用户名: 密码: 验证码:
换流站关键电气设备过电压分析及绝缘故障检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济实力和人民生活水平的不断提高,社会对能源特别是电能的依赖程度越来越强。换流站作为交直流输电的主要转换场所,其最关键的电气设备是站用变压器和电力电容器,任一设备故障都有可能引发大面积停电事故。我国“十二五”规划中要求电力部门应及时总结电力设备故障经验教训,完善电力标准体系,合理提高设防标准,保障电力供应安全可靠。本文以换流站关键电气设备为研究对象,旨在探明站用变压器、电力电容器的过电压机理及故障特征,改进绝缘故障检测及寿命评估方法,研究成果具有重要的学术价值和工程意义。
     建立了换流站“变压器——电容式电压互感器——断路器”联合仿真模型,研究了换流站变压器铁磁谐振过电压过程,评估了站用变压器励磁特性拐点、站用变压器容量等对铁磁谐振的影响;比较了短时投入阻尼负荷大小、改变断路器均压电容、改变电容式电压互感器主电容大小等抑制谐振措施的效果,提出了可行的消谐方案;通过对称分量法,给出了变压器发生匝间短路故障的等效电路和序网图,进而得到内部故障的电压与电流分布,可以发现各绕组的电压分布发生变化。结果表明:当断路器在不同时刻断开时,谐振过电压震荡持续时间和过电压峰值均有很大差异,均压电容与站用变励磁阻抗形成的串联谐振回路,使铁磁谐振过程呈现与工频同步的特征;增大励磁特性拐点、增大站用变压器容量、降低断路器断口均压电容、短时投入阻尼负荷等方法有助于抑制铁磁谐振过电压,但中性点增加电阻对抑制铁磁谐振不起作用;变压器内部故障主要是由于绝缘薄弱环节使得场强集中所致。
     通过现场运行数据的长期统计分析,研究了电力电容器内部元件故障引起的过电压分布特性,探讨了电容器绝缘不受过电压危害的内部故障元件数量极限;建立了电容器内部元件故障击穿仿真模型,分析了击穿元件的等效电路参数以及故障时刻电容器两端的电压对击穿放电电流的影响;计算了无功补偿电容器组不平衡电流保护定值,并针对电容器的制造工艺和运行维护,提出了具体的建议。结果表明:当电容器组发生单相故障时,不论该相电容器内部有多少个串联元件发生贯穿性击穿,在其他两相电容器上不会产生危险的过电压;等效电路中电感值和电阻值与放电电流近似成反比关系,母线电压过高将直接影响电容器的使用寿命;电力电容器的故障防范需从质量和结构两个方面改进,调整后的不平衡电流整定值可保证不平衡电流保护的有效动作。
     针对高海拔、低气压的特殊环境,改进了换流变局部放电试验技术,提出了抗干扰措施;针对实际运营的站用变压器,改进了电声联合检测的加压方法,验证了方法的准确性;根据变压器的顶层和底层油温升模型,建立了专家分析系统,预测并监测了变压器的油温、热点温度及寿命损失。
With the continuous development of the economic strength and people's living standard in China, the dependent degree of the society on energy, especially the power energy, is higher and higher. The converter station is the main conversion place of the AC and DC transmission. The key electrical equipments of converter station are the transformers and power capacitors. Any equipment fault may cause the large area blackout. According to the requirements of "The Twelfth Five-Year Plan" in China, the power department should sum up the experiences and lessons of power equipment fault. At the same time, the electric power standard system and fortification standard should be improved reasonably to guarantee the power supply safe and reliable. The key electrical equipment in the converter station was the study object in this paper. The overvoltage mechanism and fault feature of transformer and power capacitor would be revealed. The insulation fault detection and lifetime prediction method would be improved. The research results were of important academic significance and engineering value.
