用户名: 密码: 验证码:
集成电路LDO稳压器的电磁兼容敏感度机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来集成电路(IC)的制造工艺不断提升,已从超深亚微米进入到纳米阶段。伴随着半导体特征尺寸不断减小,工作频率越来越高,涌现出大量的电磁兼容(EMC)问题,例如同时开关噪声突出、片内互扰严重、寄生效应加剧等,IC的电磁敏感度已成为影响电子系统性能提高的瓶颈。本文研究线性低压差(LDO)稳压器在电磁干扰(EMI)作用下的失效模式和失效机理,分析失效对电路系统预期造成的影响。采用国际电子委员会(IEC)标准方法,测试LDO稳压器老化过程中的频域敏感度性能。分析着重于查明失效模式、追查失效机理以及失效预测。最后通过敏感度建模和仿真结果,对失效机理进行了验证分析。
     第一部分对LDO稳压器EMC敏感度机理与分析方法展开研究。首先对电源稳压器的电路结构展开研究,分析了LDO稳压器的优缺点。然后剖析了LDO稳压器电路的典型结构,并对稳压器的关键电路——运算放大器、带隙电压基准电路和功率开关元件展开具体研究,分析了LDO稳压器关键电路的敏感度失效机理。对目前应用于集成电路电磁兼容研究的建模与仿真方法进行综述,主要分析了LDO稳压器敏感度研究中采用的电路级和行为级两种建模与仿真分析方法。为了配合敏感度机理和建模仿真研究,选取直接功率注入法作为研究LDO稳压器的测试方法。
     第二部分展开LDO稳压器敏感度电路级建模与仿真方法研究。首先分析了一款基于飞思卡尔90纳米工艺的实验芯片LDO稳压器电路结构,然后分析片上电压传感器的异步和同步采集原理,提出了一种创新的片上电压测试方法。对稳压器进行直流功能性测试、阻抗测试和敏感度测试,分析了测试方法和结果。提出了LDO稳压器的敏感度电路级建模与仿真流程,通过对比仿真与片上测试结果,提出了由简单至复杂的四种级别电路模型,分析了稳压器关键子电路和寄生元件对敏感度影响在频域1MHz至1GHz间的分布权重。
     第三部分展开LDO稳压器敏感度行为级建模与仿真方法研究。研究了一款工业级LDO稳压器的电路结构,然后分析了敏感度测试电路板和阻抗校准板的电路设计,并搭建了敏感度测试环境。稳压器测试包括直流测试、阻抗测试以及DPI传导敏感度测试。测试结果揭示了LDO稳压器的直流特性,有源和无源阻抗特性以及稳压器输出端失效类型和敏感度水平。建模过程中,由简单线性模型逐渐深入提出线性和非线性行为级模型。最后,仿真结果实现了与测试结果在整个频域的匹配。
     最后,对电应力老化导致传导敏感度变化展开研究,并将其应用于LDO稳压器电路。进行了大量的老化实验。老化条件采用电应力,通过实验验证,测试稳压器的直流特性和敏感度水平变化情况。测试结果显示,电应力加速老化导致稳压器对电源线上的EMI扰动更加敏感。在机理分析中,采用数学推导计算得出运放输入PMOS差分对会导致输出电压的偏移,达到敏感度分析设定的失效判据。老化过程中,电流镜中NMOS器件的阈值电压增加导致LDO稳压器的输出电压降低,而偏置电流的减少则进一步增加了稳压器的敏感度。建立LDO稳压器的敏感度加速老化模型,其中包含可靠性模型和敏感度模型,可实现稳压器在整个生命周期内的敏感度水平预测。
In recent years, the CMOS technology has changed from ultra deep submicron tonanometer. With the decreasing of semiconductor feature size and the increasing ofon-chip clock frequency, there come serious Electromagnetic Compatibility (EMC)problems like simultaneous switching noise, on-chip inter-disturbance, parasitic effectsand so on. The IC’s electromagnetic susceptibility (EMS) has become the bottleneck ofthe electron system performance improvement. This paper studies the failure modes andmechanism of the linear low-dropout (LDO) voltage regulator under ElectromagneticInterference (EMI) and evaluates the defect influence to circuit system. Thesusceptibility performance of the LDO regulator in ageing process is measured byInternational Electrotechnical Commission (IEC) standard test methods in the frequencydomain. The analysis is mainly focused on identifying failure modes, failure mechanism,modeling and prediction by simulations. The failure mechanism is validated bysusceptibility modeling and simulation results.
