用户名: 密码: 验证码:
CIGS薄膜太阳能电池材料及器件模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能是一种重要的可再生清洁能源,取之不尽,用之不竭,没有环境污染,有诱人的应用前景。CIGS薄膜材料是一种理想的太阳能光电材料,预计到2018年CIGS太阳能电池将占据光伏产业40%以上的份额。然而,影响CIGS薄膜太阳能电池规模化应用的主要因素是其材料含剧毒元素Cd及稀散元素In、Ga和Se。减少有毒和稀散元素的使用并找寻替代品,改善CIGS材料的光伏性能,正是本论文研究的重点所在。
     本文主要采用第一性原理计算、原子模拟和器件模拟等手段,对CIGS薄膜太阳能电池的吸光层和缓冲层材料进行了系统地理论计算研究,主要结果如下:
     1)采用第一性原理计算的方法研究了S掺杂对CuInSe2光电性质的影响。计算结果表明,CuIn(Se1-xSx)2的晶格参数随S浓度x呈现线性变化:a(x)=-0.2828x+5.8786A, c(x)=-0.5692x+11.834A. CuIn(Se1-xSx)2的复介电函数、折射指数、消光系数和吸收系数随S的加入变化不大。当光子能量在4-6eV之间时,随着S浓度的降低,介电函数的虚部红移。当x从0增加到1时,CuIn(Se1-xSx)2的静介电常数从7减小到5,光学带隙从1.07eV增加到1.384eV。
     2)采用器件模拟方法研究了缺陷态对理想CIGS薄膜太阳能电池器件宏观性能的影响。重点研究了缺陷态在带隙中出现的位置以及密度连续变化时,电池的开路电压、短路电流、填充因子和光电转换效率等四项性能指标的变化情况。结果发现:缺陷态总是不利于CIGS太阳能电池的综合性能,它减小开路电压,降低短路电流。但是,当CIGS中缺陷态密度小于1014cm-3时或CdS中小于1018cm-3时,缺陷态的不利影响则很小。当缺陷态位于带隙中央时,危害更大。此外,还研究了温度效应、吸收层和缓冲层材料的厚度效应,发现工作温度在170K时CIGS太阳能电池具有最佳的综合性能,而2μmm厚的CIGS吸光层就足以使电池表现出优异的性能。
     3)从光电性质的角度系统探究以Zn取代缓冲层CdS中剧毒元素Cd的可能性与可行性,采用第一性原理计算方法,研究了闪锌矿Cd1-xZnxS化合物的晶体结构和光电性质。计算了x=0、0.25、0.50、0.75、1.0下的晶体结构、光学性质(反射率、吸收系数、折射指数、介电函数)和电学性质(能带结构、电子态密度等)。随着掺杂浓度x的增加,晶格常数从最先的5.91A减小到后来的5.409A;随着掺杂浓度x的增加,Cd1-xZnxS化合物-直为直接宽禁带半导体,并且带隙宽度在逐渐增大,即从1.15eV增加到2.22eV。
     4)采用原子模拟技术(基于晶格动力学方法和玻恩核-壳经典势参数模型),系统研究了闪锌矿结构Cd1-xZnxS (x=0,0.25,0.5,0.75)在不同温度和压力下的晶格结构、力学和热学性质。计算了不同Zn掺杂浓度时的弹性模量、声子态密度、热容、热膨胀系数、格林艾森常数和德拜温度。结果表明:Cd1-xZnxS的晶格常数随掺杂浓度x的递增单调递减。随温度升高,无论是定容热容还是热膨胀系数都逐渐增大并趋于饱和;在某一温度时,二者都随Zn掺杂浓度的增加而略有增加。随掺杂浓度x从0增大到1,0K温度时,Cd1-xZnxS的格林艾森常数从0.78增加到0.94,而德拜温度最小值从约197K增大到约203K。一些实验或模拟结果与我们的数据相符。期望系统的原子模拟研究结果将有助于理解该材料的成分-性能相关性,同时也有助于设计CuInSe2太阳能薄膜电池具有合适热匹配的窗口层材料。同时,我们还简要计算了Ga掺杂CuInSe2的热学性质。
     5)研究了纤锌矿ZnO1-xSx化合物的晶体结构和光电性质。计算了ZnO1-xSx在掺杂浓度分别为x=0、0.25、0.50、0.75、1.0下的晶体结构、光学性质(反射率、吸收系数、折射指数、介电函数)和电学性质(能带结构、电子态密度等);获得掺杂浓度对ZnO1-xSx晶体结构、光学性质和电学性质的影响规律。ZnO中一定浓度的硫掺杂,导致带隙宽度变窄,而晶格常数随掺杂基本呈线性变化。就目前制备铜铟镓硒(CIGS)薄膜太阳能电池普遍使用CdS缓冲层而言,ZnO1-xSx具有与CdS类似的电子结构,但光学特性上高频特性有明显改善。
Solar energy is a renewable clean energy, which is inexhaustible without pollution to the environment and has attractive prospects. CuInGaSe2(CIGS) thin film solar cell material is a kind of ideal solar photoelectric materials. It is expected that CIGS solar cells will occupy more than40%share of the photovoltaic industry in2018. However, the main factors hindering CIGS thin film solar cell usage is the application of mostly toxic elements Cd and rare-precious elements In, Ga and Se. The main purposes of this thesis are to reduce the usage of toxic and rare-precious elements, to find their alternatives, and to improve the photovoltaic properties of CIGS solar cells.
     In this thesis, we used the first principle calculation, atomic simulatin and divice simulation to systemically investigate absorption layer materials and buffer layer materials of CIGS thin film solar cells. The main results are as follows.
