用户名: 密码: 验证码:
高容量C/Si-O-C负极材料的制备及其嵌脱锂离子机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池是兼具高能量密度、高功率密度和高工作电压等优点的绿色能源,已经成为手机、数码相机和笔记本电脑等便携式电子设备的主流电源,未来还可能应用于电动汽车等动力电源领域,为缓解人类对化石能源的依赖具有重要意义。在高性能锂离子电池中,提高负极材料的比容量对提高整个锂离子电池的容量具有重要意义。目前锂离子电池商用负极材料均为石墨材料,其理论容量为372mAh/g,为了提高锂离子电池的容量,需要将负极材料的比容量提高至800mAh/g以上。Si-O-C材料据报道具有较高的可逆容量和较好的循环性能,是一种有潜力的锂离子电池负极材料。
     本文选择高容量Si-O-C复合负极材料作为研究对象,采用先驱体转化法制备了具有不同组成和结构的Si-O-C负极材料,研究了制备工艺、元素组成对其电化学性能的影响,同时采用一系列的分析测试对Si-O-C负极材料在嵌脱锂离子过程中的结构变化进行了研究,并且制备了利用Si-O-C材料包覆纳米硅的新型Si/Si-O-C负极材料,为进一步改善Si-O-C材料的电化学性能奠定了良好的基础。
     首先以聚硅氧烷为先驱体,通过裂解气氛、裂解温度、增加碳源等工艺条件的改变制备了碳含量为4.1wt%~42.1wt%、硅含量为30wt%~47.9wt%的C/Si-O-C负极材料,系统研究了工艺条件对材料组成结构及电化学性能的影响;在此基础上,系统研究了C/Si-O-C负极材料的可逆及不可逆容量与元素组成的关系。
     以聚硅氧烷为先驱体,在还原性和惰性气氛中,800~1000℃温度下分别制备了碳含量为22.1wt%~23.2wt%和14.1wt%~15.1wt%的C/Si-O-C负极材料。还原性气氛中制备的C/Si-O-C负极材料具有更高的可逆容量和库伦效率。可逆容量受到裂解温度的影响,但是二者不存在线性关系。
     以聚硅氧烷为硅源,以二乙烯基苯为碳源,在氢气气氛中,800~1000℃温度下制备了碳含量为26.3wt%~42.1wt%、硅含量为29.4wt%~40.3wt%的C/Si-O-C负极材料。该材料的可逆容量随着碳含量的增加显示出缓慢增长的趋势。
     通过对C/Si-O-C材料原子比容量与元素组成关系的统计分析发现,当O/Si摩尔比为1~2,C/Si摩尔比为0.5~3.5时,C/Si-O-C材料的可逆容量与O/Si摩尔比没有线性关系;而随着C/Si摩尔比例的增加而显示出逐渐增加的趋势。
     通过对仅含有Si、C或O等元素的负极材料的容量微分曲线的比较,分析了C/Si-O-C负极材料可逆容量的主要来源;采用硅核磁等技术分析了Si-O-C相中不同硅结构单元在嵌脱锂离子过程中结构的演变,研究了硅结构单元对锂离子的可逆性,统计了各种硅结构单元对可逆容量的贡献,为设计新型高容量Si-O-C材料奠定基础。
     通过将C/Si-O-C负极材料同文献报道的无定形炭、无定形硅、无定形二氧化硅和无定形一氧化硅材料充放电过程中的容量微分曲线作分别比较,逆向推出C/Si-O-C负极材料的主要嵌锂平台对应的是Si-O-C玻璃相同锂离子的相互作用;Si-O-C玻璃相与无定形硅、无定形二氧化硅、无定形一氧化硅材料嵌锂机理不同。
     利用29Si MAS NMR和XPS等手段,分析C/Si-O-C负极材料中的硅结构在嵌脱锂离子过程化学位移的可逆移动,证实了在Si-O-C玻璃相中所存在的五种硅化学结构单元中,对于锂离子的嵌脱过程可逆的化学结构单元为[SiO4]、[SiO3C]、Si2O2,而[SiOC3]单元是不可逆的,[SiC4]单元是惰性的;
     利用溶胶凝胶法制备了一系列[SiO4]、[SiO3C]、[SiO2C2]结构单元占主体的C/Si-O-C负极材料。其中,[SiO4]单元占总重88wt%的C/Si-O-C负极材料循环20次以后的稳定容量为653mAh/g;[SiO4]和[SiO3C]单元占总重78wt%的C/Si-O-C负极材料的稳定容量898mAh/g;[SiO4]、[SiO3C]和[SiO2C2]单元占总重87wt%的C/Si-O-C负极材料的稳定容量为724mAh/g。证明[SiO4]、[SiO3C]、[SiO2C2]结构单元具有较高的储锂容量。
     利用硅结构单元同锂离子反应的独立性建立了C/Si-O-C负极材料可逆容量与硅结构单元的统计模型。根据模型,按比容量大小排序,[SiO4]>[SiO3C]>[SiO2C2]>[SiOC3]。其中,[SiO4]和[SiO3C]单元的比容量是石墨的3倍以上。
     为进一步提高Si-O-C负极的电化学性能,采用裂解聚甲基硅烷和溶胶凝胶法等两种方法制备出Si-O-C基体包覆纳米硅的Si/Si-O-C复合负极材料,系统考察了工艺条件对该材料循环性能及倍率性能的影响。
     以聚甲基硅烷为先驱体,在还原性气氛中高温裂解制备了单质硅含量<5.7wt%的Si/Si-O-C负极材料。其在900~1000℃之间制备的Si/Si-O-C材料循环20次以后的稳定容量最高,分别为470、400mAh/g。
     以聚硅氧烷为先驱体,通过在先驱体中引入3wt%~10wt%的纳米硅,利用溶胶凝胶的方法制备了富硅的Si/Si-O-C负极材料。先驱体中纳米硅含量为8wt%,裂解温度为1100℃,制备的Si/Si-O-C负极材料拥有最佳的电化学性能:首次脱锂容量为1371.6mAh/g,首次库伦效率为78%,循环30次以后依然保持了990mAh/g,容量保持率为72%。同时它还具有优异的倍率性能,以3C倍率放电时在循环30次以后的可逆容量为715.9mAh/g,库伦效率超过96%。
The lithium-ion battery, as a new type of green secondary power supply withadvantages such as high energy density, high power density and high operating voltage,has being developed rapidly. Nowadays, it has already become the main power of theportable electronic devices such as mobile phones, digital cameras and notebook PC.Great expectation is placed on it as the power source of electronic vehicles in future, topartially alleviate the dependence on fossil fuel. For fabricating the high-performancelithium-ion battery, it is crucial to increase the specific capacity of the anode materials.More specifically, the anode materials with a capacity more than800mAh/g arerequired to replace the commercial anode material, graphite (theoretical capacity of372mAh/g). Therefore much attention is paid to search for high-capacity anodematerials.
