(15):24-30.
    [99]张辉,张晓,谭国俊,鱼瑞文.基于H∞控制理论的三相PWM整流器控制策略研究[J].电气传动,2011,41(9):38-40.
    [100]廖晓钟,肖延磊,李爽.三相PWM整流器的模糊免疫PID控制[J].北京理工大学学报,2007,27(12):1085-1089.
    [101]Rafiei S MK Ghazi RAsgharian R et a 1.Robust control of DC/DC PWM conver-ters:a comparison of H∞,μ, and fuzzy logic based approaches[C]. Proceedings of IEEE Conference on Control Applications,2003,1:603-608.
    [102]Sato YKataoka M.State feedback control ofcurrent type PWM AC-to-DC conver-teB[J]. IEEE Trans on Industry Applications,1993,29(6):1090-1097
    [103]Huy H L.Dessaint L A.An adaptive current control scheme for PWM synchronous motor drives:analysis and simulation[J]. IEEE Trans on Power Electronics.1990,5 (1):21-28.
    [104]Cheng K W E,Wang H Y Sutanto D.Adaptive directive neural network control for three-phase AC/DC PWM converter[J].IEE Proceedings-Electric Power Appli- cations,2001,148(5):425-430.
    [105]Ceeati C,Dell'Aquila A,Liserre M, et al.A fuzzy-Logic-based controller for active rectifier[J]. IEEE Trans.on Industry Applications,2003,39(1):105-112.
    [106]伍小杰,罗悦华,乔树通.三相电压型PWM整流器控制技术综述[J].电工技术学报,2005,20(12):7-12.
    [107]程启明,程尹曼,薛阳,胡晓青,王映斐.三相电压源型PWM整流器控制方法的发展综述[J].电力系统保护与控制,2012,40(3):145-155.
    [108]程启明,程尹曼,王映斐,汪明媚.交流电机控制策略的发展综述[J].电力系统保护与控制,2011,39(9):145-154.
    [109]王毅,马洪飞,赵凯岐等.电动车用感应电机磁场定向矢量控制研究[J].中国电机工程学报,2005,25(11):113-117.
    [110]刘毅,贺益康,秦峰,贾洪平.基于转子凸极跟踪的无位置传感器永磁同步电机矢量控制研究[J].中国电机工程学报,2005,25(17):121-126.
    [111]冬雷,李永东.无速度传感器异步电动机极低转速下的矢量控制[J].清华大学学报(自然科学版),2003,43(9):1169-1172.
    [112]郑洪涛,蒋静坪.基于转矩矢量控制的开关磁阻电机转矩脉动控制[J].设计分析,15-17.
    [113]夏长亮,张茂华,王迎发,刘丹.永磁无刷直流电机直接转矩控制[J].中国电机工程学报,2008,28(6):104-109.
    [114]杨建飞,胡育文.永磁同步电机最优直接转矩控制[J].中国电机工程学报,2011,31(27):109-115.
    [115]张风阁,金石.变速恒频无刷双馈风力发电机的直接转矩控制[J].太阳能学报,2012,33(3):419-424.
    [116]王玲芝.改进的永磁同步电机直接转矩控制系统仿真实现[J].电力系统保护与控制,2009,37(19):65-68.
    [117]童克文,张兴,张昱,谢震,曹仁贤.基于新型趋近律的永磁同步电动机滑模变结构控制[J].中国电机工程学报,2008,28(21):102-106.
    [118]Sun Xiaojing, Wang Xinggui,Zhou Haitao, Wang Chunning. Research on Charge Control of New UPS Based on Flywheel Battery[J]. International Journal of Digital Content Technology and its Applications,2013,3:770-771.
    [119]Okayama H et al.Large capaeity large high performance three-level GTO inverter systems for steel main rolling mill drives[C].IEEE Proc.IAS Ann. Meet. Conf. Res, 1996:174-179.
    [120]刘陵顺,姜忠山,王亭.PWM逆变器死区效应的补偿[J].电源技术应用,2000(12):649-651.
    [121]刘风君.开关死区对SPWM逆变器输出电压波形的影响[J].电源技术与应用,2000(12):645-648.
    [122]李翠萍,王新生,张华强.基于MATLAB的空间矢量PWM仿真研究[J].机床与液压,2007,35(7):219-221.
    [123]Rolf Ottersten,Jan Svensson.Vector current controlled voltage source converter-deadbeat control and saturation strategies[J].IEEE trans.on PE,2007,7 (2):279-285.
    [124]杨贵杰,孙力,崔乃政,陆永平.空间矢量脉宽调制方法的研究[J].中国电机工程学报,2001,21(5):79-83.
    [125]刘金琨.滑模变结构控制MATLAB仿真[M].清华大学出版社,2005.
    [126]陈志梅,王贞艳,张井岗.滑模变结构控制理论及应用[M].电子工业出版社,2012.
