用户名: 密码: 验证码:
基于超导储能脉冲变压器的脉冲电源模式研究与系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲功率技术是一门以现代科学研究和国防军事研究为基础发展起来的多学科交叉融合的新兴技术学科。目前影响其大规模实际应用的主要因素是脉冲功率电源的体积和工作频率,因此脉冲功率技术研究的核心问题是能量的高密度存储技术和高功率的快速释放技术。超导脉冲功率技术是超导技术和脉冲功率技术相结合而产生的一门新技术。其中,利用超导电感储能不仅可以实现能量的高密度存储和高功率的快速释放,而且还具有储能时间长,无损耗,体积小,重量轻,对输入级功率要求低等优势,这对脉冲功率电源在轻量化、小型化和实用化等未来发展要求的实现方面都具有重要的研究意义。不过作为电感器件,它同样具有传统电感器件在储能放电中存在高电压的缺陷。本论文以电磁推进应用的脉冲电源为设计目标,结合目前出现的利用超导储能的脉冲电源模式,提出了利用单谐振电路放电的模式,研制了接近实用要求的高温超导储能脉冲变压器,进行了脉冲放电实验,在此基础上进行了多模块集成化脉冲电源系统设计,并对其驱动电磁推进的可行性进行了仿真分析。
     论文首先理论分析和实验研究了现有超导电感储能和放电的模式,发现了理想放电情况下电阻性转换电路的能量损耗与电路电感的关系,以及电流的转换时间与超导电感端压限制的关系。利用脉冲变压器提升电流的模式可以有效的获得高电流脉冲峰值,减少并联模块数量,但这种模式存在能量传输效率低的问题。然后,论文对传统的基于低温超导储能脉冲变压器的脉冲电源模式进行了分析,引入并探讨了利用电容转换meat-grinder电路模式的可行性,在上述分析的基础上,提出了单谐振电路的放电模式。通过仿真分析和比较得出,单谐振电路的放电模式除了具有储能回路可全部超导化的同时,既保持了较高的能量传输效率,又限制了断路开关的电压,为电磁推进用脉冲电源的小型化提供了新的技术途径。为了验证单谐振电路放电模式的可行性,研制了接近实用的小型高温超导储能脉冲变压器,在液氮浸泡条件下进行了电气特性测试和脉冲放电实验,得到了峰值超过4kA的电流脉冲,有力地证明了单谐振电路放电模式和高温超导储能脉冲变压器的结构设计是可行的。最后,以研制的实验用高温超导储能脉冲变压器为单元模型,进行了多模块集成化脉冲电源系统设计。利用电磁场有限元方法分析和比较了多模块的轴线平行结构排列方法和环形结构排列方法,发现环形结构的排列方法更有利于多模块超导储能脉冲变压器的脉冲电源系统,而且随着模块数增加,其仿真的静态电磁性能还将随着提升。结合单谐振电路和Marx发生器的电路结构设计了八模块集成化的脉冲电源电路,对电流脉冲成形的过程进行了瞬态仿真,结果表明,八模块的脉冲电源系统可以实现峰值超过140kA的电流脉冲,基本可以满足电磁推进基础实验研究的要求。另外,论文对多模块脉冲电源电路驱动电磁推进建立了数学模型,仿真分析了其驱动电磁推进的性能,并就影响能量转换效率的部分因素进行了分析。
Pulsed power technology is a multidisciplinary emerging technology discipline developed on the basis of modern scientific research and defense research. The main factors affecting its practical application is the volume and output power of the pulsed power supply, so the core issue of pulsed power technology research is the high density of energy storage technology and the high-power quick-release technology. Superconducting pulsed power technology is a new technology combining with superconducting technology and pulsed power technology. The use of superconducting inductive energy storage can achieve not only the high-density energy storage and high-power quick release, but also the advantages such as a long storage time, no loss, small size, light weight and low requirement about the input power. So it has an important significance about the future development of pulsed power technology such as lightweight, small and other practical requirements. However, as the inductance device, it also has the same flaws within the traditional inductive device in discharging phase. This paper was aiming at the pulse power design in the electromagnetic propulsion application, combining with the superconducting magnetic energy storage pulsed power mode, putting forward a single resonant circuit discharge mode, manufactured a high temperature superconducting pulsed transformer which is close to the practical requirements and did some experiments about pulse shaping. On this basis, the design of the multi-module integrated pulse power system and the simulation analysis about its feasibility of drive electromagnetic propulsion have been made.