     The simulation model of converter station which contains transformers, capacitor voltage transformers and breakers was established. The ferroresonance overvoltage of transformer in the converter station was studied. The effect of excitation characteristics inflection point and capacity of transformer on ferroresonance was evaluated. The main measures to restrain the resonance include changing short-term investment in damping load, grading capacitance of breaker and capacitance value of capacitor voltage transformer(CVT). And the restrain effects of these measures were compared in the paper. Feasible scheme to restrain the resonance was put forward. When inter-turn short-circuit fault of transformer occur, the equivalent circuit and sequence diagrams could be given according to symmetrical component method. Then the distribution of voltage and current of internal fault was got. The change of voltage distribution in the winding can be found. The results show that the duration time of the resonant voltage shock and the overvoltage spikes change obviously when the breaker is interrupted at different times. The series resonance circuit is formed by the grading capacitor and the excitation impedance of transformer. It leads that the ferromagnetic resonance process presents synchronized characteristics with power frequency. Increasing the inflection point of excitation characteristics, increasing the transformer capacity, reducing the grading capacitor of the breaker and short-term investment in damping load could help to restrain the ferroresonance overvoltage. However, series resistance in the neutral point of transformer has no effect on the inhibition of ferroresonance. Transformer internal fault is mainly due to the focused field resulted from insulating weak link.
     According to statistical analysis on the data of field operation for a long-term, the overvoltage distribution characteristic caused by the inner components fault of the power capacitor was studied. The number limit of inner fault components which could avoid insulation of capacitor destroyed by overvoltage was discussed. The breakdown simulation model of capacitor's inner components fault was established. The degree that equivalent circuit parameters of breakdown components and the voltage of capacitor's two ends influence on discharge current at fault time was analyzed. The protective set value of unbalanced current of the reactive power compensation capacitor bank was calculated. According to manufacturing technology and operation maintenance of capacitor, the suggestion was presented. The results show that dangerous over-voltage will not develop in the capacitors of the other two phases regardless of the number of series inner components which occur penetrating-breakdown when single-phase fault occurs in the capacitor bank. The value of inductance and resistance in the equivalent circuit varies approximately in inverse proportion to discharge current. The high bus voltage will directly affect the life of the capacitors. The techniques against fault about power capacitors need to be improved in terms of both the quality and structure. The adjusted set value of imbalance current could ensure the effective action of the imbalance current protection.
     Aiming at the special experiment of high altitude and low air pressure, the partial discharge testing techniques of converter transformer was improved. Anti-interference measures were put forward. For the practical transformers, the pressurized method of electro-acoustic detection was improved. Accuracy of the method was verified. According to the oil temperature rise model at the top and bottom of transformer, an expert analysis system was established. The system could predict and monitor the oil temperature, hot-spot temperature and life loss of transformer.
引文
[1]X.M.Liang, Z.H.Liu, S.W.Wang, et al. Planning of UHVDC transmission system in China[C]. Asia Pacific Region T&D Conference, Dalian, China,2005.
    [2]舒印彪,刘泽洪,高理迎,等.±800kV 6400MW特高压直流输电工程设计[J].电网技术,2006,30(1): 1-8.
    [3]哀清云.特高压直流输电技术现状及在我国的应用前景[J].电网技术,2005,29(14):1-3.
    [4]曾南超.高压直流输电在我国电网发展中的作用[J].高电压技术,2004,30(11):11-12.
    [5]何智江.发展中的中国高压直流输电事业[J].高压电器,2006,42(6):460-463.
    [6]喻新强.2003年以来国家电网公司直流输电系统运行情况总结[J].电网技术,2005,29(20):41-46.
    [7]邱仕义.电力设备可靠性维修[M].北京:中国电力出版社,2004.
    [8]巫世晶,向农.电力设备维修计划优化答理研究[J].电力建设,2004,25(2):48-51.
    [9]郭云鹏,黄民翔.输变电设备的检修策略[J].华东电力,2006,34(12):35-42.
    [10]陈维贤.内部过电压基础[M].北京:电子工业出版社,1981.
    [11]R.Don, Seveik, W.Charles. Experiences with ferroresonance problems on EHV equipment[C]. Houston Lighting Power Company, Alington Texas,1980.
    [12]D.Ray, Crane, W.George. Walsh, Large mill Power outages Caused by potential transformer ferroresonance [J]. IEEE Trans.on Industry Applications,1988,24(4):635-640.
    [13]路改强.220kV串联谐振过电压分析及对策[J].华中电力,2002,15(2):38-40.