     In the first part of the thesis, the LDO susceptibility mechanism and analysismethods are studied. Firstly, the structure of power regulator circuit is analyzed to findthe advantages and disadvantages of LDO regulator. Then, the typical structure of LDOvoltage regulator circuit is divided into operational amplifier, bandgap voltage referencecircuit and pass devices for immunity failure mechanism analysis. The current modelingand simulation methods which are applied in IC EMC research are reviewed. The twokinds of modeling and simulation analysis methods including the circuit level andbehavioral level are mainly analyzed for LDO regulator study. And the direct powerinjection (DPI) method is selected as the test technology to help the mechanism analysis,modeling and simulation process.
     In the second part of the thesis, the LDO regulator sensitivity circuit levelmodeling and simulation method is evaluated. The structure of a test chip designed byFreescale90nm technology is analyzed firstly. Based on the on-chip voltage sensorasynchronous and synchronous acquisition principle study, an innovative on-chipvoltage test method is presented. Subsequently, the DC functional, impedance andsusceptibility measurement results are explored. The LDO regulator immunity circuitlevel modeling and simulation flow is presented combined with simulation and on-chiptest results. Finally, four types of models from simple to complex levels are discussedstep by step to distinguish contributions of key sub-circuits and parasitic elements in thefrequency domain from1MHz to1GHz.
     In the third part of the thesis, the LDO regulator susceptibility behavioral levelmodeling and simulation method is evaluated. The structure of an industry test chip isanalyzed firstly. With the test circuit PCB board and impedance calibration board, the immunity measurement environment is built. The test results of DC, impedance and DPIconducted immunity show the DC characteristic, active and passive impedance andsusceptibility level. In modeling process, the non-linear behavioral is proposed fromsimple linear model and linear behavioral model. The simulation results achieve a goodmatch with the test results in the frequency domain.
     Finally, this paper analyses the drift in LDO immunity after accelerated ageing. Alarge number of measurements which show the variations in the test results for DCcharacteristic, impedance and immunity reveal increasing susceptibility after electricalaccelerated ageing. With the susceptibility drift mechanism study, the immunitydecreasing in ageing process is explained by mathematical analytical analysis of theop-amp input PMOS differential pair. In ageing process, the increasing of NMOSthreshold voltage leads to the decreasing of LDO regulator output voltage. And the biascurrent decreasing is mainly responsible for the immunity decreasing. The regulatoraccelerating ageing model which is combined with reliability and immunity model isestablished to realize the susceptibility level prediction of the entire life cycle.
引文
[1] Clayton R.Paul,闻映红.电磁兼容导论(第二版)[M].北京:人民邮电出版社,2007.
    [2] S. Ben Dhia, M. Ramdani, E. Sicard. Electromagnetic Compatibility of IntegratedCircuits–Techniques for low Emission and Susceptibility [M]. Springer, ISBN0-387-26600-3,2006.
    [3] ITRS2007[EB/OL].http://www.itrs.net/Links/2007ITRS/Home2007.htm.
    [4] Mohamed Ramdani, et al. The Electromagnetic Compatibility of IntegratedCircuits—Past, Present, and Future [J]. IEEE Tans on ElectromagneticCompatibility,2009,51(1):78~100.
    [5] J.H.Davies. MSP430Microcontroller Basics[M]. ISBN0-750-68276-0,2008.
    [6] S. Sedore. SCEPTRE: An automated digital computer program for determining theresponse of electronic systems to transient nuclear radiation [R]. IBM SpaceGuidance Center, Oswego, N.Y,1967,11:66-126.
    [7] B. A. Wooley and D. O. Pederson. A computer-aided evaluation of the741amplifier [J]. IEEE J. Solid-State Circuits,1971,6(6):357~366.
    [8] R. E. Richardson, V. G. Puglielli, and R. A. Amadori. Microwave interference effectin bipolar transistors [J]. IEEE Trans. Electromagn. Compat.,1975,17(4):216~219.
    [9] Integrated Circuit Electromagnetic Susceptibility Investigation Handbook Phase III
    [Z], McDonnell Douglas Astronaut. Co., Titusville, FL,1978.
    [10]Council Directive on the Approximation of the Laws of the Member States Relatingto Electromagnetic Compatibility [EB/OL]. http://ec.europa.eu/enterprise/electr_equipment/emc/directiv/dir336.htm.
    [11]R. Senthinathan and J. L. Prince. Simultaneous switching ground noise calculationfor packaged CMOS devices [J]. IEEE J. Solid-State Circuits,1991,26(11):1724~1728.