     Firstly, this paper made the theoretical analysis and experimental study of the use of existing superconducting inductive energy storage and discharge mode, found the relationship between the energy loss of the resistive conversion circuit and the circuit inductance in an ideal case, and the relationship between conversion time and the limitation of superconducting inductor voltage. By using the enhanced current model of pulse transformers it can effectively obtain high-current pulse amplitude, reduce the number of parallel modules, but this model has the problem of low efficiency of energy transfer. Then, the paper analyzed on the pulse power mode of traditional low-temperature superconducting magnetic energy storage pulse transformer, introduced and explored the feasibility of using the capacitance to convert the meat-grinder circuit model, put forward the discharge patterns of single resonant circuit on the basis of the above analysis. Through simulation analysis and comparisons, it can be concluded that the discharge mode of single resonant circuit can maintain a high efficiency of energy transfer and limit the voltage of circuit breakers while has the advantage of superconducting energy storage. This provides a new way about researching the small pulse power of electromagnetic propulsion. In order to verify the feasibility of a single resonant circuit discharge model, a small high-temperature superconducting pulsed transformer close to practical requirements has been developed. In liquid nitrogen soaked conditions, the electrical characteristics and pulse shaping experiments has been tested. By getting a current pulse whose current peak exceeds4kA, it can be strong evidence that the single resonant circuit discharge mode and the structural design of high-temperature superconducting pulsed transformer were feasible. Finally, by using the experimental high temperature superconducting pulsed transformer as a unit model, a multi-module integrated pulse power system design has been made. Through the use of the electromagnetic finite element analysis and comparison of a multi-module arranged in a parallel to the axis structure and in a circle structure, it can be found that the arrangement of the circle structure is more conducive to the pulse power system with multi-module high temperature superconducting pulsed transformer. Moreover, with the number of modules increases, its static simulation performance will be increased at the same time. By combine of the single resonant circuit and the Marx generator circuit structural, a design of the eight modules of the integrated pulse shaping circuit has been made. Transient simulation of current pulse shaping process showed that the pulse power system of eight modules can get a peak current more than140kA pulse which basic meet the requirements of electromagnetic propulsion experimental research. In addition, the paper established a mathematical model of multi-module pulse shaping circuit which driving the electromagnetic propulsion and simulated and analyzed its performance of driving the electromagnetic propulsion. Some of the factors that affect the energy conversion efficiency were analyzed at the same time.
引文
[1]王莹.高功率脉冲电源[M].北京:原子能出版社,1991.
    [2](德)H.Bluhm.脉冲功率系统的原理与应用[M].江伟华,张弛,等(译).北京:清华大学出版社,2008.
    [3]国家自然科学基金委员会工程与材料科学部.电气科学与工程(学科发展战略研究报告)[M].北京:科学出版社,2006.
    [4]刘锡三.高功率脉冲技术[M].北京:国防工业出版社,2005.
    [5]张适昌,严萍,王钰,等.民用脉冲功率源的进展与展望[J].高电压技术,2009,35(3):618-630.
    [6]Ian R. McNab. Pulsed power for electric guns [J]. IEEE Trans. on Magnetics,1997,33(1): 453-459.
    [7]郑建毅,何闻.脉冲功率技术的研究现状和发展趋势综述[J].机电工程,2008,25(4):1-4.
    [8]Hidenori Akiyama, Takashi Sakugawa, Takao Namihira, et al. Industrial applications of pulsed power technology [J]. IEEE Trans. on Dielectrics and Electrical Insulation,2007, 14(5):1051-1064.