     1) We studied the optical properties of S-doped CuInSe2using the first principle method within HSE06exchange-correlation functional. The lattice constant of CuIn(SxSe1_x)2vary linearly with the composition x as:a(x)=-0.2828*+5.8786A, c(x)=-0.5692x+11.834A. The complex dielectric functions, the refractive indices n, the extinction coefficients k and the absorption coefficient a(co) of S-doped CuInSe2vary very slightly. When the photon energy is less than4eV and larger than6eV, the imaginary part moves to the infrared region with the decrease of sulphur concentration. As x increases from0to1, the static dielectric constant of CuIn(SASe1-x)2decreases from7to5, the optical band gap increases from1.07eV to1.384eV.
     2) Device modeling had been theoretically carried out to investigate the effects of defect states on the performance of ideal CIGS thin film solar cells. The variety of defect states (location in the band gap and densities) in absorption layer CIGS and that in buffer layer CdS are examined. The performance parameters:open-circuit voltage, short-circuit current, fill-factor and photoelectric conversion efficiency for different defect states were quantitatively analyzed. We found that defect states always do harm to the performance of CIGS solar cells, but when defect state density is less than1014cm-3in CIGS or that is less than1018cm-3in CdS, defects states have little effects on the performances. When defect states are located in the middle of the band gap, they are more harmful. The effects of temperature and thickness are also considered. We found that CIGS solar cells have the optimal performance at about170K and that2um of CIGS is enough for solar light absorption.
     3) We studied the Cd1-xZnxS sphalerite crystal structure and optical properties. We calculated electronic and optical properties of Cd1-xZnxS at the doping concentration x=0,0.25,0.50,0.75,1.0. Optical properties (reflectivity, absorption coefficient, refractive index, dielectric function) and the electrical properties (band structure, electron density, etc.) are obtained including Zn-doing effects on the crystal structure. With the increase of doping concentration x, the lattice parameter reduces from5.91A to5.409A; as a direct wide band gap semiconductor, its band gap increased from1.15eV to2.22eV.
     4) Classical atomistic simulations based on lattice dynamics theory and Born core-shell model were performed to systematically study the crystal structure and thermal properties of Cd1-xZnxS (x=0,0.25,0.5,0.75and1). We calculated thermal properties such as the coefficient of thermal expansion, Gruneisen parameter, phonon density of states, specific heat, and Debye temperature at different temperatures and for different Zn-doping concentrations. It is found that the lattice constant decreases as Zn-doping concentration increases. Both the specific heat of constant volume and the coefficient of thermal expansion of Cd1-xZnxS increase and saturate as the temperature increases, and they also slightly inrease with the increasing of Zn-doping concentrations. With x increases from0to1, Gruneisen parameter inreases from0.78to0.94at0K, and the minimum of Debye temperature increases from197K to203K at70K. Some simulation results correspond with experimental data, and we anticipate our results will be helpful to select the base on which Cd1-xZnxS materials are prepared. We also calculated the thermal properties of Ga-dope CuInSe2.