     Si-O-C materials are one of the promising anode materials because they exhibithigh capacities and good cyclic performances. The thesis employed polysiloxane as theprecursor to prepare Si-O-C materials with different elemental distribution by apyrolytic polymer-to-ceramic conversion. The effect of preparation method andelemental distribution on their electrochemical performances was studied. Then mucheffort was devoted to the mechanism study of lithium storage in Si-O-C materials inorder to guide the design of high-capacity Si-O-C anode materials.
     The thesis prepared Si-O-C materials with silicon content of30-47.9wt%andcarbon content of4.1-42.1wt%using polysiloxane by changing the pyrolysistemperature and atmosphere, with addition of divinylbenzene as the carbon source. Andthen, the effect of the preparation method on elemental distribution and electrochemicalperformances of the materials was studied. Finally, the relationship between thecapacity and elemental distribution was investigated.
     Employing polysiloxane as the precursor, Si-O-C materials with carbon content of22.1-23.2wt%or14.1-15.1wt%were prepared under hydrogen or inert atmosphere,respectively. The C/Si-O-C materials prepared under hydrogen atmosphere exhibitlarger capacities and higher coulombic efficiency than those under Ar atmosphere. Thepyrolysis temperature affects the reversible capacity of C/Si-O-C materials, though thereversible capacity does not linearly increase with the increment of the pysolysistemperature.
     Employing polysiloxane as the silicon source and divinylbenzene as the carbonsource, C/Si-O-C materials with Si content of29.4-40.3wt%and C content of26.3-42.1wt%were prepared at800-1000℃under hydrogen atmosphere. The reversible capacity gradually rises with the increment of carbon content. Among all theseC/Si-O-C materials, the sample with Si:30.4wt%and C:42.1wt%exhibit the largestcapacity of751mAh/g with coulombic efficiency larger than97.4%.
     Based on all the C/Si-O-C samples prepared with different preparation methods,the relationship between the reversible capacity and elemental content was studied. It isfound that, when O/Si mol ratio is among1-2and C/Si ratio is between0.5and3.5, thereversible capacity gradually increases with the increase of C/Si ratio, which does notlinearly increase with the increment of O/Si ratio.
     The main electrochemically active site of C/Si-O-C materials was suggested, bycomparing the derivative curves of anode materials composed of Si, O, or C. Thestructure transformation and the lithium reversibility of silicon species in Si-O-C phasewere studied by29Si MAS NMR and XPS. Finally, the contribution of each siliconspecies to the reversible capacity of the whole materials was evaluated.
     Si-O-C glass phase was proved to be the main source of lithium storage inC/Si-O-C materials, by comparing the derivative curves of anode materials composed ofSi, O, or C reported in the literature. The mechanism of lithium insertion in Si-O-Cphase is totally different from that of silicon, silicon dioxide and silicon monoxidematerials.
     Of all the bonded silicon species of Si, C, and O in Si-O-C glass phase,[SiO4],[SiO3C],[SiO2C2] are confirmed to be reversible with lithium, with [SiOC3] irreversibleand [SiC4] inactive, by following the structure changes of silicon species during lithiuminsertion/distraction by29Si MAS NMR and XPS.
     C/Si-O-C materials with [SiO4],[SiO3C], or [SiO2C2] units as the majorcomponent were prepared by a sol-gel method. The C/Si-O-C materials with88wt%of[SiO4] units can deliver a capacity of653mAh/g after20discharge/charge cycles. Thematerials with78wt%of [SiO4] and [SiO3C] units can offer a capacity of898mAh/g;and those with87wt%of [SiO4],[SiO3C] and [SiO2C2] units exhibit a capacity of725mAh/g. Herein, the large reversibility of [SiO4],[SiO3C], or [SiO2C2] is verified.
     Based on the independence of the reactions between silicon species and lithium, astatistical model was established to express the relationship between the reversiblecapacity and silicon species distribution. According to the model, the order of reversiblecapacity is as follows:[SiO4]>[SiO3C]>[SiO2C2]>[SiOC3]. Furthermore, the capacityof [SiO4] and [SiO3C] units are3times larger than that of graphite.
     In order to further increase the capacity, Si/Si-O-C materials with excess ofelemental silicon were prepared by simply pyrolyzing poly (methylsilane) or byutilizing a sol-gel method. The electrochemical performances of these Si/Si-O-C materials were studied.
     Si/Si-O-C materials with excess silicon of <5.7wt%were prepared by pyrolyzingpoly(methylsilane) under hydrogen atmosphere. The materials formed at900℃,1000℃have a capacity of470mAh/g, and400mAh/g, respectively.