    [14]王晓云.中性点直接接地系统铁磁谐振的数学仿真[D].北京:华北电力大学,2002.
    [15]代姚.配电网铁磁谐振及弧光接地过电压特征识别与抑制方法[D].重庆:重庆大学,2010.
    [16]余杰,周浩.以可靠性为中心的检修策略[J].高电压技术,2005,31(6):27-58.
    [17]刘渤华.对变压器状态检修的认识[J].变压器,2005,42(2):43-46.
    [18]张道乾,王思印.供电企业状态检修现状与展望[J].高电压技术,2006,32(1):117-118.
    [19]严璋.关于开发大容量密集型电力电容器[J].高电压技术,1994,20(1):27-29.
    [20]汪延宗.单台大容量全密封(箱式)并联电容器及其运行[J].高电压技术,1994,20(2):41-45.
    [21]周文俊,黄祥伟.蒋石峰,等.DSP多机控制高压无功自动补偿装置[J].高电压技术,2002,28(12):44-46.
    [22]谷定燮.我国500 kV输变电工程过电压设计方而存在的问题和改进措施[J].电力建设,2002,23(7):26-30.
    [23]黄燕艳,邓军波,钱鑫,等.750 kV输电系统接入静止无功补偿器的可行性[J].高电压技术,2002,28(5):38-39,48.
    [24]GA.Taylor, M.Rashidinejad, Y.H.Song, et al. Alogrithmic techniques for transition optimisal voltage and reactive power control[C]. Prorceedings of Power System Technology. Perth, WA, Australia, 2002:1660-1664.
    [25]陈庆祺,刘锦兰.35kV并联电容器组群爆故障分析及其零序差流保护的参数整定[J].电力系统保护与控制,2010,38(11):67-69.
    [26]赵智大.高电压技术[M].北京:中国电力出版社,1999.
    [27]刘凡.中性点直接地系统铁磁谐振过电压的混沌特性与控制及检测方法研究[D].重庆:重庆大学,2006.
    [28]H.S.Shott, H.A.Peterson, Criteria for neutral stability of wye-grounded-primary brokendelta-secondary transformer circuit[J]. Transaction on AIEE,1941,24(4):997-1002.
    [29]刘炳尧,储玉凤,黄迪威.石岭塘变电站10kV网络铁磁谐振的模拟试验研究[J].湖南电力,1997,(4):25-29.
    [30]Naidu, S.R.Souza, B.A. Analysis of ferroresonant circuits using a Newton-Raphson scheme[J]. IEEE Transactions on.Power Delivery,1997,12(4):1793-1798.
    [31]Van Craenenbroeck, Tvan Dommelen, D.Stuckens, C.Janssens, N.Monfils, P.Harmonic. Balance based bifurcation analysis of three-phase ferroresonance with full scale experimental validation[C]. Transmission and Distribution Conference.1999(2):11-16.
    [32]金宜民.应用增量描述函数理论计算断路器均压电容引起的铁磁谐振过电压[J].高电压技术,1987,(3):33-38.
    [33]李云阁,施围.应用解析法分析中性点接地系统中工频铁磁谐振一谐振判据和消谐措施[J].中国电机工程学报,2003,(9):142-146.
    [34]李云阁,施围.应用解析法分析中性点接地系统中的工频铁磁谐振一非线性电感工频励磁特性的求取[J].中国电机工程学报,2003,(10):94-98.
    [35]B.A.Mork,, D.L.Stuebm,. Application of nonlineardymamics and chaos to ferroresonance in distribution systems[J]. IEEE Trans.on Power Delivery,1994,9(2):1009-1017.
    [36]P.Sowa, J.Walczak, M.Pasko. Evaluation of the influence of the chaotic ferroresonance in transformer on the power system work conditions[C]. Electrotechnical Conference,1998(2): 1126-1130.
    [37]肖伟平,秦祖泽,龙卫华.模糊理论在电力系统铁磁谐振研究中的应用[J].继电器,2003(2):34-37.
    [38]黄丽云,张焰.电网铁磁谐振的产生机理与10kV配网铁磁谐振的小波分析[J].高压电器,2006,42(4):253-256.