     5) We studied the ZnO1-xSx sphalerite crystal structure and optical properties. We calculated the crystal structure, optical properties (reflectivity, absorption coefficient, refractive index, dielectric function) and the electrical Properties (band structure, electron density, etc.) of ZnO1_xSx (x=0,0.25,0.50,0.75,1.0). The impact of S doping concentration in ZnO1-xSx on the crystal structure, optical properties and electrical properties were obtained. It is shown that the zinc blend type compounds CdS and ZnO1-xSx are both direct band gap materials; the lattice constants increase with the quantity of S doping ZnO, the ZnO1-xSx has a wider band gap than CdS and can be expected to provide a high quality buffer layer for high efficiency (CIGSe) solar cells.
引文
[1]蒋方丹.铜铟硒薄膜太阳能电池材料的制备与若干理论计算研究:[清华大学博士学位论文].北京:清华大学,2007,1-65
    [2]Repins I, Contreras M A, Egaas B, et al. Progress in Photovoltaics. Research and Applications,2008,16:235-237
    [3]德国ZSW研究所.CIGS薄膜太阳能电池新转换效率达20.3%.www.cnecc.org.cn/dispArticle.asp?id=6657,2010-8-26
    [4]MiaSole公司CIGS薄膜光伏光电转换效率接近硅基模块效率www.in-en.com/newenergy/html/newenergy-1026102622853233.html,2010-12-13
    [5]杨静,马鸿文.黄铜矿型CuInSe2光电材料的研究现状及展望.材料导报,1997,11(2):39-42
    [6]Kodigala S R, Thin Films and Nanostructures. Cu(In1_xGax)Se2 based Thin Film Cells.1. Oxford:Academic Press,2010,1-300
    [7]Perng D C, Chen J W, Wu C J. Formation of CuInAlSe2 film with double graded band gap using Mo(Al) back contact. Sol. Energy Mater. Sol. Cells,2011,95(1):257-260
    [8]Yoshimasa T, Kazunoriet S, Hiroshi K Y. Materials Design of Spinodal Nanodecomposition in CuIn1_xGaxSe2 for High-Efficiency Solar Energy Conversion. Appled Physics Express,2010,3:101201-101203
    [9]Kazmerski L L, White F R and Morgan G K. Thin-film CuInSe2/CdS heterojunction solar cells. Appl Phys Lett,1976,29:268-270
    [10]Kodigala S R, Thin Films and Nanostructures. Cu (In1-xGax)Se2 based Thin Film Cells.1. Oxford:Academic Press,2010,500-680
    [11]Hashimoto Y, Satoh T, Minemoto T, Shimakawa S and Negami T.2001 Proc. of 17th European Conf. on Photovoltaic Solar Energy (Munich, Germany) p.1225
    [12]Orgassa K, Nguyen Q, Kotschau I M, Rau U, Schock H W and Werner J H.2001 Proc. of 17th European Conf. onPhotovoltaic Solar Energy (Munich, Germany) p.1039
    [13]Canava B, Vigneron J, Etcheberry A, Guimard D, Grand P P, Guillemoles J F, Lincot D, Ould Saad Hamatly S, Djebbour Z and Mencaraglia D. Thin Solid Films,2003, 431-432:289
    [14]Dharmadasa I M, Samantilleke A P, Young J and Chaure N B. Semicond. Sci. Technol. 2002,17:1238
    [15]Dharmadasa I M, Samantilleke A P, Young J and Chaure N B. Proc. of 3rd World PV Conf. (Osaka, Japan,11-18 May 2003),2003, p.547
    [16]Dharmadasa I M, Bunning J D, Samantilleke A P and Shen T. Sol. Energy Mater. Sol. Cells,2005,86:373
    [17]Neumann H, Horig W, Tomlinson R D and Avgerinos N. Cryst. Res. Technol.,2006,21: 805
    [18]Champness C H, Shih I and Du H. Thin Solid Films,2003,431-432:68
    [19]Ahmed E, Tomlinson R D, Pilkington R D, Hill A E, Ahmed W, Ali N and Hassan I U. Thin Solid Films,1998,335:54