     Si/Si-O-C materials were also synthesized by utilizing a sol-gel method, with3-10wt%of nano silicon in the precursor. The Si/Si-O-C materials prepared with8wt%ofnano silicon in the precursor at1100℃have the best electrochemical performances.They own a first delithiation capacity of1371.6mAh/g, with a first coulombic efficiencyof78%. After30repeated cycles, the materials still keep a capacity of990mAh/g, witha capacity retaining ratio of72%. Furthermore, the materials still bear good C-rateperformances. They can deliver a capacity of715.9mAh/g after30cycles at a3C rate.
引文
[1]陈颖超.高功率型尖晶石锰酸锂正极材料的制备及掺杂改性研究:[D].长沙:国防科学技术大学,2011:4~5.
    [2] Suresh P, Shukla A K, Munichandraiah N. Electrochemical Properties ofLiMn1-xMxO2(M=Ni, Al, Mg) as Cathode Materials in Lithium-Ion Cells [J]. Journal ofthe Electrochemical Society,2005,152(12): A2273~2280.
    [3] Chung S Y, Bloking J T, Chiang Y M. Electronically ConductivePhospho-Olivines as Lithium Storage Electrodes [J]. Nature Materials,2002,1(2):123~128.
    [4] Lu Z, MacNeil D D, Dahn J R. Layered Li [NixCo1-2xMnx]O2Cathode Materialsfor Lithium-Ion Batteries [J]. Electrochemical and Solid-State Letters,2001,4(12):A200~A203.
    [5] Wu S H, Hsiao K M, Liu W R. The Preparation and Characterization of OlivineLiFePO4by a Solution Method [J]. Journal of Power Sources,2005,146(1-2):550~554.
    [6] Kasavajjula U, Wang C, Appleby A J. Nano-and Bulk-Silicon-Based InsertionAnodes for Lithium-Ion Secondary Cells [J]. Journal of Power Sources,2007,163(2):1003~1039.
    [7] Winter M, Besenhard J O. Electrochemical Lithiation of Tin and Tin-BasedIntermetallics and Composites [J]. Electrochimica Acta,1999,45(1-2):31~50.
    [8] Yang J, Winter M, Besenhard J O. Small Particle Size Multiphase Li-AlloyAnodes for Lithium-Ion-Batteries [J]. Solid State Ionics,1996,90(1-4):281~287.
    [9] Li H, Shi L, Wang Q, Chen L, Huang X. Nano-Alloy Anode for Lithium IonBatteries [J]. Solid State Ionics,2002,148(3-4):247~258.
    [10] Guo B, Shu J, Tang K, Bai Y, Wang Z, Chen L. Nano-Sn/Hard CarbonComposite Anode Material with High-Initial Coulombic Efficiency [J]. Journal ofPower Sources,2008,177(1):205~210.
    [11] Bazin L, Mitra S, Taberna P L, Poizot P, Gressier M, Menu M J, BarnabéA,Simon P, Tarascon J M. High Rate Capability Pure Sn-Based Nano-ArchitecturedElectrode Assembly for Rechargeable Lithium Batteries [J]. Journal of Power Sources,2009,188(2):578~582.
    [12] Kim C, Noh M, Choi M, Cho J, Park B. Critical Size of a Nano Sno2Electrode for Li-Secondary Battery [J]. Chemistry of Materials,2005,17(12):3297~3301.
    [13] Roberts G A, Cairns E J, Reimer J A. Magnesium Silicide as a NegativeElectrode Material for Lithium-Ion Batteries [J]. Journal of Power Sources,2002,110(2):424~429.
    [14] Wang G X, Sun L, Bradhurst D J. Innovative Nanosize Lithium StroageAlloys with Silica as Active Centre [J]. Journal of Power Sources,2000,88(2):278~281.
    [15] Vaugheya J T, Franssonb L, Swingera H A. Alterantive Anode Materials forLithium-Ion Batteries: A Study of Ag3Sb [J]. Journal of Power Sources,2003,119-121(1):64~68.
    [16] Kim Y L, Lee H Y, Jang S W. Electrochemical Characteristics of Co-Si Alloyand Multilayer Films as Anodes for Lithium Ion Microbatteries [J]. Electrochimica Acta,2003,48(18):2593~2597.
    [17] Wolfenstine J, Campos S, Foster D. Nano-Scale Cu6sn5Anodes [J]. Journalof Power Sources,2002,109(1):230~233.
    [18] Wang G X, Sun L, Bradhurst D H. Lithium Storage Properties ofNanocrystalline Eta-Cu6sn5alloys Prepared by Ball-Milling [J]. Journal of Alloys andCompounds,2000,299(1-2): L12~15.
    [19] Wachtler M, Winter M, Besenhard J O. Anodic Materials for RechargeableLi-Batteries [J]. Journal of Power Sources,2002,105(2):151~160.
    [20] Mukaibo H, Yoshizawa A, Momma T. Particle Size and Performance of SnS2Anodes for Rechargeable Lithium Batteries [J]. Journal of Power Sources,2003,119-121(1):60~63.
    [21] Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T. Tin-BasedAmorphous Oxide: A High-Capacity Lithium-Ion-Storage Material. Science,1997,276(5317):1395~1397.
    [22] Croce F, Passerini S, Scrosati B. Ambient Temperature Lithium PolymerRocking-Chair Batteries [J]. Journal of the Electrochemical Society,1994,141(6):1405~1409.
    [23] Ohzuku T, Ueda A. Why Transition Metal (Di) Oxides Are the MostAttractive Materials Forbatteries [J]. Solid State Ionics,1994,69(3-4):201~211.
    [24] Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T. Tin-BasedAmorphous Oxide: A High-Capacity Lithium-Ion Storage Material [J]. Science,1997,276(5317):1395~1397.
    [25] Courtney A, Dahn J R. Electrochemical and in Situ X-Ray Diffraction Studiesof the Reaction of Lithium with Tin Oxide Composites [J]. Journal of theElectrochemical Society,1997,144(6):1045~2052.