    [9]Erwin H. W. M, Bert E. J. M, Sander S. V. B. Pulsed power corona discharges for air pollution control [J]. IEEE Transactions on magnetics,1998,26(5):158-164.
    [10]Kiyoshi Yatsui, Weihua Jiang, Hisayuki Suematsu, et al. Pulsed-power applications to materials science[C].14th IEEE International Pulsed Power Conference,2003:29-34.
    [11]刘克富,赵海洋,邱剑.快脉冲放电等离子体用于难降解污水处理[J].高电压技术,2009,35(1):12-16.
    [12]Harry D. Fair. Electromagnetic Launch Science and Technology in the United States Enters a New Era[J]. IEEE Transactions on magnetics,2005,41(1):158-164.
    [13]Hidenori Akiyama, Shunsuke Sakai, Takashi Sakugawa, et al. Environmental Applications of Repetitive Pulsed Power [J]. IEEE Trans. on Dielectrics and Electrical Insulation,2007, 14(4):825-833.
    [14]吴锐,李海涛,王亮,等.高温超导混合脉冲变压器的研制与放电测试研究[J].低温与超导,2011,39(12):16-20.
    [15]J.C. Hernandez-Llambes, D. Hazelton. Advantages of second-generation high temperature superconductors for pulsed power applications [C]. IEEE International Pulsed Power Conference,2009.
    [16]周羽生.高温超导脉冲功率应用电磁特性的基础研究[D].华中科技大学,2006.
    [17]王莹,肖峰.电炮原理[M].北京:国防工业出版社,1995.
    [18]王莹.电磁发射技术概论[J].电工技术杂志,2003(10):94-97.
    [19]A. Badel, P. Tixador, P. Dedie. Test of a Twin Coil HTS SMES for High Power Pulse Operation [J]. IEEE Trans. on Applied Superconductivity,2011,21(3):1375-1378.
    [20]McNab I R. Developments in pulsed-power technology. IEEE Trans. Magnetics,2001, 37(1):375-378.
    [21]范晶,宋朝文.舰载电磁轨道炮用高功率脉冲电源研究进展[J].电气技术(增刊)2010.
    [22]徐宜志,王淦昌.闪光-Ⅰ号强流脉冲电子束加速器.原子核物理,1987,(9):69.
    [23]邱爱慈,等.闪光-Ⅱ号强流脉冲电子束加速器.强激光与粒子束,1991,3(3):340.
    [24]闫强华.超导储能脉冲放电技术研究[D].西南交通大学,2009.
    [25]王静端.电磁发射技术的发展及其军事应用[J].火力与指挥控制,2001,26(1):5-7.
    [26]Kolm H and Mongeau P. An alternative launching medium [J]. IEEE Spectrum, Apr.1982, 30-36.
    [27]M. Cowan, E.C. Cnare, B. W. Duggin, et al. The reconnection gun [J]. IEEE Trans. on Magnetics,1986,22(1):1429-1434.
    [28]R. J. Lipinski, S. Beard, J. Boyes, et al. Space applications for contactless coilguns [J]. IEEE Trans, on Magnetics,1993,29(1):691-695.
    [29]Z. Zabar, X. N. Lu, L. Birenbaum, et al. A 500m/s Linear Induction Launcher [J].8th IEEE Pulsed Power Conference, San Diego, CA, June 17-19,1991.
    [30]J. M. Schroeder, J. H. Gully and M. D. Driga. Electromagnetic launchers for space applications [J]. IEEE Trans. on Magnetics,1989,25(1):504-507.
    [31]Katsumi Masugata. Hyper velocity acceleration by a pulsed coilgun using traveling magnetic field [J]. IEEE Trans. on Magnetics,1997,33(6):4434-4438.
    [32]Balikci A, Zabar Z, Birenbaum L, et al. On the design of coilguns for super-velocity launchers [J]. IEEE Trans. on Magnetics,2007,43(1):107-110.
    [33]朱英伟.多极矩场电磁推进模式研究与系统设计[D].西南交通大学,2011.