    [20]Lundberg O, Bodegard M, Malmstrom J and Stolt L. Prog. Photovolt. Res. Appl.,2003, 11:77
    [21]Lincot D et al. Sol. Energy,2004,77:725
    [22]Friedfeld R, Raffaelle R P and Mantovani J G. Sol.Energy Mater. Sol. Cells,1999,58: 375
    [23]Shirakata S, Kannaka Y, Hasegawa H, Kariya T and Isomura S. Japan. J. Appl. Phys., 1999,38:4997
    [24]Kushiya K, Tachiyuki M, Nagoya Y, Fujimaki A, Sang B, Okumura D, Satoh M and Yamase O. Sol. EnergyMeter. Sol. Cells,2001,67:11
    [25]Adurodija F O, Kim S K, Kim S D, Song J S, Yoon K H and Ahn B T. Sol. Energy Meter. Sol. Cells,1998,55:225
    [26]Niemegeers A, Burgelman M, Herberholz R, Rau U,Hariskos D and Schock H W. Prog. Photovolt., Res.Appl.,1998,6:407
    [27]Chaure N B, Young J, Samantilleke A P and Dharmadasa I M. Sol. Energy Mater. Sol. Cells,2004,81:125
    [28]Chaure N B, Samantilleke A P, Burton R P, Young J and Dharmadasa I M. Thin Solid Films,2005,472:212
    [29]Dharmadasa I M, Chaure N B, Tolan G J and Samantilleke A P. J. Electrochem. Soc, 2007,154:H466
    [30]Dharmadasa I M, Chaure N B, Young J and Samantilleke A P. UK Patent GB,2005, 2400725
    [31]Bandyopadhyaya S, Roy S, Chaudhuri S, et al. CuIn(SxSe1-x)2 films prepared by graphite box annealing of In/Cu stacked elemental layers. Vacuum,2001,62:61-73
    [32]Eisener B, Wolf D, Muller G. Influence of sulphur on the electrical and optical properties of p-type CuIn(SxSe1-x)2 single crystals. Thin Solid Films,2000,361-362:126-129
    [33]Zeaiter K, Llinares C. Optical properties of the quaternary alloy system CuIn(SxSe1_x)2 investigated by spectroscopic ellipsometry. Journal of Applied Physics,1999,86: 6822-6825
    [34]Wang G, Cheng G, Hu B, et al. Preparation of Culn(SxSe1-x)2 thin films with tunable band gap by controlling sulfurization temperature of CuInSe2. Journal of Materials Research, 2010,25:2426-2429
    [35]Sheppard C J, Alberts V, Botha J R. Structural and optical characterization of single-phase CuIn(Se,S)2 thin films deposited using a two-step process. Physics Status Solidi (c),2008,5:641-644
    [36]Chen X, Zhao Y, Yao R, et al. Impact of lattice volume on the band gap broadening of isovalent S-Doped CuInSe2. Journal of Semiconductors,2008,29:1883-1886
    [37]刘元之.CIS类薄膜光伏电池吸收层及缓冲层材料的制备与研究:[大连交通大学硕士学位论文].大连:大连交通大学,2008,50-75
    [38]党向瑜.铜铟镓硒太阳电池中ZnS缓冲层的优化制备研究:[南开大学硕士学位论文].天津:南开大学,2010,43-60
    [39]蒋方丹,冯嘉猷.铜铟硒薄膜太阳能电池的几个基础问题研究.物理,2006,35:1-4
    [40]余斌,徐飞,马忠权等.铜铟硒与铜铟硫太阳能电池中有序缺陷化合物的性质及对能带偏移的影响.上海大学学报(自然科学版),2012,18:6-9
    [41]曹章轶,徐传明,王小顺等.迎接光伏发电新时代.见:第十届中国太阳能光伏会议论文集.浙江:浙江大学出版社,2008,5-8
    [42]刘琪,冒国兵,敖建平.苹果酸辅助法水热合成ZnS:Mn的相态及其远红外吸收光谱的研究.功能材料,2007,38:1-4
    [43]Yeh Y-M, Chen H, Liao C H, et al. Characterizations of ZnS/CuInS2 Film Fabricated by Electrochemical Deposition Process for Solar Cell Devices. Journal of New Materials for Electrochemical Systems,2012,15:4-7
    [44]Kushiya K, Tachiyuki M, Kase T, et al. Fabrication of graded band-gap Cu(InGa)Se2 thin-film mini-modules with a Zn(O,S,OH)x buffer layer. Sol. Energy Mater. Sol. Cells, 1997,49:277-290
    [45]Spiering S, Hariskos D, Powalla M, et al. CD-free Cu(In,Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD. Thin Solid Films,2003,359:431-432