    [39]黄丽云,张焰.铁磁谐振数值仿真及小波分析[J].供用电,2006,23(3):10-13.
    [40]代姚,司马文霞,孙才新,等.应用T-S模糊方法对铁磁谐振过电压的混沌抑制[J].高电压技术,2010,36(4):878-883.
    [41]王伟刚,阮江军,杜志叶,厉天威.小波分析在电力系统铁磁谐振研究中的应用[J].华中电力, 2004,17(6):10-14.
    [42]黄丽云.基于小波包分频特性的中性点不接地系统铁磁谐振检测[D].天津:天津大学,2007.
    [43]杨秋霞,宗伟,田壁元.基于小波分析的铁磁谐振检测[J].电网技术,2001(11):55-61.
    [44]杨秋霞.电力系统铁磁谐振的数字仿真及小波分析[D].北京:华北电力大学,2001.
    [45]Alona Ben-Tal, Vivien Kirk, Graeme Wak. Banded chaos in power systems[J]. IEEE Trans.on Power Delivery,2001,16(1):105-110.
    [46]T.Van Craenenbroeck, W.Michiels, D.Bifurcation. Analysis of three-phase ferroresonant oscillations in ungrounded power sytems[J]. IEEE Trans.on Power Delivery,1999,14(2):531-536.
    [47]Al-Anbarri, K.Ramanujam, R.Keertbiga, T.Kuppusamy. Analysis of nonlinear phenomena in MOV connected transformer[C]. IEE Proceedings on Generation, Transmission and Distribution,2001, 148(6):62-66.
    [48]S.Mozaffari, M.Sameti, A.C.Soudack. Effect of initial conditions on chaotic ferroresonance in power transformers[C]. IEE Proceedings on Generation, Transmission and Distribution 1997,144(5): 456-460.
    [49]B.A.T.A1 Zabawi, Emir, Z.Tong, Y.K. Chaos in ferroresonant wound voltage transformers:effect of core losses and universal circuit behavior[C]. IEE Proceedings on Science, Measurement and Technology,1998,145(1):39-43.
    [50]Iravani, M.R Cbaudbar, A.K, S.Giesbrecbt. Modeling and analysis guidelines for slow transients, Ⅲ:the study of ferroresonance [J]. IEEE Trans.on Power Delivery,2000,15(1):255-265.
    [51]Jacobson, D.A.N, Lehn, P.W., Menzies, R.W. Stability domain calculations of period-ferroresonance in a nonlinear resonant circuit[J]. IEEE Trans.on Power Delivery,2002,17(3):865-871.
    [52]Jacobson, D.A.N, Lehn, P.W., Menzies, R.W. Mitigating potential transformer ferroresonance in a 230 kV converter station[C]. IEEE Transmission and Distribution Conference.1996:269-275.
    [53]Biljana Stojkovska, Aneta Stefanovska, Robert. Time-delay feedback control of ferroresonant chaotic oscillations[C]. IEEE Porto Power Tech Conference, Porto, Portugal,2001.
    [54]Z.Emin, B.A.T. A1 Zabawi, YK.Tong. Voltage transformer ferroresonance in 275kV substations[C]. High Voltage Engineering Symposium,1999:283-286.
    [55]B.C.Lesieutre, J.A.Mobamed, A.M.Stankovic. Analysis of ferroresonance in three-phase transformers[C]. Power System Technology International Conference,2000:1013-1018.
    [56]冯平.一种混沌分析与抑制方法及在电力系统铁磁谐振中的应用研究[D].沈阳:沈阳工业大学,2010.
    [57]贾宏杰,余贻鑫.电力系统混沌现象及相关研究[J].中国电机工程学报,2001,21(7):26-30.
    [58]刘凡,孙才新,司马文霞.铁磁谐振过电压混沌振荡的理论研究[J].电工技术学报,2006.21(2):103-107.
    [59]姚迪.Matlab铁磁谐振仿真分析[D].沈阳:东北大学,2008.
    [60]杜志叶,阮江军,王伟刚.应用MATLAB/SIMULINK仿真研究铁磁谐振[J].高电压技术,2004(9):30-32.
