用户名: 密码: 验证码:
立体交叉铁路隧道结构静、动力力学特性及其工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于深埋立体交叉铁路隧道这种特殊的结构形式,综合运用理论分析、数值模拟、工程实践等研究方法对既有隧道衬砌变形、围岩压力变化规律、隧道结构内力变化及列车动荷载响应进行了系统研究,并以乌蒙山隧道与新梅花山隧道立体交叉的实际工程为依托,对立体交叉隧道结构形式进行比选分析,论文研究获得了以下成果:
     1)利用三维数值模拟方法,通过对大量工况计算结果的归纳总结,得出了以两隧道最小净距、立交段围岩条件、两隧道先后修建顺序为变量,既有隧道道床最大竖向位移值和道床竖向位移曲线的预测公式。并给出了对既有隧道高速铁路运营安全不产生影响的净距容许建议值。
     2)无论是新建隧道下穿或者上跨既有隧道,在两隧道立交点处,既有隧道各部位围岩压力均有不同程度的下降现象,其中以拱脚、边墙、拱肩三个位置处最为明显。并对多种围岩级别、多种最小净距工况下既有隧道受影响的范围作出了判定,在围岩条件较好时,对既有隧道而言,上跨形式的影响范围要小于下穿形式。并以围岩压力变化幅度为评价准则,对深埋双线立交隧道间无相互影响的净距临界值给出了推荐值,以期对类似工程提供一定的指导作用。
     3)对于深埋双线椭圆形断面的隧道而言,在既有隧道周围修建新隧道,对既有隧道立交点处衬砌结构会造成全环轴力下降的现象,随着两隧道间净距的增大,衬砌结构轴力下降的趋势有所减缓;随着围岩级别降低,相同净距情况下的衬砌结构弯矩、轴力变化量呈线性递减。在新隧道下穿修建的工况下,既有隧道衬砌全环轴力下降,弯矩上升,受力状态明显恶化。而在新隧道上跨既有隧道状况下,与下穿方式不同,在轴力下降的情况下,弯矩也普遍下降。而且在相同净距、相同围岩级别条件下,上跨方式中横、纵向安全系数发生下降的位置均少于下穿的方式,由此判断上跨方式对既有结构的受力状态影响范围较小,故类似工程应优先考虑新隧道上跨的修建方式。
     4)对常用的列车动荷载—维正弦激振力模型进行修正,解决了原模型在模拟高速列车时产生对钢轨向上的拉力问题,使其适合v≥3501km/h高速铁路的研究需要,并把该模型推广到三维模拟当中。
     5)与常规段相比,不论是位移、速度还是加速度,立交段均有着显著的放大作用,设定了三种不同的立体交叉结构形式,分别为分修、半分修、合修结构,经位移响应、振动衰减及横向、纵向内力状况分析比选,结果表明,立交框架—挡头墙连接上下上下隧道的合修结构形式为最优选择。
     6)对于两隧道同时施工的情况,每条隧道均有向对方变形的趋势,先行通过立交点的隧道围岩所受到的位移扰动最终量将小于后通过者。围岩扰动越低,施工风险越小,结构越安全,故可根据两隧道的不同重要程度及实际施工条件,来判断各个隧道的施工进度关系,即重要的结构尽量先行修建。
     7)本文通过详尽的动态仿真计算,证明了框架—挡头墙形式的立体交叉设计方案及施工工序是合理可行的,该施工方案已成功应用于乌蒙山隧道和梅花山隧道立体交叉工程中,值得类似工程借鉴。
This dissertation focused on deeply buried over-cross railway tunnels, via the comprehensive approaches of theoretical analysis, numerical simulation and engineering practice, did a systematic study on the existed tunnel lining's deformation, the rule of surrounding rock pressure variation, the tunnel structure internal force alteration and dynamic response with train load, and combined with the actual project, Wumengshan tunnel&Xinmeihuashan tunnel over-cross tunnels project, carried out a comparation research on different forms of over-crossing structures. This dissertation obtained the following achievements:
     1) Using the method of three-dimensional numerical simulation, summarizing from a large number of conditions calculation results, this dissertation deduced the track bed deformation prediction formula, which included the variables of the minimum spacing, the surrounding rock conditions and the building consequence of the two tunnels, and gave out the suggested interval allowable values to avoid any impacts on the security of the existing tunnel's high-speed railway operation.
     2) Whether the new tunnel building beneath or on-acrossing the existing tunnel, the surrounding rock pressure of the existing tunnel would decrease in varying degrees. At the three positions of arch foot, side wall and spandrel, this phenomenon was much more obvious. This dissertation made a determination on the existing tunnel's influenced scope under different spacing and rock classifications. When the surrounding rock conditions were good enough, for the existing tunnel, the influence scope of on-acrossing style was smaller than the building beneath one. Took the rock pressure variation amplitude as the evaluation criteria, we provided critical value of uninfluenced clearance for over-crossing tunnels project, which will bring forward reference to the similar projects.