    [46]Jeong W J, Kim S K, Park G C. Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell. Thin Solid Films,2006,180,506-507: 180-183
    [47]Lin C C, Chiang M C, Chen Y W. Temperature dependence of Fluorine-doped tin oxide films produced by ultrasonic spray pyrolysis. Thin Solid Films,2009,518:1241-1244
    [48]Raghunath R S, Mallik A K, Jawalekar S R. UV absorption studies of undoped and fluorine-doped tin oxide films. Thin Solid Films,1986,143:113-118
    [49]Gruhn T. Comparitive ab initio study of half-Heusler compounds for optoelectronic applications. Phys. Rev. B,2010,82:125210-125220
    [50]Delsol T, Samantilleke A P, Chaure N B, Young J,Gardiner P H, Simmonds M, Kushiya K and Dharmadasa I M. Sol. Energy Mater. Sol. Cells,2004,82:587
    [51]Contreras M A, Ramanathan K, Abushama J, Hasoon F,Young D L, Egaas B and Noufi R. Prog. Photovolt.,Res. Appl.,2005,13:209
    [52]Dharmadasa I M, Burton R P and Simmonds M. Sol.Energy Mater. Sol. Cells,2006,90: 2191
    [53]Dharmadasa I M, Chaure N B, Islam O, Wellings J, Maddock T and Gee I. Proc. of 21st EU PhotovoltaicConf. (Dresden, Germany),2006, p.1941
    [54]Sze S M and Gibbons G. Avalanche breakdown voltagesof abrupt and linearly graded p-n junctions in Ge, Si, GaAsand GaP. Appl. Phys. Lett.,1966,8:111
    [55]Ott N, Hanna G, Rau U, Werner J H and Strunk H P. J. Phys.:Condens. Matter,2004,16: S85
    [56]Liska P, Thampi R, Graetzel M, Bremaud D, Rudmann D,Upadhaya H and Tiwari A. Nanocrystallinedye-sensitized solar cell/copper indium gallium selenidethin-film tandem showing greater than 15% conversionefficiency Appl. Phys. Lett.,2006,88:203013
    [57]Raud S and Nicolet M A. Thin Solid Films,1991,201:361
    [58]Wada T, Kohara N, Nishiwaki S and Negami T. Thin Solid Films,2001,387:118
    [59]Wurz R, Marron D F, Meeder A, Rumberg A, Babu S M, Schedel-Niedrig T, Bloeck U, Schubert-Bischoff P and Lux-Steiner M C. Thin Solid Films,2003,431-432:398
    [60]黄昆(原著),韩汝奇(改编).固体物理学.北京:高等教育出版社,1988.49-55
    [61]Born M and Kornfeld H, Uber den zusammenhang des diplmoments und der sublimationswarmeder halogenwasserstoffe. Phys. Zeit.1923,24:121-124
    [62]Born M, Handbuch der Physik, Kapitel 4, Springer, Berlin,1933
    [63]Allen M P and Tildesley D J, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987
    [64]吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社,2002.298~300
    [65]Bovornratanaraks T, Saengsuwan V, Yoodee K, et al. High pressure orthorhombic structure of CuInSe2. Phys. Condens. Matter,2010,22:355801-355822
    [66]Sheppard C J, Alberts V, Botha J R. Structural and optical characterization of single-phase CuIn(Se,S)2 thin films deposited using a two-step process. Physica Status Solidi(c),2008,5:641-644
    [67]Bandyopadhyaya S, Roy S, Chaudhuri S, et al. CuIn(SxSe1-x)2 films prepared by graphite box annealing of In/Cu stacked elemental layers. Vacuum,2001,62:61-73
    [68]Alonso M I, Wakita K, Pascual J, et al., Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2. Physical Review B,2001,63:075203