    [127]胡剑波,庄开宇.高级变结构控制理论及应用[M].西北工业大学出版社,2008.
    [128]Utkin V I.Variable structurc system with sliding modes[C].IEEE Trans on Auto Contr,1977,22(2):212-222.
    [129]胡俊达,胡慧,邹文斌,叶卫.基于滑模变结构控制的异步电机速度控制的应用研究[J].大电机技术,5:32-35.
    [130]Zhang Dong etc.Numerical Calculation of Air Gap Magnetic Field of a Salient Synchronous Generator with the Consideration of Effect of Turn Insulation [C]. Power Con.,2002:774-778.
    [131]汪俊杰,周波,马长山.基于前馈控制的BLDCM滑模变结构调速系统[J].电工技术学报,2008,23(8):41-46.
    [132]Long Bo,Cao Binggang,Jing Hui,et al.Position tracking controlling system of position sensorless BLDCM by using SMC[C].proceedings of the 2nd IEEE/ASME International Conference on Mechatronic and Embed System and Applications, Beijing,China,2007:1-5.
    [133]汪俊杰,周波,方斯琛.永磁同步电机调速系统的滑模控制[J].电工技术学报,2009,24(9):71-76.
    [134]Lai C K,Kuo Kai Shyu.A novel motor drive design for incremental motion system via sliding-mode control method[J].IEEE Trans. on Industrial Electronice,2005, 52(2):499-507.
    [135]张志刚,张桂香.永磁同步风力发电系统滑模变结构矢量组合控制[J].中南大学学报,2011,42(7):1986-1991.
    [136]D. Kairous, R. Wamkeue. DFIG-based fuzzy sliding-mode control of WECS with a flywheel energy storage[J]. Electric Power Systems Research,2012,93:16-23.
    [137]汤平华.磁悬浮飞轮储能电机及其驱动系统控制研究[D].哈尔滨工业大学,博士 论文,2009.
    [138]于清川.飞轮电机及其驱动器的研究与设计[D].沈阳工业大学,硕士论文,2007.
    [139]侯忠生.随机非线性系统参数辩识、自适应控制及无模型学习自适应控制[D],东北大学,博士论文,1994.
    [140]侯忠生.非参数模型及其自适应控制理论[M].北京:科学出版社,1999.
    [141]侯忠生,许建新.数据驱动控制理论及方法的回顾和展望[J].自动化学报,2009,35(6):650-667.
    [142]曹荣敏,侯忠生,白雪峰,黄健.基于无模型自适应控制方法的直流调速系统[J].电气传动,2008,38(7):26-30.
    [143]Tan K K,Lee T H,Huang S N. Adaptive Predictive Control of a Class of SISO Non-line System[J],2001.
    [144]邓成博.免蓄电池磁悬浮飞轮储能UPS与发电机的配置.通信电源技术,2008,25(5):67-70.
    [145]免蓄电池磁悬浮飞轮储能UPS工作原理、单机运行模式介绍.通信电源技术,2008,25(3):90-91.
    [146]R. Sebastia'n,R.Pen-a Alzola. Flywheel energy storage systems:Review and sim-ulation for an isolated wind power system. Renewable and Sustainable Energy Reviews,2012,16:6803-6813.
    [147]R. Arghandeh, M. Pipattanasomporn and S. Rahman. Flywheel Energy Storage Systems for Ride-through. IEEE TRANSACTIONS ON SMART GRID,2012,3 (4):1955-1962.
    [148]Gaston Orlando, Marcelo Gustavo Molina and Pedro Enrique Mercado. Improving the Integration of Wind Power Generation. IEEE TRANSACTIONS ON SMART GRID,2012,3(4):1945-1953.
    [149]郝建强,张建.IR2110在电机驱动中的应用[J].微电机,2007,41(6):51-52.
    [150]刘瑶,周青山,李光旭,王晓明,懂玉林.电动机的DSC控制——微芯公司dsPIC应用[M].北京:北京航空航天大学出版社,2009.
    [151]Microchip Technology Inc. dsPIC30F Family Reference Manual.2006.
    [152]王翔,郝玉福,杨玺.光电编码器输出信号调理电路的设计[J].伺服控制,2010,(12):70-71.
    [153]祝龙记,刘辉.三相UPS电源锁相与换相技术的研究[J].安徽理工大学学报(自然科学版),2007,27(4):29-32.
    [154]Xinggui Wang, Bing Zhang,Xiaoying, Xiaojing Sun.Application of Flywheel Battery in Mobile Power Station[C].20113rd International Conference on Compu-ter and Automation Engineering.2011,V3:85-88.
    [155]Xiao Jing Sun, Xing Gui Wang and Chun Ning Wang. The Research and Applica-tion of the Internal Combustion Engine Power Plant--Rotary UPS Monitoring Sys-tems[C]. Advanced Materials Research,2011,330:2207-2210.
    [156]SIEMENS.SIMATIC S7-200 PLC System Manal.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700