    [34]Michael R. Wright, Steven B. Kuznetsov and Kurt J. Kloesel. A lunar electromagnetic launch system for in situ resource utilization [J]. IEEE Trans. Plasm. Sci.,2011,39(1): 521-528.
    [35]古刚,向阳,张建革.国际电磁发射技术研究现状[J].舰船科学技术,2007,29(1):156-158.
    [36]王莹,张奇.电磁轨道炮——一个蓬勃发展的脉冲功率技术新领域[J].电工电能新 技术,1985,(4):1-6.
    [37]巨兰,张碧雄.电磁轨道炮的炮体结构设计[J].舰船科学技术,2011,33(7):94-98.
    [38]Pascale Lehmann. Overview of the Electric Launch Activities at the French-German Research Institute of Saint-Louis (ISL) [J]. IEEE Trans. on Magnetics,2003,39(1): 24-28.
    [39]I. R. McNab. A research program to study air born launch to space [J]. IEEE Trans. on Magnetics,2007,43(1):486-490.
    [40]F. Winterberg. Magnetic acceleration of a superconducting solenoid to hyper velocities [J]. Plasma Physics,1966,8(1):541-522.
    [41]Ronald J. Kaye, Edwin L. Brawley, Billy, W. Duggin, et al. Design and performance of a multi-stage cylindrical reconnection launcher [J].1991,27(1):596-600.
    [42]B. N. Turman, B. M. Marder, G J. Rohwein, et al. The pulsed linear induction motor concept for high-speed trains. Sandia National Laboratories, June 1995.
    [43]M. S. Aubuchont, T. R. Lockner, B. N. Turman. Results from Sandia National Laboratories/Lockheed Martin Electromagnetic Missile Launcher (EMML) [J]. IEEE Trans. on Magnetics,2005,41(1):75-78.
    [44]邹本贵,曹延杰.美军电磁线圈发射技术发展综述[J].微电机,2011,44(1):84-89.
    [45]鲍佳.磁浮列车悬浮控制与动力学仿真[D].西南交通大学,2003.
    [46]李希宁,佟来生.中低速磁浮列车技术研究进展[J].电力机车与城轨车辆,2011,34(2):1-4.
    [47]唐锐,吴俊泉.中低速磁浮列车在我国城市轨道交通中的应用前景[J].城市快轨交通,2006,19(2):12-16.
    [48]英国《简氏国际防务评论》1996年10月报道.
    [49]李立毅,李小鹏.电磁发射的历史及发展趋势[J].微电机,2004,37(1):41-44.
    [50]高俊山.三级电磁推进模型及系统研究[D].哈尔滨理工大学,2007.
    [51]郑明华.螺旋线圈式电磁炮发射机理与静动态电磁特性研究[D].国防科技大学,2010..
    [52]高顺受,孙承伟,陈英石,等.60mm口径电磁感应线圈炮的实验研究[J].高压物理学报,1996,10(3):190-198.
    [53]赵纯.三级重接式电磁发射系统的仿真与实验研究[D].大连理工大学,2006.
    [54]马学林.基于FPGA的电磁推进装置同步触发系统的设计[D].西南交通大学,2009.
    [55]谢晓芳.基于超导块材的新型电磁推进模式[D].西南交通大学,2010.
    [56]池小平,吕庆敖.3种不同形状电枢对线圈炮发射性能影响的仿真分析[J].军械工程学院学报,2008,20(3):32-35.
    [57]周媛,严萍,袁伟群,等.电磁轨道发射装置中导轨几何参数对电感梯度的影响[J].电工电能新技术,2009,28(3):23-27.
    [58]李军,王莹,王赞基.电炮用磁通压缩脉冲直线发电机的数学模型[J].中国电机工程学报,2001,21(5):43-46.
    [59]朱英伟,严仲明,董亮,等.电容器参数对感应线圈炮的影响分析[J].高电压技术,2009,35(12):3054-3059.
    [60]朱英伟,李海涛,严仲明,等.线圈型电磁发射器磁场构型的设计与分析[J].兵工学报,2011,32(4):464-468.