    [12]A. Vaidyanath, B. Thoroddsen, and J. L. Prince. Effect of CMOS driver loadingconditions on simultaneous switching noise [J]. IEEE Trans. Compon., Packag.,Manuf. Technol. B,1994,17(4):480~485.
    [13]A. Vaidyanath, et al. Simultaneous switching noise: Influence of plane-plane andplane-signal trace coupling [J]. IEEE Trans. Compon., Packag., Manuf. Technol. B,1995,18(3):496~502.
    [14]C. Lochot, et al. Regina test masks: Research on EMC guidelines for integratedautomotive circuits [J]. Microelectron. J.,2004,35(6):509~524.
    [15]K. Slattery, J. P. Muccioli, and T. North. Characterization of the RF emissions froma family of microprocessors using a1GHz TEM cell [C]. Proc. IEEE EMC Symp.,Austin, TX,1997:203~207.
    [16]L. D. Smith, et al. Power distribution design methodology and capacitor selectionfor modern CMOStechnology [J]. IEEE Trans. Adv. Packag.,1999,22(3):284-291.
    [17]T. Sudo. Behaviour of switching noise and electromagnetic radiation in relation topackage properties and on-chip decoupling capacitance [C]. Proc.17th Int. ZurichSymp. Electromagn. Compat.,2006:568~573.
    [18]T. Steinecke. Experimental characterization of switching noise and signal integrityin deep submicron integrated circuits [C]. Proc. IEEE Int. Symp. Electromagn.Compat.,2000:107~112.
    [19]L. vanWershoven. Characterization of an EMC test-chip [C]. Proc. IEEE Int. Symp.Electromagn. Compat.,2000:117~121.
    [20]M. M. Budnik and K. Roy. Power delivery and decoupling network minimizingohmic loss and supply voltage variation [J]. IEEE Trans. Very Large Scale Integr.(VLSI) Syst.,2006,14(12):1336~1346.
    [21]D. Takashima, et al. Noise suppression scheme for gigabit-scale and gigabyte/sdata-rate LSI’s [J]. IEEE J. Solid-State Circuits,1998,33(2):260~267.
    [22]M. R. Stan and W. P. Burleson. Bus-invert coding for low power I/O [J]. IEEETrans. Very Large Scale Integr.(VLSI) Syst.,1995,3(1):49~58.
    [23]K. B. Hardin, J. T. Fessler, and D. R. Bush. Spread spectrum clock generation forthe reduction of radiated emissions [C]. Proc. IEEE Int. Symp. EMC,1994:227~231.
    [24]T. Steinecke. Design-in for EMC on CMOS large scale integrated circuits [C]. Proc.IEEE Int. Symp. EMC,2001, Vol.2:910~915.
    [25]M. Shen, L. R. Zheng, and H. Tenhunen. Cost and performance analysis formixed-signal system implementation: System-on-chip or system-onpackage?[J].IEEE Trans. Compon. Packag.Manuf.,2002,25(4):262~272.
    [26]K. P. Slattery, J. Neal, and W. Cui. Near-field measurement of VLSI devices [J].IEEE Trans. EMC,1999,41(4):374~384.
    [27]K. Ito, et al. Experimental characterization of simultaneous switching noise formultichip modules [J]. IEEE Trans. Compon., Packag., Manuf. Technol. B,1995,18(4):609~613.
    [28]J. M. Hobbs, et al. Simultaneous switching noise suppression for high speedsystems using embedded decoupling [C]. Proc. Electron. Compon. Technol. Conf.,2001:339~343.
    [29]J. Park, A. C.W. Lu, and K.M. Chua. Double-stacked EBG structure for widebandsuppression of simultaneous switching noise in LTCC-based SIP applications [J].IEEE Microw. Wireless Compon. Lett.,2006,16(9):481~483.
    [30]K. Soo-Hyung, et al. Reduction of radiated emissions from semiconductor by usingabsorbent materials [C]. Proc. IEEE Int. Symp. Electromagn. Compat.,2000:153~156.
    [31]B. D. McCredie and W. D. Becker. Modeling, measurement, and simulation ofsimultaneous switching noise [J]. IEEE Trans. Compon., Packag., Manuf. Technol.,Part B: Adv. Packag.,1996,19(3):461~472.
    [32]H. H. Chen and J. S. Neely. Interconnect and circuit modeling techniques forfull-chip power supply noise analysis [J]. IEEE Trans. Compon., Packag., Manuf.Technol. B,1998,21(3):209~215.