    [61]马朝华,杨育霞.基于MATLAB/SIMULINK的CVT铁磁谐振过程的仿真研究[J].高压电器,2007,(6):209-212.
    [62]石启新,谈顺涛.基于MATLAB的PT铁磁谐振数字仿真分析[J].长沙电力学院学报(自然科学版),2004,19(2):40-44.
    [63]石启新,谈顺涛.基于MATLAB的PT铁磁谐振数字仿真分析[J].高电压技术,2004,30(8):25-27.
    [64]兰华,王彬,杨龑亮,袁天刚.PT励磁特性对铁磁谐振的影响及检测研究[J].电测与仪表,2010,47(538):10-12.
    [65]杜志叶,阮江军,王伟刚.PT铁损对铁磁谐振的影响分析[J].高压电器,2005,41(4):257-260.
    [66]杨育霞,马朝华,许珉.电容电压初值对CVT铁磁谐振影响的仿真研究[J].电力自动化设备,2007,27(4):10-13.
    [67]王亮,李文艺,施围.10kV系统中铁磁谐振过电压的计算机仿真研究[J].高压电器,2004,40(4):269-271.
    [68]汪伟,周剑玲,汲胜昌,曹涛,等.35kV系统中性点不同接地方式对铁磁谐振的影响研究[J].高压电器,2010,46(1):93-96.
    [69]李云阁,施围.母线间电容对铁磁谐振的影响[J].高压电器,2004,40(2):112-114.
    [70]葛栋,鲁铁成,王平.配电网铁磁谐振消谐机理仿真计算研究[J].高电压技术,2003,29(11):15-17.
    [71]张利庭.斜桥变电所铁磁谐振过电压的仿真研究[J].高电压技术,2005,32(7):43-45.
    [72]李璿,叶国雄,王晓琪,余春雨.用ATP-EMTP研究1000kV CVT的暂态特性[J].高电压技术,2008,34(9):1850-1855.
    [73]周丽霞,尹忠东,郑立.配网PT铁磁谐振机理与抑制的试验研究[J].电工技术学报,2007,22(5);153-158.
    [74]杨振宇,钱敏慧,陈宏钟,胡永军,等.基于ZnO非线性电阻的新型消弧消谐策略研究[J].电力自动化设备研究,2006,26(9):16-19.
    [75]赵德山.煤矿电网谐波谐振的抑制探讨[J].煤矿机电,2010(6):61-63.
    [76]沈毅,陈水明,陈刚,高文辉.由于断路器并口电容引起的铁磁谐振研究[J].华北电力技术,2006,(3):7-10.
    [77]周丽霞,尹忠东.彭军中性点不接地电网中铁磁谐振的分析与抑制研究[J].四川电力技术,2005(4):11-14.
    [78]徐岩.电力变压器内部故障数字仿真及其保护新原理的研究[D].北京:华北电力大学,2004.
    [79]D.J.Greene. Nonlinear modeling of transformer[J]. IEEE Trans on Industry Applications,1988, 24(3):434-438.
    [80]A.Morched, L.Marti. J.Ottenvangers. A high frequency transformer model for the EMTP[J]. IEEE Trans.on Power Delivery.1993,8(3):1615-1626.
    [81]P. T. Vaessen. Transformer model for high frequencies[J]. IEEE Trans.on Power Delivery,1988, 3(4):1761-1768.
    [82]李永丽,贺家李.电力变压器新型微机保护原理的研究[J].电力系统自动化,1995,1997(7):15-19.
    [83]傅翔华,贾长朱.微机变压器保护装置现状分析及改进建议[J].电力系统自动化,1997,21(8):54-56.
    [84]张举,黄少峰.我国微机继电保护的发展历史现状与展望[J].继电器,1996,24(1):3-6.
    [85]LHermanto, Y.V.S.Murty, M.A.Rahman. A stand-alone digital protective relay for power transformers[J]. IEEE Trans.on Power Delivery,1991,6(1):85-92.
    [86]Liu Pei, O.P.Malik, Chen Deshu, et al. Improved operation of differential protection of power transformer for Internal faults[J]. IEEE Trans.on Power Delivery,1992,7(4):1912-1919.