    [26] Courtney A, McKinnon W R, Dahn J R. On the Aggregation of Tin in SnOComposite Glasses Caused by the Reversible Reaction with Lithium[J]. Journal of theElectrochemical Society,1999,146(1):59~68.
    [27] Ohzuku T, Ueda A, Yamamoto N. Zero-Strain Insertion Material ofLi(Li1/3Ti5/3)O4for Rechargeable Lithium Cells [J]. Journal of the ElectrochemicalSociety,1995,142(5):1431~1436.
    [28]雷永泉.新能源材料[M].天津:天津大学出版社,2000:122~124.
    [29] Noailles L D, Johnson C S, Vaughey J T, Thackeray M M. Lithium Insertioninto Hollandite-Type Tio2[J]. Journal of Power Sources,1999,81-82:259~263.
    [30] Exnar I, Kavan L, Huang S Y, Gr tzel M. Novel2V Rocking-Chair LithiumBattery Based on Nano-Crystalline Titanium Dioxide [J]. Journal of Power Sources,1997,68(2):720~722.
    [31] Débart A, Dupont L, Patrice R, Tarascon J M. Reactivity of Transition Metal(Co, Ni, Cu) Sulphides Versus Lithium: The Intriguing Case of the Copper Sulphide [J].Solid State Sciences,2006,8(6):640~651.
    [32] Kumagai N, Koishikawa Y, Komaba S, Koshiba N. Thermodynamics andKinetics of Lithium Intercalation into Nb2O5Electrodes for a2V RechargeableLithium Battery [J]. Journal of the Electrochemical Society,1999,146(9):3203~3210.
    [33] Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Nano-SizedTransition-Metal Oxides as Negative-Electrode Materials for Lithium Ion Batteries [J].Nature,2000,407:496~499.
    [34] Grugeon S, Laruelle S, Herrera-urbina R. Particle Size Effects on theElectrochemical Performance of Copper Oxides toward Lithium [J]. Journal of theElectrochemical Society,2001,148(4): A285~292.
    [35] Laruelle A S, Grugeon S, P P. On the Origin of Extra ElectrochemicalCapacity Displayed by Mo/Li Cells at Low Potential [J]. Journal of the Electroc hemicalSociety,2002,149(5): A627~634.
    [36] Nishijima M, Takami N, Takeda Y. Li Deintercalation-Intercalation Reactionand Structural Change in Lithium Transition Metal Nitride, Li7MnN4[J]. Journal of theElectrochemical Society,1994,141(11):2966~2971.
    [37] Suzuki S, Shodai T. Electronic Structure and Electrochemical Properties ofElectrode Material Li7-xMnN4[J]. Solid State Ionics,1999,116(1-2):1~9.
    [38] Ishijima M, Kagonhashi T, Imanishi M, Takeda Y, Yamamoto O, Kondo S.Synthesis and Electrochemical Studies of a New Anode Material, Li3-xCoxN [J]. SolidState Ionics,1996,83(1-2):107~111.
    [39] Gregory D H, Omeara P M, Gordon A G. Layered Ternary Transition MetalNitrides: Synthesis, Structure and Physical Properties [J]. Journal of the Alloys andCompounds,2001,317-318:237~244.
    [40] Nishijima M, Kagonhashi T, Takeda Y. Anode Performance of New-LayeredNitrides [J]. Solid State Ionics,1996,83:107~117.
    [41] Dahn J R, Xing W, Gao Y. The “Falling Cards Model” for the Structure ofMicro-Porous Carbons [J]. Carbon,1997,35(6):825~830.
    [42] Sato K, Noguchi M, Demachi A, Oki N, Endo M. A Mechanism of LithiumStorage in Disordered Carbons [J]. Science,1994,264(5158):556~558.
    [43] Shi H, Barker J, Sa di M Y, Koksbang R. Structure and Lithium IntercalationProperties of Synthetic and Natural Graphite [J]. Journal of the Electrochemical Society,1996,143(11):3466~3472.
    [44] Ohzuku T, Iwakoshi Y, Sawai K. Formation of Lithium-Graphite IntercalationCompounds in Nonaqueous Electrolytes and Their Application as a Negative Electrodefor a Lithium Ion (Shuttlecock) Cell [J]. Journal of the Electrochemical Society,1993,140(9):2490~2498.
    [45] Menachem C, Peled E, Burstein L, Rosenberg Y. Characterization ofModified Ng7Graphite as an Improved Anode for Lithium-Ion Batteries [J]. Journal ofPower Sources,1997,68(2):277~282.
    [46] Mabuchi A, Tokumitsu K, Fujimoto H, Kasuh T. Charge-DischargeCharacteristics of the Mesocarbon Miocrobeads Heat-Treated at Different Temperatures[J]. Journal of the Electrochemical Society,1995,142(4):1041~1046.
    [47] Matsumura Y, Wang S, Mondori J. Interactions between Disordered Carbonand Lithium in Lithium Ion Rechargeable Batteries [J]. Carbon,1995,33(10):1457~1462.
    [48] Zheng T, Liu Y, Fuller E W, Tseng S, Von S U, Dahn J R. Lithium Insertionin High Capacity Carbonaceous Materials [J]. Journal of the Electrochemical Society,1995,142(8):2581~2590.
    [49] Zheng T, McKinnon W R, Dahn J R. Hysteresis during Lithium Insertion inHydrogen-Containing Carbons [J]. Journal of the Electrochemical Society,1996,143(7):2137~2145.
    [50] Nanba T, Asano Y, Benino Y, Sakida S, Miura Y. Molecular OrbitalCalculation of the29Si NMR Chemical Shift in Borosilicates: The Effect of BoronCoordination to [SiO4] Units [J]. Physics and Chemistry of Glasses: European Journalof Glass Science and Technology Part B,2009,50(5):301~304.