    [33]S. Hayashi and M. Yamada. EMI-noise analysis under ASIC design environment[J]. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,2000,19(11):1337~1346.
    [34]S. Zhao, K. Roy, and C. K. Koh. Decoupling capacitance allocation and itsapplication to power-supply noise-aware floorplanning [J]. IEEE Trans.Comput.-Aided Design Integr. Circuits Syst.,2002,21(1):81~92.
    [35]J. J. Laurin, S. G. Zaky, and K. G. Balmain. Prediction of delays induced byin-band RFI in CMOS inverters [J]. IEEE Trans. Electromagn. Compat.,1995,37(2):167~174.
    [36]J. G. Sketoe. Integrated Circuit Electromagnetic Immunity Handbook (2000).NASA Marshall Space Flight Center, Huntsville, AL,NASA/CR-2000-210017[EB/OL].http://see. msfc.nasa.gov.
    [37]F. Fiori and P. S. Crovetti. Linear voltage regulator susceptibility [C]. Proc. IEEESymp. Ind. Electron.,2002:1398~1403.
    [38]I. D. Flintoft,, et al. The re-emission spectrum of digital hardware subjected to EMI[J]. IEEE Trans. Electromagn. Compat.,2003,45(4):576~585.
    [39]R. E.Wallace, S. G. Zaky, and K. G. Balmain. Fast-transient susceptibility of aD-type flip-flop [J]. IEEE Trans. lectromagn. Compat.,1995,31(1):75~80.
    [40]S.Wendsche, R. Vick, and E. Habiger. Modeling and testing of immunity ofcomputerized equipment to fast electrical transients [J]. IEEE Trans. Electromagn.Compat.,1999,41(4):452~459.
    [41]S. T. Bakshi and M. J. Coenen. Impulse immunity test method for digital integratedcircuits [C]. Proc.8th Int. Conf. Electromagn. Interference Compat,2003:249~252.
    [42]Y. Hattori, et al. Harmonic balance simulation of RF injection effects in analogcircuits [J]. IEEE Trans. Electromagn. Compat.,1998,40(2):120~126.
    [43]K.W. Li, S. G. Zaky, and K. G. Balmain. Effect of RFI on the error probabilities ofsynchronizer circuits [J]. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.,1998,45(10):1052~1061.
    [44]M. P. Robinson, et al. A simple model of EMI-induced timing jitter in digitalcircuits, its statistical distribution and its effect on circuit performance [J]. IEEETrans. Electromagn. Compat.,2003,45(4):576–585.
    [45]N. L. Whyman and J. F. Dawson. Modeling RF interference effects in integratedcircuits [C]. Proc. IEEE Symp. EMC,2001:1203~1208.
    [46]K. Ichikawa, M. Inagaki, and Y. Sakurai. Simulation of integrated circuit immunitywith LEECS model [C]. Proc.17th Int. Zurich Symp. Electromagn. Compat.,2006:308~311.
    [47]Y. Fukumoto, et al. Power current model of LSI/IC containing equivalent internalimpedance for EMI analysis of digital circuits [J]. IEICE Trans. Commun.,2001,E84-B(11):3041~3049.
    [48]Y. Fukumoto, et al. Radiated emission analysis of power bus noise by using apower current model of an LSI [C]. Proc. IEEE Int. Symp. EMC, Aug.,2002:1037~1042.
    [49]O.Wada, et al. High-speed simulation of PCB emission and immunity withfrequency-domain IC/LSI source models [C]. Proc. IEEE Symp. Electromagn.Compat., Boston, MA,2003:4~9.
    [50]E. Takahashi, et al. Evaluation of LSI immunity to noise using an equivalentinternal impedance model [C]. EMC Eur. Int. Symp. Electromagn. Compat.,Sorrento, Italy,2002:487~492.
    [51]J. F. Chappel and S. G. Zaky. EMI effects and timing design for increasedreliability in digital systems [J]. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.,1997,44(2):130~142.
    [52]G. F. Bouesse, et al. Asynchronous logic vs synchronous logic: Concrete results onelectromagnetic emissions and conducted susceptibility [C]. EMC Compo, Torino,Italy,2007.
    [53]A. Alaeldine, et al. Efficiency of embedded on-chip EMI protections to continuousharmonic and fast transient pulses with respect to substrate injection [C]. Proc. IEEESymp. EMC,2007:1~5.
    [54]D. R. Coulson. EMC-hardening microprocessor-based systems [C]. Proc. Inst.Electr. Eng. Colloq. Achieving Electromagn. Compat.: Accident Des.,1997:5/1–5/6.