     3) For the deep double track tunnels with elliptical section, building a new tunnel closely would lower the whole ring's axial force of the old tunnel's lining structure. Along with the increase of the clearance between two tunnels, structure axial force downward trend slowed down; Along with the surrounding rock conditions turning worse, the structure bending moment and axial force under the same clearance decreasing linearly. In the condition of the new tunnel building undercrossing, full ring of axial force dropped, while bending moment rose, stress state significantly turning worse. In the case of new tunnel building over across, with the axial force dropped, in different ways, bending moment also generally decline, and the positions where transverse or longitudinal structure safety factor decreased would be less than the building under cross style, So to the building over pass form exert less impact to internal force of existing tunnel lining than the building under pass style. So that the similar project should firstly consider the former construction style.
     4) This dissertation corrected the commonly used one-dimensional sine vibration force model for train dynamic loads, so that solved the problem that it would generates upward tension to the rail when using the original model to simulate high-speed train load, now made it much more suitable for v≥300km/h high speed railway research, and this dissertation also put the model forward into three dimensional simulation.
     5) Compared with conventional section, all the displacement, velocity and acceleration in overpass section were significantly amplified. At the cross point, this dissertation set three different structures, they were separated building, half-separated building and building in union, via the comparison study on displacement response, vibration damping and transverse longitudinal internal force analysis of each style of the three, and the results showed that the framework-connecting walls structure form, which connecting the two tunnels together, was the best choice.
     6) For the case of two tunnels were under construction simultaneously, each one had the trend of producing deformation towards the other. Research revealed that the surrounding rock final displacement disturbance of the first tunnel would be less than the later built one. The lower the disturbance to surrounding rock, the smaller construction risk would be and the more safety structure was. Therefore, we could determine each tunnel's construction progress according to different important degrees of the two tunnels and the actual construction conditions. It means that the more important one should be build first.
     7) In this dissertation, through detailed dynamic simulation calculation, this dissertation proved that, the design scheme and construction process plan of the framework-connecting walls form for over cross section was reasonable and feasible, and this construction scheme has been carried out successfully in the WuMengShan tunnel&Xinmeihuashan tunnel over cross tunnels project, and that were worth reference for similar project.
引文
[1]陈卫军,朱忠隆.近距离交叠隧道研究研究现状及评析[J].现代隧道技术.2002.39(1).
    [2]曾小清.多孔隧道施工的研究进展[J].地下空间,1999.19(5):373-378.
    [3]郑余朝.地铁区间重叠隧道近接施工力学行为三位数值模拟[D].南交通大学硕士论文.2000-03.
    [4]刘明高小净距隧道合理净距和施工方法研究[D].北京工业大学.工学硕士学位论文.2007-5.
    [5]西南交通大学土木工程学院.深圳地铁一期工程重叠隧道技术研究初步报告[R].1999(5).
    [6]郑余朝.仇文革.重叠隧道结构内力演变的三维弹塑性数值模拟[J].西南交通大学学报.2006.41(3).
    [7]白廷辉等.盾构超近趴离穿越地铁运营隧道的保护技术[J].地下空间.1999.19(4).
    [8]上海隧道工程股份有限公司.外滩观光隧道施工技术研究工作报告[M].1999-10.
    [9]铁道総合技術研究所.既設トンネル近接施工对策マニコアル[M].1992.
    [10]A. M. Muir Wood. The circular tunnel in elastic ground. Geotechnique.1975.25(1).
    [11]J. P Carter,J. R. Booker.S.K.Yeung. Catvity evpansion in cohresive frictional soils. Geotechnique.1986.36(3)
    [12]C. Sagaseta. Analysis of undrained.soil deformatiou due to groundloss. Geotechnique.1987.37(3).
    [13]A. Verrujt. J.R. Booker. Surface settlements due to deformtion of a tunnel in an elastic half plane. Geoteehnique.1996.46(4)
    [14]徐永福.隧道盾构施工对周围土体扰动影响的研究.同济大学&上海隧道工程股份有限公司博士后研究工作报告.2000,05.
    [15]仇文革.地下工程近接施工力学原理与对策研究[D].西南交通大学博士学位论文.2003.3.
    [16]K.W.Lo,L.K.Chong,L.F.Leung.FieldInstumentation of a Multiple TunnelInteraction Problem.Tunnels and Tunnelling,1998(6).
    [17]上海隧道工程股份有限公司,盾构交叠隧道地层移动的数学模型,外滩观光隧道施工技术研究鉴定材料之七,1999.