    [69]Kawashima T, Adachi S, Miyake H, et al., Optical constants of CuGaSe2 and CuInSe2. Journal of Applied Physics,1998,84:5202-5209
    [70]Bottomley D J, Mito A, Niki S, et al., Linear and nonlinear optical properties of CuInSe2 and CuGaSe2 epitaxial thin films on GaAs (001). Journal of Applied Physics,1997,82: 817-824
    [71]Maeda T, Takeichi T and Wada T, Systematic studies on electronic structures of CuInSe2 and the other chalcopyrite related compounds by first principles calculations. physica status solidi (a),2006,203:2634-2638
    [72]Tani Y, Sato K and Katayama-Yoshida H, First-principles materials design of CuInSe2-based high-efficiency photovoltaic solar cells. Physica B:Condensed Matter, 2012,407:3056-3058
    [73]Paier J, Asahi R, Nagoya A, et al., Cu2ZnSnS4 as a potential photovoltaic material:A hybrid Hartree-Fock density functional theory study. Physical Review B,2009,79: 115126
    [74]Dimmler B, Powalla M and Schaeffler R. CIS solar modules pilot production at Wuerth Solar. In:Conference Record of the Thirty-first IEE,2005,189-192
    [75]Cao J, Qu S, Liu K, et al. Effect of bath temperature on the properties of CuInxGa1_xSe2 thin films grown by the electrodeposition technique. Journal of Semiconductors,2010, 31:083003-083006
    [76]Song J, Li S S, Huang C H, et al. Device modeling and simulation of the performance of Cu(In1-xGax)Se2 solar cells. Solid-State Electronics,2004,48:73-76
    [77]Bouloufa A, Djessas K, Zegadi A. Numerical simulation of CuInxGa1-xSe2 solar cells by AMPS-ID. Thin Solid Films,2007,515:6285-6287
    [78]Novikov G F, Rabenok E V, Jeng M J, et al. The study of loss kinetics of current carriers in copper-indium-gallium selenide by microwave photoconductivity method. Journal of Renewable Sustainable Energy,2012,4:011604-011646
    [79]Ishizuka S, Yamada A, Fons P, et al. Flexible Cu(In,Ga)Se2 solar cells fabricated using alkali-silicate glass thin layers as an alkali source material. Journal Renewable Sustainable Energy,2009,1:013102-013105
    [80]Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature,2012,488:294-298
    [81]Ramanathan K, Contreras M A, Perkins C L, et al. Properties of 19.2%efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Progress in Photovoltaics:Research and Applications,2003,11:225-228
    [82]Lin A G, Ding J N, Yuan N Y, et al. Analysis of the p+/p window layer of thin film solar cells by simulation. Journal of Semiconductors,2012,33:023002-023004
    [83]Datta A, Damon-Lacoste J, Cabarrocas P R, et al. Defect states on the surfaces of a P-type c-Si wafer and how they control the performance of a double heterojunction solar cell. Solar Energy Materials and Solar Cells,2008,92:150015-150017
    [84]Datta A, Damon-Lacoste J, Nath M, et al. Dominant role of interfaces in solar cells with N-a-Si:H/P-c-Si heteroj unction with intrinsic thin layer. Materials Science and Engineering:B,2009,159:10-13
    [85]Wei S H, Zunger A. Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys. Journal of Applied Physics,1995,78:3846-3849