    [51] Tang K, Yu X, Sun J, Li H, Huang X. Kinetic Analysis on LiFePO4ThinFilms by CV, Gitt, and EIS [J]. Electrochimica Acta,2011,56(13):4869~4875.
    [52] Everett D H. Manual of Symbols and Terminology for PhysicochemicalQuantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloidand Surface Chemistry [J]. Pure and Applied Chemistry,1972,31(4):577~638.
    [53] Zadin V, Brandell D. Modelling Polymer Electrolytes for3d-MicrobatteriesUsing Finite Element Analysis [J]. Electrochimica Acta,2011,57(0):237-243.
    [54] Zhou Y N, Li W J, Chen H J, Liu C, Zhang L, Fu Z. Nanostructured NiSiThin Films as a New Anode Material for Lithium Ion Batteries [J]. ElectrochemistryCommunications,2011,13(6):546-549.
    [55] Awe O E, Odusote Y A, Hussain L A, Akinlade O. Temperature Dependenceof Thermodynamic Properties of Si-Ti Binary Liquid Alloys [J]. Thermochimica Acta,2011,519(1-2):1-5.
    [56] Boukamp B A, Lesh G C, Huggins R A. All-Solid Lithium Electrodes withMixed-Conductor Matrix [J]. Journal of the Electrochemical Society,1981,128(4):725~729.
    [57] Si Q, Hanai K, Imanishi N, Kubo M, Hirano A, Takeda Y, Yamamoto O.Highly Reversible Carbon-Nano-Silicon Composite Anodes for Lithium RechargeableBatteries [J]. Journal of Power Sources,2009,189(1):761~765.
    [58] Ng S H, Wang J, Wexler D, Chew S Y, Liu H K. Amorphous Carbon-CoatedSilicon Nanocomposites: A Low-Temperature Synthesis via Spray Pyrolysis and TheirApplication as High-Capacity Anodes for Lithium-Ion Batteries [J]. The Journal ofPhysical Chemistry C,2007,111(29):11131~11138.
    [59] Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y.Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with LongCycle Life [J]. Nano Letters,2011,11(7):2949~2954.
    [60] Baranchugov V, Markevich E, Pollak E, Salitra G, Aurbach D. AmorphousSilicon Thin Films as a High Capacity Anodes for Li-Ion Batteries in Ionic LiquidElectrolytes [J]. Electrochemistry Communications,2007,9(4):796~800.
    [61] Jung H, Park M, Yoon Y G, Kim G B, Joo S K. Amorphous Silicon Anode forLithium-Ion Rechargeable Batteries [J]. Journal of Power Sources,2003,115(2):346~351.
    [62] Lee K L, Jung J Y, Lee S W, Moon H S, Park J W. ElectrochemicalCharacteristics of a-Si Thin Film Anode for Li-Ion Rechargeable Batteries [J]. Journalof Power Sources,2004,129(2):270~274.
    [63] Kim J B, Lee H Y, Lee K S, Lim S H, Lee S M. Fe/Si Multi-Layer Thin FilmAnodes for Lithium Rechargeable Thin Film Batteries [J]. ElectrochemistryCommunications,2003,5(7):544~548.
    [64] Lee J K, Smith K B, Hayner C M, Kung H H. Silicon Nanoparticles-GraphenePaper Composites for Li Ion Battery Anodes [J]. Chemical Communications,2010,46(12):2025~2027.
    [65] Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y.High-Performance Lithium Battery Anodes Using Silicon Nanowires [J]. NatureNanotechnology2008,3(1):31~35.
    [66] Chan C K, Patel R N, O’Connell M J, Korgel B A, Cui Y. Solution-GrownSilicon Nanowires for Lithium-Ion Battery Anodes [J]. ACS Nano,2010,4(3):1443~1450.
    [67] Cui L F, Hu L, Choi J W, Cui Y. Light-Weight Free-Standing CarbonNanotube-Silicon Films for Anodes of Lithium Ion Batteries [J]. ACS Nano,2010,4(7):3671~3678.
    [68] Chen X, Gerasopoulos K, Guo J, Brown A, Wang C, Ghodssi R, Culver J N.Virus-Enabled Silicon Anode for Lithium-Ion Batteries [J]. ACS Nano,2010,4(9):5366~5372.
    [69] Kim H, Cho J. Superior Lithium Electroactive Mesoporous Si-CarbonCore-Shell Nanowires for Lithium Battery Anode Material [J]. Nano Letters,2008,8(11):3688~3691.
    [70] Cui L F, Yang Y, Hsu C M, Cui Y. Carbon-Silicon Core-Shell Nanowires asHigh Capacity Electrode for Lithium Ion Batteries [J]. Nano Letters,2009,9(9):3370~3374.
    [71] Song T, Xia J, Lee J H, Lee D H, Kwon M S, Choi J M, Wu J, Doo S K,Chang H, Park W I, Zang D S, Kim H, Huang Y, Hwang K C, Rogers J A, Paik U.Arrays of Sealed Silicon Nanotubes as Anodes for Lithium Ion Batteries [J]. NanoLetters,2010,10(5):1710~1716.
    [72] Park M H, Kim M G, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J. SiliconNanotube Battery Anodes [J]. Nano Letters,2009,9(11):3844~3847.
    [73] Kim I S, Kumta P N. High Capacity Si/C Nanocomposite Anodes for Li-IonBatteries [J]. Journal of Power Sources,2004,136(1):145~149.
    [74] Wilson A M, Reimers J N, Fuller E W, Dahn J R. Lithium Insertion inPyrolyzed Siloxane Polymers [J]. Solid State Ionics,1994,74(3-4):249~254.
    [75] Yoshio M, Wang H, Fukuda K, Umeno T, Dimov N, Ogumi Z.Carbon-Coated Si as a Lithium-Ion Battery Anode Material [J]. Journal of theElectrochemical Society,2002,149(12): A1598~1603.