    [61]丁国良,舰载机磁悬浮电磁弹射技术研究[D].武汉理工大学,2008.
    [62]朱洪强.电磁枪械(磁阻型线圈式)的有关问题研究[D].南京理工大学,2007.
    [63]李建辉,刘秀成,王春明,等.电感储能型线圈炮系统的建模和参数优化[J].电工电能新技术,2007,26(2):54-58.
    [64]Babic S, Akyel C. Magnetic force calculation between thin coaxial circular coils in air [J]. IEEE Trans. on Magnetics,2008,44(4):445-452.
    [65]Sikhanda Satapathyl and Harold Vanicek. Energy partition and scaling issues in a railgun [J]. IEEE Trans, on Magnetics,2007,43(1):178-185.
    [66]朱英伟,严仲明,谢晓芳,等.磁阻型线圈发射减速力研究[J].电工电能新技术,2010,29(2):62-66.
    [67]赵科义,李治源,程树康,等.同步感应线圈炮内磁场及涡流场的有限元分析[J].高电压技术,2008,34(3):492-495.
    [68]S. Aksoy, A.Balikci, Z. Zabar, et al. Numerical investigation of the effect of a longitudinally layered armature on coilgun performance [J]. IEEE Trans. Plasm. Sci., 2011,39(1):5-8.
    [69]陶孟仙,任兆杏,吕庆敖.固体电枢电磁场扩散效应研究[J].弹道学报,1998,10(2):29-32.
    [70]Wang Ying, Richard A. Marshall, and Cheng Shukang. Physics of Electric Launch [M].Beijing:Science Press,2004.
    [71]金建勋,郑陆海.高温超导材料与技术的发展及应用[J].电子科技大学学报,2006,35(4):612-623.
    [72]吴志荣.国内外超导材料开发进展[J].中国金属通报,2010,(35):40-41.
    [73]钱廷欣,周雅伟,赵晓鹏.新型超导材料的研究进展[J].材料导报,2006,20(2):98-101.
    [74]林德华,佟存柱,张杰,等.超导理论与应用研究的最新进展[J].重庆大学学报,2002,25(8):142-144.
    [75]冯瑞华,姜山.超导材料的发展与研究现状[J].低温与超导,2007,35(6):520-522.
    [76]蔡传兵,刘志勇,鲁玉明.实用超导材料的发展演变及其前景展望[J].中国材料进展,2011,30(3):1-8.
    [77]中国科学技术协会.(2009-2010)动力与电气工程学科发展报告[M].
    [78]Tanaka S. The superconductor industry in the 21st century ISTEC journal,2000,13(4): 9-12.
    [79]马衍伟,肖立业.第二代高温超导YBCO涂层导体的发展.科学通报,2004,50(1):1-5.
    [80]Nagamatsu J, Nkagawa N,et al. Superconductivity at 39K in magnesium diboride, Nature, 2001,410(1):63-64.
    [81]Musenich R, Fabbrecatore P, Ferdeghini S, et al. Behavior of MgB2 react and wind coils above 10K, IEEE Trans. on Applied Superconductivity,2005,15(2):1452-156.
    [82]W. F. B. Punchard. A 300kJ pulsed superconducting energy storage coil. IEEE Trans. on Magnetics,1975,11(2):508-511.
    [83]E.M.W. Leung, R.E. Bailey and M.A. Hilal. Hybrid pulsed power transformer (HPPT): Magnet design and results of verification experiments [J]. IEEE Trans. on Magnetics, 1988,24(2):1508-1511.
    [84]E.M.W. Leung, R.E. Bailey and P. H. Michels. Using a small hybrid pulse power transformer unit as component of a high-current opening switch for a railgun. IEEE Trans. on Magnetics,1989,25(2):1779-1782.
    [85]Denis Netter, Jean Leveque, Abderrezak Rezzoug, et al. Theoretical Studies and Experimental Results of a SMES Used in a Pulsed Current Supply [J]. IEEE Trans. on Applied Superconductivity,1998,8(1):7-13.