    [55]黄志洵,贺涛.千兆赫横电磁室(GTEM)的原理和计算方法[J].字航计测技术,1992(5):29~40.
    [56]陈希,黄建文,艾西加.CMOS专用电路电磁发射测量和电磁兼容性预测模型[J].电子测量与仪器学报,2002(16).
    [57]E. Sicard, A. Boyer. IC-EMC v2.0User's Manual [M]. ISBN978-2-87649-056-7,2009.
    [58]IEC61967-1, Integrated circuits Measurement of electromagnetic emissions,150kHz to1GHz-Part1: General conditions and definitions [S].
    [59]IEC62132-1, Integrated circuits Measurement of electromagnetic immunity,150kHz to1GHz-Part1: General conditions and definitions [S].
    [60]F. Fiori and P. S. Crovetti. A new nonlinear model of EMI-induced distortionphenomena in feedback CMOS operational amplifiers [J]. IEEE Trans OnElectromagnetic Compatibility,2002,44(4):495~502.
    [61]F.Fiori and P.S.Crovetti. Investigation on RFI effects in bandgap voltage references[J]. Microelectronics,2004,35(6):557~561.
    [62]F.Fiori and P.S. Crovetti. Emc issues in linear voltage regulator circuit design forsoc applications [C].5th Int. workshop on EMC of ICs Munich (GER),2005.
    [63]F.Fiori and P.S.Crovetti. Nonlinear effects of radiofrequency interference inoperational amplifiers [J]. IEEE Trans. on Circuits and Systems I: Fund. Theory andApplications.,2002,49(3):367~372.
    [64]P.S. Crovetti and F.Fiori. A Linear Voltage Regulator Model for EMC Analysis [J].Power Electronics, IEEE Transactions on,2007,22(6):2282~2292.
    [65]Orietti, E, et al. Reducing the EMI Susceptibility of a Kuijk Bandgap [J].Electromagnetic Compatibility, IEEE Transactions on,2008,50(4):876-886.
    [66]J.-M. Redouté, M.l Steyaert. EMC of Analog Integrated Circuits [M]. Springer,2009
    [67]K. E. Kuijk. A precision reference voltage source [J]. IEEE J. Solid-State Circuits,1973,8(3):222~226.
    [68]Ye R, Y. Tsividis. Bandgap voltage reference sources in CMOS technology [J].Electron. Lett.,1982,18:24~25.
    [69]Gabriel Alfonso Rincon-Mora. Analog IC Design with Low-Dropout Regulators[M]. Mc Graw Hill,2009.
    [70]Technical review of low dropout voltage regulator operation and performance [R].Application report of Texas Instruments,1999.
    [71]毕查德·拉扎维.模拟CMOS集成电路设计[M].西安交通大学出版社,2003。
    [72]W. Jian-fei, et al. Investigation on DPI effects in a low dropout voltage regulator[C].8th Workshop on Electromagnetic Compatibility of Integrated Circuits (EMCCompo),2011:153~158.
    [73]Wu Jian-fei, et al. EMC susceptibility study of low-dropout voltage regulator usinga test chip," Electromagnetic Compatibility (APEMC),2012Asia-PacificSymposium on, vol., no., pp.317-320,21-24May2012.
    [74]J. Wu, A. Boyer, J. Li, S. B. Dhia, R. Shen. Characterization of Changes in LDOSusceptibility After Electrical Stress [J]. IEEE Transactions on ElectromagneticCompatibility,2013, PP(88):1-8.
    [75]M. Corradin, G. Spiazzi, S. Buso. Effects of radio frequency interference inOPAMP differential input stages [C]. EMC International Symposium on,2005,Vol.3:866~871.
    [76]M. Corradin, G. Spiazzi, S. Buso. Effects of radio frequency interference inOPAMP differential input stages [C]. International Symposium on ElectromagneticCompatibility,2005,3:866~871.
    [77]IEC62433-4, Integrated Circuit-EMC IC modeling, Part4: ICIM-CI, IntegratedCircuit Immunity Model, conducted Immunity [S].
    [78]IEC62014-1: Electronic behavioral specifications of digital integrated circuits I/Obuffer information specification [S].
    [79]IEC62433-2, EMC IC modeling-Part2: Models of integrated circuits for EMIbehavioral simulation-Conducted emissions modeling [S].
    [80]Tao Su, et al. Block model of microcontroller for electromagnetic immunitysimulation [C]. EMC Europe, International Symposium on,2008:1~12.