    [76] Shu J, Li H, Yang R, Shi Y, Huang X. Cage-like Carbon Nanotubes/SiComposite as Anode Material for Lithium Ion Batteries [J]. ElectrochemistryCommunications,2006,8(1):51~54.
    [77] Holzapfel M, Buqa H, Hardwick L J, Hahn M, Wursig A, Scheifele W, NovakP, Kotz R, Veit C, Petrat F M. Nano Silicon for Lithium-ion Batteries [J].Electrochimica Acta,2006,52(3):973~978.
    [78] Kim B C, Uono H, Sato T, Fuse T, Ishihara T, Senna M. Li-ion Battery AnodeProperties of Si-Carbon Nanocomposites Fabricated by High Energy Multiring-TypeMill [J]. Solid State Ionics,2004,172(1-4):33~37.
    [79] Yang J, Wang B F, Liu Y, Xie J Y, Wen Z S. Si/C Composites for HighCapacity Lithium Storage Materials [J]. Electrochemical and Solid-State Letters,2003,6(8): A154~156.
    [80] Wang C S, Wu G T, Zhang X B, Qi Z F, Li W Z. Lithium Insertion inCarbon-Silicon Composite Materials Produced by Mechanical Milling [J]. Journal ofthe Electrochemical Society,1998,145(8):2751~2758.
    [81] Zhang Y, Zhang X G, Zhang H L, Zhao Z G, Li F, Liu C, Cheng H M.Composite Anode Material of Silicon/Graphite/Carbon Nanotubes for Li-Ion Batteries[J]. Electrochimica Acta,2006,51(23):4994~5000.
    [82] Liu Y, Hanai K, Horikawa K, Imanishi N, Hirano A, Takeda Y.Electrochemical Characterization of a Novel Si-Graphite-Li2.6Co0.4N Composite asAnode Material for Lithium Secondary Batteries [J]. Materials Chemistry and Physics,2005,89(1):80~84.
    [83] Wang G X, Yao J, Liu H K. Characterization of Nanocrystalline Si-McmbComposite Anode Materials [J]. Electrochemical and Solid-State Letters,2004,7(8):A250~A253.
    [84] Liu Y, Hanai K, Yang J, Imanishi N, Hirano A, Takeda Y. Silicon/carbonComposites as Anode Materials for Li-ion Batteries [J]. Electrochemical and Solid-StateLetters,2004,7(10): A369~372.
    [85] Wang W, Kumta P N. Nanostructured Hybrid Silicon/Carbon NanotubeHeterostructures: Reversible High-Capacity Lithium-ion Anodes [J]. ACS Nano,2010,4(4):2233~2241.
    [86] Guo Z P, Milin E, Wang J Z, Chen J, Liu H K. Silicon/Disordered CarbonNanocomposites for Lithium-Ion Battery Anodes [J]. Journal of the ElectrochemicalSociety,2005,152(11): A2211~2216.
    [87] Lee H Y, Lee S M. Carbon-Coated Nano-Si Dispersed Oxides/GraphiteComposites as Anode Material for Lithium Ion Batteries [J]. ElectrochemistryCommunications,2004,6(5):465~469.
    [88] Wang G X, Ahn J H, Yao J, Bewlay S, Liu H K. Nanostructured Si-CComposite Anodes for Lithium-Ion Batteries [J]. Electrochemistry Communications,2004,6(7):689~692.
    [89] Hasegawa T, Mukai S R, Shirato Y, Tamon H. Preparation of Carbon GelMicrospheres Containing Silicon Powder for Lithium Ion Battery Anodes [J]. Carbon,2004,42(12-13):2573~2579.
    [90] Yang X, Wen Z, Xu X, Lin B, Lin Z. High-PerformanceSilicon/Carbon/Graphite Composites as Anode Materials for Lithium Ion Batteries [J].Journal of the Electrochemical Society,2006,153(7): A1341~A1344.
    [91] Gao B, Sinha S, Fleming L, Zhou O. Alloy formation in nanostructuredsilicon [J]. Advanced Materials,2001,13(11):816~819.
    [92] Sun Q, Zhang B, Fu Z W. Lithium Electrochemistry of SiO2Thin FilmElectrode for Lithium-Ion Batteries [J]. Applied Surface Science,2008,254(13):3774~3779.
    [93] Guo B, Shu J, Wang Z, Yang H, Shi L, Liu Y, Chen L. ElectrochemicalReduction of Nano-SiO2in Hard Carbon as Anode Material for Lithium Ion Batteries[J]. Electrochemistry Communications,2008,10(12):1876~1878.
    [94] Chang W S, Park C M, Kim J H, Kim Y U, Jeong G, Sohn H J.Quartz(SiO2):A New Energy Storage Anode Material for Li-Ion Batteries [J]. Energy&Environmental Science,2012,(5):6895~6899.
    [95] Yang J, Takeda Y, Imanishi N, Capiglia C, Xie J, Yamamoto O. SiOx-BasedAnodes for Secondary Lithium Batteries [J]. Solid State Ionics,2002,152-153:125~129.
    [96] Tabuchi T, Yasuda H, Yamachi M. Li-Doping Process for LixSiO-NegativeActive Material Synthesized by Chemical Method for Lithium-Ion Cells [J]. Journal ofPower Sources,2005,146(1):507~509.
    [97] Yang X, Wen Z, Xu X, Lin B, Huang S. Nanosized Silicon-Based CompositeDerived by in Situ Mechanochemical Reduction for Lithium Ion Batteries [J]. Journal ofPower Sources,2007,164(2):880~884.
    [98] Jeong G, Kim Y U, Krachkovskiy S A, Lee C K. A Nanostructured SiAl0.2OAnode Material for Lithium Batteries[J]. Chemistry of Materials,2010,22(19):5570~5579.