    [86]E. Floch, P. Hiebel, Y. Laumond, et al. Modelization and Test of a 500 J Superconducting Pulsed Power Transformer [J]. IEEE Trans. on Applied Superconductivity,1999,9(2): 1289-1292.
    [87]E. Floch, G. K. Hoang, C. Kohler, et al. Measurement of Velocities Up to 1.1 km/s and Test of a Very Fast Quench Inducing System [J]. IEEE Trans. on Applied Superconductivity,2005,15(2):1671-1674.
    [88]W. Weck, P. Ehrhart, A. Muller, et al. Superconducting inductive pulsed power supply for electromagnetic launchers:design aspects and experimental investigation of laboratory set-up [J]. IEEE Trans, on Magnetics,1997,33(1):524-527.
    [89]Werner Weck, Peter Ehrhart, Anton Muller, et al. Demonstration of a Superconducting Inductive Pulsed Power Supply at Simulated Load Conditions [J]. IEEE Trans. on Magnetics,1999,35(1):383-387.
    [90]Netter D, Leveque J, Rezzoug A, et al. Theoretical studies and experimental results of a SMES used in a pulsed current supply. IEEE Trans. on Applied Superconductivity,1998, 8(1):7-13.
    [91]Juengst K P. Fast SMES for generation of high power pulses. IEEE Trans. on Magnetics, 1996,32(4):2272-2275.
    [92]Polulyakh E P, Spiridodov A V. Pulsed power source based on the experimental superconducting magnetic energy storage with strored energy up to 5MJ for railgun installation. in Proc. of MT-15,1997, pp:628-630.
    [93]P. Tixador, B. Bellin, M. Deleglise, et al. Design and First Tests of a 800 kJ HTS SMES [J]. IEEE Trans. on Applied Superconductivity,2007,17(2):1967-1972.
    [94]A. Badel, P. Tixador, and P. Dedie. Test of a Twin Coil HTS SMES for High Power Pulse Operation [J]. IEEE Trans. on Applied Superconductivity,2011,21(3):1375-1378.
    [95]严陆光,南和礼,余运佳,等.快充放电超导磁体的研制[J].电工电能新技术,1995,14(1):45-50.
    [96]林良真,肖立业.超导电工技术[A],电气技术发展综述[C],2004年.
    [97]王超.Bi系高温超导磁体的电磁设计研究[D].中国科学院电工研究所,2005.
    [98]罗平,姚立海,杨仕友,等.35kJ高温超导储能磁体的优化设计[J].低温与超导,2006,34(3):186-189.
    [99]戴银明,王秋良,王厚生,等.高电流密度超导储能磁体的研制[J].中国电机工程学报,2009,29(9):124-128.
    [100]陈鹏,雷沅忠,王秋良.用于超导储能系统的失超信号检测[J].低温物理学报,2008,30(1):29-32.
    [101]“科研获奖’'[Online], http://www.ipp.ac.cn/kycg/kyhj/,2008.
    [102]管磊,高骥超,黄峰.基于高温超导材料的场控和流控式断路开关研究[J].船舶工程,2007,29(2):6-9.
    [103]周羽生,郭芳,戴陶珍,等.超导电感储能高功率脉冲技术及其仿真研究[J].高压电器,2005,41(2):85-88.
    [104]宋萌,周羽生,唐跃进,等.电磁发超导空心脉冲变压器[J].电工技术学报,2007,22(12):72-76.
    [105]宋萌,周羽生,唐跃进,等.高温超导空心脉冲变压器的可行性研究[J].低温物理学报,2007,29(2):153-157.
    [106]戴陶珍,范则阳,李敬东,等.舰船电力系统用1MJ高温超导电感储能磁体设计研究[J].中国工程科学,2004,6(1):53-56.
    [107]戴陶珍,范则阳,李敬东,等.超导磁储能系统在舰船电力系统中的应用前景及其关键课题[J].中国工程科学,2002,4(6):16-20.