    [18]潘昌实.隧道力学数值方法[M].中国铁道出版社.1995.
    [19]张海波.地铁隧道盾构法施工对周围环境影响的数值模拟[D].硕士学位论文.河海大学.2005.
    [20]Liman E S, Duddeck H, Ahrens H. Two-dimensional and Three-dimensional analysis of close spaced double-tube tunnels[J]. Tunneling and Underground Space Technology,1993,8(1):13-18
    [21]Yamaguchi, I.Yamazaki,Y.Kiritani.Study of Guound-Tunnel Interactions of Four Shield Tunnels Driven in Close Proximity,in Re-lation to Design and Construction of Parallel Shield Tunnels. Tunnel-ling and Undergound Space Technology.1998.13(3).
    [22]徐林生.公路隧道施工围岩稳定性监测预报系统与隧道工程数值模拟研究.同济大学博士后研究工作报告.2001-06.
    [23]孙钧,刘洪洲.交叠隧道盾构法施工土体变形的三维数值模拟[C].盛世岁月祝贺孙钧院士八秩华 诞论文选集,2006.9.
    [24]曹志刚,蔡袁强,孙宏磊等.列车自重和轮轨动力作用力引起的地基振动分析[J].岩土工程学报,2010,32(5):681-687.
    [25]周华飞,蒋建群.高速列车引起的地基振动[J].岩土工程学报,2006,28(12):2104-2110.
    [26]GUPTA S, VAN DEN Berghe H, LOMBAERT G, et al.Numerical modeling of vibrations from a Thalys high speed train in the Groene Hart tunnel[J]. Soil Dynamics and Earthquake Engineering, 2010,30(3):82-97.
    [27]GUPTA S, STANUS Y, LOMBAERT G, et al. Influence of tunnel and soil parameters on vibrations from underground railways[J]. Journal of Sound and Vibration,2009,327(1-2):70-91.
    [28]YANG Y B, ASCE F, HUNG H H. Soil vibrations caused by underground moving trains[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2008,134(11):1633-1644.
    [29]中华人民共和国行业标准.铁路路基设计规范(TBJ10001-99).北京:中国铁道出版社.1999.
    [30]BALENDRA T, KOH C G, HO Y C. Dynamic response of buildings due to trains in underground tunnels[J]. Earthquake Engineering and Structural Dynamics,1991,20(5):275-291.
    [31]CHUA K H, BALENDRA T, LO K W. Groundborne vibrations due to trains in tunnels[J]. Earthquake Engineering and Structural Dynamics,1992,21(5):445-460.
    [32]GUAN F, MOORE ID. Three-dimensinal dynamic response of twin cavities due to traveling loads[J]. Journal of Engineering Mechanics,1994,120(3):637-657.
    [33]李军世,李客训.高速铁路路基动力反应的有限元分析.铁道学报[J].1995,17(1):224-228.
    [34]李成辉,于进江,仇文革.深圳地铁道床动荷载分析[J].西南交通大学报,2001,36(2):169-171.
    [35]周建等.循环荷载作用下饱和软粘土应变软化研究[J].土木工程学报,2000.
    [36]梁波,蔡英.不平顺条件下高速铁路路基的动力分析[J].铁道学报,1999,21(2):84-88.
    [37]刘维宁,夏禾等.地铁列车振动的环境响应[J].岩石力学与工程学报,1996:15(增刊):586-593.
    [38]张璞.列车振动荷载作用下上下近距离地铁区间交叠隧道的动力响应分折[D].同济大学博士学位论文.2001-08
    [39]潘昌实,谢正光.地铁区间隧道列车振动与测试[J].土木工程学报23(2),21-28,1990.
    [40]潘昌实,李德武,谢正光.北京地铁列车振动对环境影响的探讨[J].振动与冲击,1995,14(4):586-593.
    [41]李德武,高峰.金家岩隧道列车振动现场测试与分析[J].兰州铁道学院学报,1997,16(3):7-11.
    [42]张玉娥,白宝鸿.地铁列车振动对隧道结构激振荷载的模拟[J].振动与冲击,2000,9(3):68-70.
    [43]周才宝.地下铁道整体轨下基础[J].地铁与轻轨,1994,(2):29-31.
    [44]王杰贤.动力地基与基础[M].北京.科学出版社.2001:229-239.
    [45]朱玉星,地铁运行激励下土层振动的有限元分析与隔振研究[D].同济大学硕士学位论文,2007.
    [46]翟杰群,地铁振动传播的现场测试与数据分析[D].同济大学硕士学位论文,2007.
    [47]Verhas H P. Prediction of the Propagation of Train-Induced Ground Vibration. J. of Sound and Vibration.1979,66(3):371-376.
    [48]Kurzweil L. Ground-Borne Noise and Vibration from Underground System. J. of Sound and Vibration.1979,66(3):363-370.