    [87]C.E.Lin, C.L.Cheng, et al. Investigation of magnetizing inrush current in transformers. Ⅰ:Numerical simulation[J]. IEEE Trans.on Power Delivery,1993,8(1):246-254.
    [88]C.E.Lin, C.L.Cheng, et al. Investigation of magnetizing inrush current in transformers. Ⅱ:Harmonic analysis[J]. IEEE Trans.on Power Delivery,1993,8(1):255-263.
    [89]T.S.Sidhu, M.S.Sachdev. Online identification of magnetizing inrush and internal faults in three-phase transformers[J]. IEEE Trans.on Power Delivery,1992,7(4):1885-1891.
    [90]朱业明,郑玉平,叶锋,等.间断角原理的变压器差动保护的性能特点及微机实现[J].电力系统自动化,1996,20(11):36-40.
    [91]刘建飞,马锁明,任冰.间断角原理变压器微机保护装置的实用化研究[J].现代电力,1998,15(3):1-6.
    [92]土祖光.间断角原理的变压器差动保护[J].电力系统自动化,1979,3(1):18-30.
    [93]王鹏,许涛.用统计学习理论预测变压器油中溶解气体浓度[J].高电压技术,2003,29(4):24-26.
    [94]王有元,廖瑞金,孙才新.变压器油中溶解气体浓度灰色预测模型的改进[J].高电压技术,2003,29(4):24-26.
    [95]钱政,尚勇,杨莉.电力变压器固体绝缘状况的综合评估模型[J].西安交通大学学报,2000,34(4):5-10.
    [96]熊浩,陈伟根,杜林,等.基于T-S模型的电力变压器顶层油温预测研究[J].中国电机工程学报,2007,27(30):15-20.
    [97]肖燕彩,陈秀海.用灰色多变量模型预测变压器油中气体的方法[J].高电压技术,2007,33(8):98-102.
    [98]廖怀东.变压器油色谱分析及故障判断[J].高电压技术,2006,32(1):112-113.
    [99]W.J.McNutt. Insulation thermal life considerations for transformer loading guides[J]. IEEE Trans.on Power Delivery,1992,7(1):390-401.
    [100]J.A.Jardini, H.P.Schmidt, C.M.ahan, et al. Distribution transformer loss of life evaluation:a novel approach based on daily load profiles[J]. IEEE Trans.on Power Delivery,2000,15(1):361-366.
    [101]L.J.Zhou, G.N.Wu, J.Liu. Modeling of Transient Moisture Equilibrium in Oil-paper Insulation[J], IEEE Trans.on Dielectrics and Electrical Insulation,2008,15(3):872-878.
    [102]M.Duval. New techniques for dissolved gas-in-oil analysis[J]. IEEE Electrical Insulation Magazine,2003,19(2):6-15.
    [103]C.Ekanayake, S.M.Gubanski, A.Graczkowski, et al. Frequency response of oil impregnated pressboard and paper samples for estimating moisture in transformer insulation[J]. IEEE Trans.on Power Delivery,2006,21(3):1309-1317.
    [104]S.Pansuwan, P.K.Sen, J.P.Nelson. Overloading loss-of-life and assessment of remaining life expectancy of oil-cooled transformers[C]. APC 62nd Annual Meeting Generation, Transmission, Distribution, Chicago, IL, USA,2000:143-149.
    [105]L.J.Zhou, G.N.Wu, J.F.Yu, X.H.Zhang. Thermal Overshoot Analysis for Hot-spot Temperature Rise of Transformer[J]. IEEE Trans.on Dielectrics and Electrical Insulation,2007,14(5):1316-1322.
    [106]Glenn Swift, Tom S.Molinski, Waldemar Lehn. A fundamental approach to transformer thermal modeling-Part I:Theory and equivalent circuit[J]. IEEE Trans.on Power Delivery,2001,16(2): 171-175.
    [107]周利军.牵引变压器温升与微水扩散特性的研究及其状态预测[D].成都:西南交通大学,2007.
    [108]L.W.Pierce. Predicting liquid filled transformer loading capability[J]. IEEE Trans.on Industry Applications,1994,30(1):170-178.