    [108]郭芳,唐跃进,任丽,等.超导电感储能脉冲输出电路设计及其关键问题[J].华中科技大学学报(自然科学版),2009,37(1):119-122.
    [109]秦华容,唐跃进,陈楠,等.基于IGBT开关的超导电感脉冲输出实验研究[J].高电压技术,2008,34(6):1220-1224.
    [110]魏斌,唐跃进,任丽,等.超导磁体脉冲冲击下MOV的破坏特性微观分析[J].高电压技术,2007,33(4):26-29.
    -[111]陈楠,唐跃进,魏斌,等.脉冲变压器对超导电感脉冲输出能量的影响[J].高电压技术,2009,35(2):364-367.
    [112]Jingye Zhang, Shaotao Dai, Dong Zhang, et al. The electric characteristics of HTS double-pancake coil with AC pulse over currents [J]. Cryogenics,2012,52:45-50.
    [113]陈楠.高温超导磁储能脉冲放电装置研究[D].华中科技大学,2008.
    [114]郭芳.高温超导磁悬浮连续脉冲磁行波电磁发射研究[D].华中科技大学,2010.
    [115]管磊.超导电感储能功率脉冲电源和断路开关的研究[D].哈尔滨:哈尔滨工业大学,2005.
    [116]李峰,董亮,严仲明,等.小型超导磁体的快速放电研究[J],电工电能新技术,2009,28(3):36-39.
    [117]李峰,严仲明,董亮,等.小型NbTi磁体的失超传播特性研究[J].低温与超导,2009,37(4):37-40.
    [118]肖广大,基于超导磁体的快速换能系统研究[D].西南交通大学,2009.
    [119]邵慧,严仲明,付磊,等.高温超导带材Bi-2223/Ag的焊接接头电阻研究[J].低温与超导,39(3):30-33.
    [120]李海涛,朱英伟,邵慧,等.超导储能磁体对电感性负载放电研究[J].电工电能新技术,2010,29(4):27-30.
    [121]陈天腾,李海涛,董亮,等.超导储能功率脉冲电源中脉冲变压器的研制[J].高压电器,2011,47(2):84-87.
    [122]李海涛,董亮,邵慧,等.脉冲功率系统储能型超导脉冲变压器放电研究[J].低温与超导,39(3):45-48.
    [123]李海涛,邵慧,董亮,等.基于超导储能脉冲变压器的脉冲电源放电研究[J].电工电能新技术,2012,31(1):52-55.
    [124]Haitao Li, Yu Wang, Yingwei Zhu, et al. Design and Testing of a High Temperature Superconducting Pulsed Power Transformer [J]. IEEE Trans. on Applied Superconductivity,2012,22(2):5500205.
    [125]Haitao Li, Yu Wang, Weirong Chen, Wenbo Luo, Zhongming Yan, Liang Wang. Inductive Pulsed Power Supply Consisting of Superconducting Pulsed Power Transformers with Marx Generator Methodology [J]. IEEE Trans. on Applied Superconductivity,2012,22(5):5501105.
    [126]赵良英,刘秀成,于歆杰.串联充电-并联放电型电感储能线圈炮系统的研究[J].电工电能新技术,2008,27(4):62-66.
    [127]Y. Aso, T. Hashimoto, T. Abe, et al. Inductive Pulsed-Power Supply With Marx Generator Methodology [J]. IEEE Trans. on Magnetics,2009,45(1):237-240.
    [128]A. Sitzman, D. Surls, and J. Mallick. Design, Construction, and Testing of an Inductive Pulsed-Power Supply for a Small Railgun [J]. IEEE Trans. on Magnetics,2007,43(1): 270-274.
    [129]刘秀成,王赞基,李军.新型电感储能型电磁炮脉冲电源拓扑[J].电网技术,2009,23(13):80-85.
    [130]刘秀成,王赞基,李军.一种用于电磁发射的电感电容混合型储能脉冲电源[J].弹道学报,2009,21(3):103-106.