    [81]Boyer, A, et al. Construction and evaluation of the susceptibility model of anintegrated phase-locked loop [C]. Electromagnetic Compatibility of IntegratedCircuits (EMC Compo),8th Workshop on,2011:7~12.
    [82]A. Boyer, E. Sicard, S. Ben Dhia. IC-EMC, a demonstration freeware for predictingElectromagnetic Compatibility of integrated circuits [C].19th International ZurichSymposium on Electromagnetic Compatibility,2008:19~23.
    [83]The analog simulation tool WinSPICE[EB/OL].http://www.winspice.com.
    [84]ADS[EB/OL].http://www.home.agilent.com/en/pc-1297113/advanced-design-system-ads?&cc=FR&lc=fre.
    [85]Cadence[EB/OL].http://www.cadence.com.
    [86]B. Vrignon, J. Shepherd, M. Deobarro. Method, Computer Program Product, andApparatus for Simulating Electromagnetic Immunity of an Electronic Device [P],World Patent: WO2012/143749A1,2011.
    [87]A. Alaeldine, et al. A Direct Power Injection Model for Immunity Prediction inIntegrated Circuits [J]. Electromagnetic Compatibility, IEEE Transactions on,2008,50(1):52~62.
    [88]J.-M. Redoute, M. Steyaert. An EMI Resisting LIN Driver in0.35-micronHigh-Voltage CMOS [J]. Solid-State Circuits, IEEE Journal of,2007,42(7):1574~1582.
    [89]J.-M. Redoute, M. Steyaert. An instrumentation amplifier input circuit with a highimmunity to EMI [C]. EMC Europe, International Symposium on,2008:8~12.
    [90]J.-M. Redoute, M. Steyaert. A CMOS source-buffered differential input stage withhigh EMI suppression [C]. Solid-State Circuits Conference,34th European,2008:318~321.
    [91]I.S. Stievano, et al. Behavioral Modeling of Digital Devices Via Composite LocalLinear State–Space Relations [J]. Instrumentation and Measurement, IEEETransactions on,2008,57(8):1757~1765.
    [92]G. Seibert, et al. Behavioral modelling of ICs for investigations of conductedemissions in automotive systems [C]. EMC-Zurich,17th International ZurichSymposium on,2006:356~358.
    [93]N. Monnereau, et al. Behavioral-modeling methodology to predict ElectrostaticDischarge susceptibility failures at system level: An IBIS improvement [C]. EMCEurope York,2011:457~463.
    [94]Rutenbar, R. A.; Gielen, G. G E; Roychowdhury, J. Hierarchical Modeling,Optimization, and Synthesis for System-Level Analog and RF Designs [J].Proceedings of the IEEE,2007,95(3):640~669.
    [95]G. Gielen, D. De Jonghe, J. Loeckx. Towards automated extraction of EMC-awaretrajectory-based macromodels for analog circuits [C]. Circuit Theory and Design,European Conference on,2009:763~766.
    [96]V. Ceperic, G. Gielen, A. Baric. Black-box modelling of conducted electromagneticimmunity by support vector machines [C]. International Symposium on EMCEUROPE,2012:17~21.
    [97]F. Canavero, et al. Numerical modeling of digital devices impact on EMC/EMI [C].Electromagnetic Compatibility IEEE International Symposium on,2001, Vol.1:582~587.
    [98]I. Chahine, et al. Characterization and Modeling of the Susceptibility of IntegratedCircuits to Conducted Electromagnetic Disturbances Up to1GHz [J]. IEEETransactions on Electromagnetic Compatibility,2008,50(2):285~293.
    [99]IEC62132-2, Integrated circuits Measurement of electromagnetic immunity,150kHz to1GHz–Part2: Measurement of radiated emissions–TEM cell and widebandTEM cell method [S].
    [100] IEC62132-3, Integrated circuits Measurement of electromagnetic immunity,150kHz to1GHz–Part3: Measurement of radiated emissions–Bulk CurrentInjection (BCI) method [S].
    [101] ISO11452-4-2005-04,道路车辆.窄带辐射电磁能量产生的电子干扰用部件试验方法.第4部分大容量电流注入(BCI)[S].
    [102] IEC62132-4, Integrated circuits Measurement of electromagnetic immunity,150kHz to1GHz–Part4: Measurement of radiated emissions–Direct RF PowerInjection method [S].
    [103] IEC62132-5, Integrated circuits Measurement of electromagnetic immunity,150kHz to1GHz–Part5: Measurement of radiated emissions–Workbench FaradayCage method [S].