    [86]Schroeder D J, Hernandez J L, Rockett A A. Point defects and hole transport in epitaxial CuIn1-xGaxSe2. Ternary and Multinary Compounds:Proceedings of the 11th International Conference on Ternary and Multinary Compounds,1999, p.749-752
    [87]Hanna G, Jasenek A, Rau U, et al. Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2. Thin Solid Films,2001,387:71-74
    [88]Tang F L, Zhu Z X, Xue H T, et al. Optical properties of Al-doped CuInSe2 from the first principle calculation. Physica B,2012,407:4814-4817
    [89]Xue H T, Lu W J, Zhu Z X, et al. Al-doped CuInSe2:An ab initio study of structural and electronic properties of a photovoltaic material. Advanced Materials Research,2012, 512-515:1543-1550
    [90]Xue H T, Tang F L, Lu W J, et al. First-principles investigation of structural phase transitions and electronic properties of CuGaSe2 up to 100 Gpa. Computational Materials Science,2013,67:21-28
    [91]Wan F C, Tang F L, Zhu Z X, et al. First-princip les investig ation of the optical properties of CuIn(SxSe1-x)2. Materials Science in Semiconductor Processing,2013,16: 1422-1429
    [92]Hinuma Y, Oba F, Kumagai Y, et al. Band offsets of CuInSe2/CdS and CuInSe2/ZnS (110) interfaces:A hybrid density functional theory study. Physical Review B,2013,88: 035305-035310
    [93]Dharmadasa I M. Fermi level pinning and effects on CuInGaSe2-based thin-film solar cells. Semiconductor Science and Technology,2009,24:055016-055020
    [94]Vaynzo Y, Bakulin A A, Gelinas S, et al. Direct observation of photoinduced bound charge-pair states at an organic-Inorganic semiconductor interface. Physical Review Letter,2012,108:246605-246610
    [95]Zhang S B, Wei S H, Zunger A. Stabilization of ternary compounds via ordered arrays of defect pairs. Physical Review Letter,1997,78:4059-4063
    [96]Zhang S B, Wei S H, Zunger A. Defect physics of the CuInSe2 chalcopyrite semiconductor. Physical Review B,1998,57:9642-9650
    [97]Sugiyama M, Nakai R, Nakanishi H, et al. Interface Fermi level pinning in a Cu/p-CuGaS2 Schottky diode. Journal of Physics and Chemistry of Solids,2003,64: 1787-1792
    [98]Dharmadasa I M, Bunning J D, Samantilleke A P, et al. Effects of multi-defects at metal/semiconductor interfaces on electrical properties and their influence on stability and life time of thin film solar cells. Solar Energy Materials and Solar Cells,2005,86: 373-380
    [99]Dullweber T, Hanna G, Shams-Kolahi W, et al. Study of the effect of gallium grading in Cu(In,Ga)Se2. Thin Solid Films,2000,361:478-482
    [100]Dullweber T, Hanna G, Rau U, et al. A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors. Solar Energy Materials and Solar Cells,2001,67:145-150
    [101]Zhu H, Kalkan A K, Hou J, et al. Application of AMPS-ID for solar cell simulation. AIP Conference Proceedings,1999,462:309-312
    [102]NREL. Solar Spectral Irradiance:Air Mass1.5. http://rredc.nrel.gov/solar/spectra/am1.5
    [103]Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys. Rev.B,1964,136:864-871
    [104]Huang H C, Gilmer G H, Rubia T D. An atomistic simulator for thin film deposition in three dimensions. J. Appl. Phys,1998,84:3636-3428
    [105]Enrifquez J P, Mathew X. Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films. Solar Energy Materials and Solar Cell,2003,76:313-322