    [99] Zhang T, Gao J, Zhang H P, Yang L C, Wu Y P, Wu H Q. Preparation andElectrochemical Properties of Core-Shell Si/SiO Nanocomposite as Anode Material forLithium Ion Batteries [J]. Electrochemistry Communications,2007,9(5):886~890.
    [100] Nagao Y, Sakaguchi H, Honda H, Fukunaga T, Esaka T. Structural Analysisof Pure and Electrochemically Lithiated SiO Using Neutron Elastic Scattering [J].Journal of the Electrochemical Society,2004,151: A1572~1575.
    [101] Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M. Analysis of SiOAnodes for Lithium-Ion Batteries [J]. Journal of the Electrochemical Society,2005,152(10): A2089~2091.
    [102] Liu W R, Yen Y C, Wu H C, Winter M, Wu N L. Nano-porous SiO/CarbonComposite Anode for Lithium-ion Batteries[J]. Journal of Applied Electrochemistry,2009,39(9):1643~1649.
    [103] Ren Y R, Qu M Z, Yu Z L. Sio/Cnts: A New Anode Composition forLithium-ion Battery [J]. Sci. China Ser. B-Chem.,2009,52(12):2047~2050.
    [104] Wang J, Zhao H, He J, Wang C, Wang J. Nano-Sized SiOx/C CompositeAnode for Lithium Ion Batteries [J]. Journal of Power Sources,2011,196(10):4811~4815.
    [105] Doh C H, Park C W, Shin H M, Kim D H, Chung Y D, Moon S I, Jin B S,Kim H S, Veluchamy A. A New SiO/C Anode Composition for Lithium-Ion Battery [J].Journal of Power Sources,2008,179(1):367~370.
    [106] Morita T, Takami N. Nano Si Cluster-SiOx\C Composite Material asHigh-Capacity Anode Material for Rechargeable Lithium Batteries [J]. Journal of theElectrochemical Society,2006,153(2): A425~430.
    [107] Kim J H, Sohn H J, Kim H, Jeong G, Choi W. Enhanced Cycle Performanceof SiO-C Composite Anode for Lithium-Ion Batteries [J]. Journal of Power Sources,2007,170(2):456~459.
    [108] Doh C H, Shin H M, Kim D H, Ha Y C, Jin B S, Kim H S, Moon S I,Veluchamy A. Improved anode performance of thermally treated SiO/C composite withan organic solution mixture [J]. Electrochemisty Communications,2008,10(2):233~237.
    [109] Renlund G M, Prochazka S, Doremus R H. Silicon Oxycarbide Glasses: PartII. Structure and Properties [J]. Journal of Materials Research,1991,6(12):2723~2724.
    [110] Brquel H, Parmentier J, Walter S, Badheka R, Trimmel G, Masse S,Latournerie J, Dempsey P, Turquat C, Desmartin C A. Systematic StructuralCharacterization of the High-Temperature Behavior of Nearly Stoichiometric SiliconOxycarbide Glasses [J]. Chemistry of Materials,2004,16(13):2585~2598.
    [111] Ferrari A C, Robertson J. Interpretation of Raman Spectra of Disordered andAmorphous Carbon [J]. Physical Review B,2000,61(20):14095~14107.
    [112] Burns G T, Taylor R B, Xu Y, Zangvil A, Zank G A. High-TemperatureChemistry of the Conversion of Siloxanes to Silicon Carbide [J]. Chemistry of Materials,1992,4(6):1313~1323.
    [113] Babonneau F, Bois L, Yang C Y, V.Interrante L. Sol-gel Synthesis of aSiloxypolycarbonsilane Gel and Its Pyrolytic Conversion to Silicon Oxycarbide [J].Chemistry of Materials,1994,6(1):51~57.
    [114] Bois L, Maquet J, Babonneau F, Bahloul D. Structural Characterization ofSol-Gel Derived Oxycarbide Glasses.2. Study of the Thermal Stability of the SiliconOxycarbide Phase [J]. Chemistry of Materials,1995,7(5):975~981.
    [115] Jones R G, Ando W, Chojnowski J.Silicon-Containing Polymers: TheSciences and Technology of Their Syntheesis and Applications [M]. Kluwer AcademicPublishers/Springer Sciences+Business Media,2000:527~550.
    [116] Pantano C G, Singh A K, Zhang H. Silicon Oxycarbide Glasses [J]. Journalof Sol-Gel Science and Technology,1999,14(1):7~25.
    [117] Saha A, Rajw R, Williamson D L. A Model for the Nanodomains inPolymer-Derived Silicon oxycarbide [J]. Journal of the American Ceramic Society,2006,89(7):2188~2195.
    [118] Wilson A, Zank G, Eguchi K, Xing W, Yates B, Dahn J. Pore Creation inSilicon Oxycarbides by Rinsing in Dilute Hydrofluoric Acid [J]. Chemistry of Materials,1997,9(10):2139~2144.
    [119] Ahn D, Raj R. Thermodynamic Measurements Pertaining to the HystereticIntercalation of Lithium in Polymer-Derived Silicon Oxycarbide [J]. Journal of PowerSources,2010,(195):3900~3906.
    [120] Fukui H, Ohsuka H, Hino T, Kanamura K. A Si-O-C Composite Anode:High Capability and Proposed Mechanism of Lithium Storage Associated withMicrostructural Characteristics [J]. ACS Applied Materials&Interfaces,2010,2(4):998~1008.
    [121] Wilson A M. Lithium Insertion in Carbonaceous Materials ContainingSilicon:[D]. Ottawa: Simon Fraser University,1992:1~100.
    [122] Wilson A M, Zank G, Eguchi K, Xing W, Dahn J R. PyrolysedSilicon-Containing Polymers as High Capacity Anodes for Lithium-Ion Batteries [J].Journal of Power Sources,1997,68(2):195~200.