    [109]H.Nordman, N.Rafsback, D.Susa. Temperature responses to step changes in the load current of power transformers[J]. IEEE Trans.on Power Delivery,2003,18(4):1110-1117.
    [110]周利军,吴广宁,黄震.用于YNd11牵引变压器温升计算的热路模型研究[J].中国电机工程学报,2005,25(25):356-360.
    [111]周利军,吴广宁.牵引负荷对变压器绝缘老化和寿命损失影响的研究[J].电力系统自动化,2005,29(18):90-94.
    [112]T.K.Saha, Z.T.Yao. Experience with return voltage measurements for assessing insulation conditions in service-aged transformers[J]. IEEE Trans.on Power Delivery,2003,18(1):128-135.
    [113]T.K.Saha, P.Purkait. Investigation of polarization and depolarization current measurements for the assessment of oil-Paper insulation of aged transformers[J]. IEEE Trans.on Dielectrics and Electrical Insulation,2004,11(1):144-154.
    [114]高文胜,王猛,谈克雄,吴成琦.油纸绝缘中局部放电的典型波形及其频谱特性[J].中国电机工程学报,2002,22(2):1-5.
    [115]韩长伟,李晓军,马丽荣,孙翠平.电力电容器元件内部的电场计算[J].电力电容器与无功补偿,2009,30(6):37-41.
    [116]王耀,刘菁.高压并联电容器耐电强度仿真[J].电力电容器与无功补偿,2009,30(2):10-12.
    [117]刘瑞云,郑德龙,倪学锋.全膜电容器运行故障率偏高的原因分析[J].电力电容器,2007,28(2):46-48.
    [118]周存和.电力电容器的热老化[J].电力电容器与无功补偿,2007,28(6):20-22.
    [119]夏建中,李洪臣.对电力电容器局部放电的理解与对策[J].电力电容器与无功补偿,2009,30(2):7-10.
    [120]李兆林,刘军,陈松.电力电容器用两种掺合油的对比试验研究[J].电力电容器与无功补偿,2010,31(2):31-35.
    [121]孙进科,贺应华,史海洋.电容器单元爆破能量与电容器组接线结构方式之关系[J].电力电容器,2007,28(5):44-45.
    [122]汪承龙.浅析电力电容器的防火防爆[J].电力电容器,2005(2):40-41.
    [123]吕俊霞.电容器的常见故障处理方法与技术[J].电力电容器与无功补偿,2010,31(4):61-64.
    [124]王伟.变电站电容器的运行维护与故障处理[J].电力电容器与无功补偿,2009,30(2):50-51.
    [125]彭倩,吴广宁,周力任,边姗姗,任志超.电容器绝缘检测技术的现状与发展[J].绝缘材料,2008,41(1):67-70.
    [126]韩彦华,石少敏,王森.投切并联电容器过电压研究[J].电力电容器,2007,(1):5-8.
    [127]安宗贵,切合并联电容器组暂态过电压问题的研究[J].电力电容器,2005,(2):28-33.
    [128]李智敏,南春雷,马力,王建勋.并联电容器分闸重击穿操作过电压研究[J].电力电容器与无功补偿,2009,30(3):41-46.
    [129]方春恩,王佳颖,邹积岩,并联电容器组同步关合最佳目标相位的确定[J].电工技术学报,2006,21(1):24-27.
    [130]段雄英,邹积岩,方春恩,丛吉远.相控真空开关同步关合电容器组控制策略及其实现[J].大连理工大学学报,2003,43(4):457-461.
    [131]胡浩,李晓峰.线路无功补偿电容器的可靠运行问题[J].电力电容器与无功补偿,2010,31(3):33-35.
    [132]张化良,黄晓明,吴怡敏.高压并联电容器组放电线圈的选用[J].电力电容器与无功补偿,2010,31(4):26-29.
    [133]姚成,赵红伟.电容器内熔丝模拟[J].电力电容器与无功补偿,2009,30(1):7-10.
    [134]盛小伟,黄梅,阎波.谐波条件下并联电容器过电压保护的一种实现方法[J].电力电容器,2007(1):17-20.