    [106]姜德生,李鸿辉,余海湖等.CdS纳米颗粒的制备及其光谱研究.武汉理工大学学报,2005,27(1):7-9
    [107]唐文华,张艾飞,邹洪涛等.CdS纳米材料合成方法研究进展.贵州师范大学学报(自然科学报),2006,24(2):119-122
    [108]Perdew J, Wang Y. Accurate and simple density functional for the electronic exchange Energy Generalized gradient. Phys. Rev. B,986,33:8800-8802
    [109]Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett,1996,77:3865-3868
    [110]应杏娟,张兴德,郝志武.第一性原理研究氧化锌晶体的电子结构和光学性质.人工晶体报,2007,36(4):786-787
    [111]张利民,耿兴国,李金山,等.YBa2Cu307能隙及低温电子比热容的第一性原理计算.稀有金属材料与工程,2008,37(2):215-218
    [112]潘勇,管伟明,张昆华,等.Pt-Zr合金在高氧氛围下氧化机制的第一性原理研究.稀有金属材料与工程,2009,38(2):266-270
    [113]高智勇,谭昌龙,李民,等.Mg97Zn1Y2合金的摩擦磨损性能研究.稀有金属材料与工程,2009,38(8):1426-1428
    [114]管伟明,潘勇,张昆,等.Ag-Ni复合材料界面的第一性原理研究.稀有金属材料与工程,2010,40(8):1339-1343
    [115]刘显坤,刘颖,郑洲,等.Co掺杂镧镍合金及氢化物的第一性原理研究.稀有金属材料与工程,2010,40(8):1348-1358
    [116]潘勇,管伟明,陈松,等.Pt(100)/ZrO2(100)界面性质的第一性原理.稀有金属材料与工程,2011,40(1):80-84
    [117]Ballentyne D W G, Ray B. Electroluminescence and crystal structure in the alloys system ZnS-CdS. Physica,1961,27:337-341
    [118]周朝晖,郭烈锦.Cd1-xZnxS能带第一性原理计算.西安交通大学学报,2008,42(2):248-251
    [119]Chen X R, Li X F, Cai L C, et al. Pressure induced phase transition in ZnS. Solid State Commun,2006,139:246-249
    [120]Chen X R, Hu C E, Zeng Z Y, Cai L C et al. First-Principles Calculations for Elastic Properties of ZnS under Pressure. Chin Phys Lett,2008,25:1064
    [121]Martinez I, Durandurdu M. Phys. Condens. Matter,2006,18:9483-9501
    [122]Chu H Y, Liu Z X, Qiu G L, et al. First-principles study of structures and electronic properties of cadmium sulfide clusters. Chin Phys B,2008,17:2478-2485
    [123]Xiao H Y, Li D F, Li B L, Dong H N. Electronic structure of twinned ZnS nanowires. Chin Phys B,2011,20:067101
    [124]Wen B, Melnik R V N. First principles molecular dynamics study of CdS nanostructure temperature-dependent phase stability. Appl Phys Lett,2008,92:261911-261930
    [125]Jaffe J E, Pandey R, Seel M J. Ab initio high-pressure structural and electronic properties of ZnS. Phys Rev B,1993,47:6229-6303
    [126]Christensen N E, Gorczyca I. Electronic structure of ZnS/ZnSe superlattices. Phys Rev B,1991,44:1707-1716
    [127]Wright K, Watson G W, Parker S C, et al. Simulation of the structure and stability of sphalerite (ZnS) surfaces. American Mineralogist,1998,83:141-146
    [128]Raji P, Ramachandran K, Sanjeeviraja C. Thermal and optical properties of Cd1-xZnxS thin films by photoacoustics. Materials Science,2006,41:5907-5914
    [129]Raji P, Sanjeeviraja C, Ramachandran K, et al. Thermal and structural properties of spray pyrolysed CdS thin film. Bulletin Materials Science,2005,28:233-238
    [130]Kodigala S R, Thin Films and Nanostructures. Cu (In1-xGax)Se2 based Thin Film Cells. 1. Oxford:Academic Press,2010,200-400
    [131]Neumann H, Jochym P T, Parlinski K, et al. Phys. Rev. B,2007,75:224301-224308
    [132]楚合营,刘朝霞,邱雨,等.S掺杂纤锌矿ZnO晶体结构及电子性质的第一性原理研究.塔里木大学学报,2009,21(2):48-52
    [133]张海霞,楚兴丽,王天兴CdS,ZnO1-xSx电子结构和光学特性的第一性原理研究.科技导报,2011,29(20):35-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700