    [123] Xing W, Wilsonb A M, Zank G, Dahn J R. Pyrolysed Pitch-PolysilaneBlends for Use Lithium Ion Batteries as Anode Materials in Lithium Ion Batteries [J].Solid State Ionics,1997,(93):239~244.
    [124] Ning L J, Wu Y P, Wang L Z, Fang S B, Holze R. Carbon Anode Materialsfrom Polysiloxanes for Lithium Ion Batteries [J]. J Solid State Electrochem,2005,(9):520~523.
    [125] Wilson A M, Zank G, Eguchi K, Xing W, Yates B, Dahn J R. PolysiloxanePyrolysis [J]. Chemistry of Materials,1997,9(7):1601~1606.
    [126] Wilson A M, Xing W, Zank G, Yates B, Dahn J R. PyrolysedPitch-Polysilane Blends for Use as Anode Materials in Lithium Ion Batteries Ii: TheEffect of Oxygen [J]. Solid State Ionics,1997,100(3-4):259~266.
    [127] Shin R, Mukai Y Y, Takao M, Hajime T. Studies on the IrreversibleCapacity of Anode Materials for Li+Batteries Synthesized by the Co-Carbonization ofPhenolic Resins with Polysilane Polymers.
    [128] Konno H, Morishita T, Sato S, Habazaki H, Inagaki M. High-CapacityNegative Electrode Materials Composed of Si-C-O Glass-Like Compounds andExfoliated Graphite for Lithium Ion Battery [J]. Carbon,2005,(43):1084~1114.
    [129] Konno H, Morishita T, Wan C, Kasashima T, Habazaki H, Inagaki M.Si-C-O Glass-Like Compound/Exfoliated Graphite Composites for Negative Electrodeof Lithium Ion Battery [J]. Carbon,2007,45(3):477~483.
    [130] Shen J, Ahn D, Raj R. C-Rate Performance of Silicon Oxycarbide Anodesfor Li+Batteries Enhanced by Carbon Nanotubes [J]. Journal of Power Sources,2011,196(5):2875~2878.
    [131] Bhandavat R, Cologna M, Rai R, Singh G. Synthesis and ElectrochemicalPerformance of SiOC-Carbon Nanotube Composite Coatings [J]. Bulletin of theAmerican Physical Society,2012,57(1).
    [132] Liu X, Xie K, Zheng C M, Wang J, Jing Z. Si-O-C Materials Prepared with aSol-Gel Method for Negative Electrode of Lithium Battery [J]. Journal of PowerSources,2012,214:119~123.
    [133] Sanchez-Jimenez P E, Raj R. Lithium Insertion in Polymer-Derived SiliconOxycarbide Ceramics [J]. Journal of the American Ceramic Society,2010,93(4):1127~1135.
    [134] Endo M, Kim C, Karaki T, Fujino T, Matthews M J, Brown S D M,Dresslhaus M S. In Situ Raman Study of PPP-Based Disordered Carbon as an Anode ina Li Ion Battery [J]. Synthetic Metals,1998,98(1):17~24.
    [135] Jung H, Park M, Yoon Y G, Kim G B, Joo S K. Amorphous Silicon Anodefor Lithium-ion Rechargeable Batteries [J]. Journal of Power Sources,2003,15(2):346~351.
    [136] Takami N, Satoh A, Ohsaki T, Kanda M. Large Hysteresis During LithiumInsertion into and Extraction from High-Capacity Disordered Carbons [J]. Journal of theElectrochemical Society,1998,145(2):478~482.
    [137] Yi Z, Han X, Ai C, Liang Y, Sun J. Reversible Lithium Intercalation inDisordered Carbon Prepared from3,4,9,10-Perylenetetracarboxylic Dianhydride [J].Journal of Solid State Electrochemistry,2008,12(9):1061~1066.
    [138] Gong J, Wu H. Electrochemical Intercalation of Lithium Species intoDisordered Carbon Prepared by the Heat-Treatment of Poly (P-Phenylene) at650°C forAnode in Lithium-Ion Battery [J]. Electrochimica Acta,2000,45(11):1753~1762.
    [139] Mackenzie K J D, Smith M E.Multinuclear Solid-State NMR of InorganicMaterials [M]. Pergamon,2002:1~100.
    [140] Moulder J F, Stickle W F, Sobol P E, Bomben K D.Handbook of X RayPhotoelectron Spectroscopy: A Reference Book of Standard Spectra for Identificationand Interpretation of XPS Data [M]. Physical Electronics Division,1992:1~100.
    [141] Radovanovic E, Gozzi M F, Gon alves M C, Yoshida I V P. SiliconOxycarbide Glasses from Silicone Networks [J]. Journal of Non-Crystalline Solids,1999,248(1):37~48.
    [142] Soraru G D, D'Andrea G, Campostrini R, Babonneau F, Mariotto G.Structural Characterization and High-Temperature Behavior of Silicon OxycarbideGlasses Prepared from Sol-Gel Precursors Containing Si-H Bonds [J]. Journal of theAmerican Ceramic Society,1995,78(2):379~387.
    [143] Sorarh G D, Andrea G D, Glisenti A. XPS Characterization of Gel-DerivedSilicon Oxycarbide Glasses [J]. Materials Letters,1996,21:1~5.
    [144] Iseki T, Narisawa M, Katase Y, Oka K, Dohmaru T, Okamura K. AnEfficient Process of Cross-Linking Poly(Methylsilane) for SiC Ceramics [J]. Chemistryof Materials,2001,13(11):4163~4169.
    [145] Duboudin F, Birot M, Babot O, Dunogues J, Calas R. Kinetic Spectroscopyof Diphenylgermylene Ph2Ge Following Laser Flash Photolysis of Bis(Trimethylsilyl)Diphenylgermane (Me3Si)2GePh2[J]. Journal of Organometallic Chemistry,1988,341(1-3): C17~22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700