    [104] Wenguan Li, Ruohe Yao, Lifang Guo. A CMOS low-dropout regulator withhigh power supply rejection [C]. Electron Devices and Solid-State Circuits, IEEEInternational Conference of,2009:384~387.
    [105] B. Vrignon, S. Ben Dhia. On-chip Sampling Sensors for High FrequencySignals Measurement: Evolution and Improvements [C]. Proceedings of ICCDCS,Punta Cana, Rép. Dominicaine,2004:270~275.
    [106] M. Deobarro, B. Vrignon, S. Ben Dhia, A. Boyer. Use of on-chip samplingsensor to evaluate conducted RF disturbances propagated inside an integrated circuit[C]. EMC Compo, Toulouse, France,2009.
    [107] A. Boyer, et al. An on-chip sensor for time domain characterization ofelectromagnetic interferences [C]. Electromagnetic Compatibility of IntegratedCircuits (EMC Compo),8th Workshop on,2011:251~256.
    [108] S. Ben Dhia, et al. On-Chip Noise Sensor for Integrated Circuit SusceptibilityInvestigations [J]. Instrumentation and Measurement, IEEE Transactions on,2012,61(3):696~707.
    [109] S. Ben Dhia, et al. IC immunity modeling process validation using on-chipmeasurements [C]. Test Workshop (LATW),12th Latin American,2011:1~6.
    [110] Wu, J.F, et al. Enhancing accuracy of low-dropout regulator susceptibilityextraction with on-chip sensors [J]. Electronics Letters,2012,48(11):649~650.
    [111] Jayong Koo, et al. A Nonlinear Microcontroller Power Distribution NetworkModel for the Characterization of Immunity to Electrical Fast Transients [J].Electromagnetic Compatibility, IEEE Transactions on,2009,51(3):611~619.
    [112] Etienne Sicard, Sonia Delmas Bendhia. Deep submicron CMOS design-Part I-Basic cell Design [M]. McGraw-Hill,2005, chapter3.
    [113] Yuan Gao; K. Abouda, A. Huot-Marchand. Bandgap circuitry with highimmunity to harsh EMC disturbances [C]. Electromagnetic Compatibility,Asia-Pacific Symposium on,2012:389~392.
    [114] I.S. Stievano, F.G. Canavero, I.A. Maio. Behavioural macromodels of digitalIC receivers for analogue-mixed signal simulations [J]. Electronics Letters,2005,41(7):396~397.
    [115] J. Loeckx, G. G E Gielen. Generic and Accurate Whitebox Behavioral Modelfor Fast Simulation of Analog Effects in Nanometer CMOS Digital Logic Circuits[J]. IEEE Transactions on Electromagnetic Compatibility,2009,51(2):351~357.
    [116]100mA,5.0V, Low Dropout Voltage Regulator with Reset and Sense [Z].Semiconductor Components Industries,2008.
    [117] Technical review of low dropout voltage regulator operation and performance[R]. Application report of Texas Instruments,1999.
    [118] F. Lafon, et al. Immunity Modeling of Integrated Circuits: an Industrial Case[J]. IEICE Transactions on Communications,2010, E93-B(7):1723-1730.
    [119] N. Delorme, M. Belleville and J. Chilo. Inductance and capacitance analyticformulas for VLSI interconnects [J]. ELECTRONICS LETTERS,1996,32(11):996~997.
    [120] A. C. Ndoye. Contribution to the modeling of conducted immunity ofintegrated circuits and study of the impact of aging on electromagnetic compatibility[D]. INSA,2010.
    [121] P. Wambacq and W. Sansen. Distortion Analysis of Analog Integrated Circuits[M]. Kluwer,1998.
    [122]郝跃,刘红侠.微纳米MOS器件可靠性与失效机理[M].科学出版社。
    [123] F Fantini. Reliability problems with VLSI [J]. Mocroelectronics Reliability,1984,24:275~296.
    [124] J E Chung, et al. Performance and reliability design issues fordeep-submicrometer MOSFET’s [J]. IEEE Trans. Electron Devices,1991,28:545~554.
    [125] J. W. McPherson. Reliability trends with advanced CMOS scaling and theimplications for design [C]. IEEE Custom Integrated Circuits Conference (CICC),2007:405~412.
    [126] E. A. Amerasekera, F.N.Najm. Failure Mechanisms in Semiconductor Devices[M]. Wiley,ISBN0-471-95482-9,1997
    [127] B. Li, et al. Reliability challenges for copper interconnects [J].Microelectronics Reliability,2004,44(3):365~380.