    [135]王永红,孟荣,工玥,林榕,刘腾.500 kV变电站并联电容器组保护整定的若干问题[J].电力自动化设备,2010,30(8):144-147.
    [136]杨宇,闫晓玲,韩富春.变电站无功补偿装置过电压保护探讨[J].太原理工大学学报,2001,32(4):414-416.
    [137]王晓蓉,魏蓓,王冠军.一种新的变压器绕组局部放电的电气定位方法[J].高电压技术.1999,25(3):27-29.
    [138]范建斌,李中新,谷探,等.直流电压下导线起晕电压计算方法[J].电工技术学报,2008,23(10):100-104.
    [139]Kenichi Yamazaki, Robert G. Olsen. Application of a Corona Onset Criterion to Calculation of Corona Onset Voltage of Stranded Conductors[J]. IEEE Trans.on Dielectrics and Electrical Insulation,2004,11(4):674-680.
    [140]Junhong Chen, Jane H. Davidson. Electron Density and Energy Distributions in the Positive DC Corona:Interpretation for Corona -Enhanced Chemical Reactions[J]. Plasma Chemistry and Plasma Processing,2002,22(2):199-224.
    [141]Junhong Chen, Jane H. Davidson. Model of the Negative DC Corona Plasma:Comparison to the Positive DC Corona Plasma[J].Plasma Chemistry and Plasma Processing,2003,23(1):83-102.
    [142]曹晶,陈勇,万启发,等.青藏直流工程换流站交流侧外绝缘特性[J].高电压技术,2009,35(10):2411-2415.
    [143]孙昭英,丁玉剑,廖蔚明,等.青藏直流联网工程空气间隙的海拔校正[J].电网技术,2010,34(5):190-194.
    [144]韩少卫.高压直流输电线路电晕起始电压及起始场强研究[D].北京:华北电力大学,2008.
    [145]高海拔外绝缘配置技术规范[S].北京:中国电力出版社,2009.
    [146]C.Bengtsson. Status and trends in transformer monitoring[J]. IEEE Trans.on Power Delivery,1996, 11(3):1379-1384.
    [147]孙才新,赵文麒.变压器局部放电源的电-声和声-声定位法及其评判的研究[J].电工技术学报,1997,12(5):49-52,60.
    [148]郭琳,黄兴泉,李成榕.X射线激励下的油间隙放电现象[J].中国电机工程学报,2001,21(10):116-120.
    [149]郝艳捧,王国利,谢恒堃,等,基于局部放电和超声波法研究大电机定子绝缘的老化特性[J].电工技术学报,2002,17(2):1-6.
    [150]T.Boczar. Identification of specific type of PD from acoustic emission frequency spectra[J]. IEEE Trans.on Dielectrics and Electrical Insulation,2001,8(4):598-606.
    [151]许跃进.电容器组的容值误差研究及其在电容器组保护配置中的应用[J].电网技术,2002,26(2):63-66.
    [152]陈玉凤.三相四线制供电系统中性点电位偏移的分析与监控[J].电工技术杂志,2002,17(6):44-46.
    [153]刘文泽,蔡泽祥,冯顺萍.并联电容器组中电容器击穿的特征分析与仿真研究[J].高压电器,2009,45(5):73-79.
    [154]卢英俊,戎春园,罗永善,章耿勇.35kV并联电容器故障分析与建模仿真[J].电力电容器与无功补偿,2008,29(6):54-58.
    [155]林良真,叶林.电磁暂态分析软利包PSCAD/EMTDC[J].电网技术,2000,24(1):65-66.
    [156]黄家裕,陈礼义,孙德昌.电力系统数字仿真[M].北京:中国电力出版社,1995.
    [157]汤涌.电力系统数字仿真技术的现状和发展[J].电力系统自动化,2002,26(17):66-70.
    [158]PSCAD user's guide[M]. Manitoba:Manitoba HVDC Research Centre Inc,2003.
    [159]涂轶昀.基于PSCAD/EMTDC软件的超高压线路操作过电压研究[J].上海电力学院学报,2009,25(4):361-364.
    [160]尚德彬,王高明,毛伟.中原油田区配电系统无功补偿研究与应用[J].电工技术杂志,2001(3):36-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700