    [131]S. Aigner, E. Igenbergs. Friction. Ablation. Measurement in a Round Bore Railgun [J]. IEEE Trans. on Magnetics,1989,25(1):33-39.
    [132]K. T. Hsieh and B. K. Kim. International Rail gun Modeling Effort [J]. IEEE Trans. on Magnetics,1997,33(1):237-239.
    [133]D. A. Weeks, W. F. Weldon, R. C. Zowaeka. Plasma Armature Railgun Launcher Simulations at the University of Texas at Austin [J]. IEEE Trans. on Magnetics,1989, 25(1):580-586.
    [134]Harry D. Fair, Senior Member. Progress in Electromagnetic Launch Science and Technologyp [J]. IEEE Trans. on Magnetics,2007,43(1):93-98.
    [135]张国强,王赞基,胡启凡,等.低温绝缘材料的性能和超导磁体绝缘制造技术综述[J].电工技术杂志,2002(9):1-3.
    [136]何熠,李长滨,吴爱国,等.饱和铁心型超导限流器压敏电阻的实验[J].高电压技术,2007,33(9):154-158.
    [137]莫以豪.半导体陶瓷及其敏感元件[M].上海:上海科学技术出版社,1983.
    [138]蒋启龙,付磊.一种改进型轨道电磁发射方式[J].西南交通大学学报,2011,46(4):586-590.
    [139]Wang Ying, Sun Yuanzhang, Liu Kaipei, et al. Science and technology on pulsed power [M]. Beijing:Beijing University of Aeronautics and Astronautics Press,2010.
    [140]林福昌,李劲,姚宗干.电磁发射兵器用电容器的选取[J].兵工学报,2003,24(3): 416-418.
    [141]Lindner K, Long J, Girogi D, et al. A meatgrinder:circuit for energizing resistive and varying inductive loads (EM guns) [J]. IEEE Trans. on Magnetics,1986,22(6): 1591-1596.
    [142]吴春俐,白质明,王金星.高温超导带材的失超传播特性研究[J].中国电机工程学报,2005,25(4):109-112.
    [143]刘喜,李晓航,孔令启.高温超导带材失超传播特性实验研究[J].低温与超导,2007,35(3):234-237.
    [144]金建勋.高温超导体及其强电应用技术[M].北京:冶金工业出版社,2009.
    [145]张裕恒.超导物理[M].合肥:中国科学技术出版社,1992.
    [146]南和礼.超导磁体设计基础[M].北京:国防工业出版社,2007.
    [147]王正道,王温泉.Bi系2223高温超导带材力学性质[J].低温工程,2006,1:55-59.
    [148]王超,黄晖,宋守森,等.Bi2223/Ag高温超导带材临界电流各向异性的实验测量及分析 [J].低温物理物理学报,2004,26(3):237-241.
    [149]Guo Min Zhang, Liang Zhen Lin, Li Ye Xiao, et al. A theoretical model for the angular dependence of the critical current of BSCCO/Ag tapes. Physica C,390 (2003):321-324.
    [150]Y. B. Kim, C. F. Hempstead and A. R. Strnad. Flux Creep in Hard superconductors, Phys. Rev.131(1963):2486-2495.
    [151]张国民.高温超导带材及线圈的交流损耗[D].中国科学院研究生院,2003.
    [152]王洋,王建中,龚伟志,等.并联超导带材/绕组的电流分布特性[J].稀有金属材料与工程,2008,37(4):244-247.
    [153]朱英伟,严仲明,李海涛,等.触发放电位置对重接型线圈推进器加速性能影响的仿真分析[J].高电压技术,2011,37(10):2548-2553.
    [154]赵博Ansoft 12在工程电磁场中的应用[M].北京:水利水电出版社,2010.
    [155]杜晓纪,赵彩宏,肖立业.1MJ高温超导储能磁体的设计方案研究[J].低温物理学报,2005,27(5):1058-1061.
    [156]孙荣丙IGBT串联技术的研究[D].合肥工业大学,2009.
    [157]刘磊IGBT串联均匀技术的研究[D].南京航空航天大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700