    [128] P. Heremans, et al. Consistent model for the hot carrier degradation inN-channel and P-channel MOSFET’s [J]. IEEE Transactions on Electron Devices,1988,35(12):2194~2209.
    [129] C Hu. Simulating hot-carrier effects on circuit performance [J]. Semicon. Sci.Tech.,1992,7:555-558.
    [130] K N Quader, et al. Hot-carrier reliability design rules for translating devicesdegradation to CMOS digital circuit degradation [J]. IEEE Trans. Electron Devices,1990,41:1681~1690.
    [131] T Horiuchi. In-circuit hot-carrier model and its application to inverter chainoptimization [J]. IEEE Trans. Electron Devices,1990,43:1428~1432.
    [132] G. Chen. Dynamic NBTI of PMOS transistors and its implication on devicelifetime [C]. International Reliability Physics Symposium,2003:196~202.
    [133] B. Kaczer, et al. Impact of MOSFET gate oxide breakdown on digital circuitoperation and reliability [J]. IEEE Transcations on Electron Devices,2002,49(3):500~506.
    [134] G. V. Groeseneken. Hot carrier degradation and ESD in submicrometer CMOStechnologies: how do they interact?[J]. IEEE Trans. Device Mater. Reliab.,2001,1(1):23~32.
    [135] A Haggag, W Mcmahon, K Hess. High-performance chip reliability fromshort-time-tests-statistical model interconnect and HCI/TDDB/NBTIdeep-submicron transistor failures [C]. IEEE Reliability Physics Symposium,2001:271~279.
    [136] E. Y. Wu and J. Sun. Power-law voltage acceleration: a key element forultra-thin gate oxide reliability [J]. Microelectronics Reliability,2005,45:1809~1834.
    [137] D. K. Schroder and J. A. Babcock. Negative bias temperature instability: Roadto cross in deep submicron semiconductor manufacturing [J]. Journal of AppliedPhysics,2003,94(1):1~18.
    [138] B. Li. Study of aging effects on electromagnetic compatibility of integratedcircuits [D]. University of Toulouse,2011.
    [139] S. Ben Dhia, et al. Characterization of the electromagnetic modelling drifts of ananoscale IC after accelerated life tests [J]. Electronic Letters,2010,46(4):278~279.
    [140] Li B, et al. Characterization of the electromagnetic robustness of a nanoscaleCMOS integrated circuit [C]. EMC Compo09, Toulouse, France,2009.
    [141] A. Boyer, et al. Characterization of the evolution of IC emissions afteraccelerated aging [J]. IEEE Trans. on EMC,2009,51(4):892–900.
    [142] B. Li, et al. Ageing effect on electromagnetic susceptibility of a phase lockedloop [J]. Microelectronics Reliability,2010,50:1304~1308.
    [143] B. Li, et al. Study of the impact of hot carrier injection to immunity ofMOSFET to electromagnetic interferences [J]. Microelectronics Reliability,2011,51:1557~1560.
    [144] A. Boyer, S. Ben Dhia, B. Li, C. Lemoine, B. Vrignon,“Prediction ofLong-Term Immunity of a Phase-Locked Loop”,12th IEEE Latin-American TestWorkshop (LATW2011), Porto de Galinhas, Brazil, March27th-30th,2011
    [145] N. J. Kha, et al. NBTI degradation and its impact for analog circuit reliability[J]. IEEE Transactions on electron Devices,2005,52(12):2609~2615.
    [146] J. Martin-Martinez, et al. Time-dependent variability related to BTI effects inMOSFETs: impact on CMOS differential amplifiers [J]. IEEE Transactions onDevice and Materials Reliability,2009,9(2):305~310.
    [147] J. B. Bernstein, et al. Electronic circuit reliability modeling [J].Microelectronics Reliability,2006,46:1957~1979.
    [148] F. Lafon, et al. Influence of aging and environnement conditions on EMCperformances of electronic equipment–Influence of passive vs active components[C]. EMC Europe, Wroclaw, Poland,2010.
    [149] R. Fernandez, et al. Impact of NBTI on EMC behaviours of CMOS inverter [C].Asia-Pacific International Symposium on Electromagnetic Compatibility,2010:1020~1023.
    [150] L. Sjorgen and M. Backstrom. Aging of shielding joints, shielding performanceand corrosion [C]. International Zurich Symposium and Technical Exhibition onElectromagnetic Compatibility, Zurich, Switzerland,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700