    [49]Degrande G.A Special and Finite Element Method for Wave Propagation in Dry and Saturated Poroelastic Media:[PhD thesis]. Belgium:K. U. Leuven.1992.
    [50]Fujikake T. A Prediction Method for the Propagation of Ground Vibration from Railway Trains. J. of Sound and Vibration.1986,111(2):289-297.
    [51]Hayakawa K. Reduction Effects of Ballast Mats and EPS Blocks on Ground Vibration Caused by Train and its Evaluation. Proc.lnter-Noise'92.1992:233-240.
    [52]田薇,车辆动载作用下轨道结构和隧道结构的动力分析[D].同济大学硕十学位论文,2007.
    [53]张曦,地铁振动对隧道周围软粘土微结构影响及动力特性研究[D].同济大学硕士学位论文,2007.
    [54]由广明,刘维宁.交叠车站与区间隧道列车振动对环境的影响[J],北京交通大学学报,2005,29(4):39-44.
    [55申跃奎,地铁激励下振动的传播规律及建筑物隔振减振研究[D].同济大学硕士学位论文,2007.
    [56]潘昌实,刘维宁.隧道列车振动试验与动态分析[J].兰州铁道学院学报,1985,4(2):1-21.
    [57]孙家麒.振动公害浅谈[J].环境保护,1979,(5):25-27.
    [58]陈卫军,张璞.列车动载作用下交叠隧道动力响应数值模拟[J].岩土力学,2002,23(6):770-774.
    [59]王祥秋,杨林德,周治国.列车荷载作用下隧道衬砌结构动力响应特性分析[J].岩石力学与工程学报,2006,25(7):1337-06.
    [60]李亮,张丙强,杨小礼.高速列车振动荷载下大断面隧道结构动力响应分析[J].岩石力学与工程学报,2005,24(23).
    [61]吴江敏,隧道基底结构的动载模型试验[J].隧道与地下工程,1997,18(4):18-24.
    [62]高峰,关宝树等.列车荷载作用下地铁重叠隧道的响应分析[J].西南交通大学学报,2003,38(1):38-05.
    [63]李春峰,地铁列车作用下近距离交叠隧道的动力响应[D].北京交通大学硕士学位论文,2007.
    [64]龚伦,郑余朝,仇文革.列车动载引起下穿隧道振动三维数值分析[J],现代隧道技术,2008.
    [65]宫全美,徐勇,周顺华.地铁运行荷载引起的隧道地基土动力响应分析[J],中国铁道科学,2005,26(5).
    [66]靳晓光,李晓红,杨春和,张宪鑫.深埋隧道围岩-支护结构稳定性研究[J].岩土力学,26(9):2005:1473-1476.
    [67]龚伦.上下交叉隧道力学原理研究[D].西南交通大学博士学位论文,2007.
    [68]中华人民共和国行业标准.《铁路线路修理规则》(铁运[2006]146号)[S].北京:中华人民共和国铁道部.2006.
    [69]孙钧,侯学渊.地下结构[M].北京:科学出版社,1987(Sun Jun, Hou Xueyuan. Underground Structure [M]. Beijing:Science Press,1988. (in Chinese)
    [70]关宝树.隧道工程设计要点集[M].北京:人民交通出版社,2003.
    [71]铁道第二勘察设计院.TB10003-2005铁路隧道设计规范[S].北京:中国铁道出版社,2005.
    [72]潘昌实,G. N. Pande黄土隧道列车动荷载响应有限元初步数定分析研究[J].土木工程学报.1984.17(4):19-28,
    [73]Stuart L Grassie. Rail corrugation:advances in measurementunderstanding and treatment[J].Wear 2005,258 (7-8):1224-1234.
    [74]童大埙.铁路轨道[M].北京:中国铁道出版社,1988.36-37
    [75]刘彩云,郭爱煌,崔炳胜高速铁路轨道不平顺的时频特征分析[J].电子测量技术,2009,第32卷第7期;29-32.
    [76]李纪阳,刘林芽,寇东华客运专线轨道不平顺功率谱分析[J].铁道科学与工程学报.2012.9(1)期:117-121
    [77]高建敏,翟婉明,王开云.高速行车条件下轨道几何不平顺敏感波长研究[J].铁道学报.2012.34(7):83-88
    [78]国外高速列车译文集编委会.国外高速列车译文集[C].北京.铁道部科学研究院1997
    [79]Jenkins H, et al.The Effect of Track and Vehicle Parame-ters on Wheel/Rail Vertical Dynamic Forces[J].Railway Engn.1974,3(1).
    [80]Ono K, Yamada M. Analysis of railway track vibration [J]. Journal of Sound and Vibration, 1989,130(2):269-297.
    [81]左藤吉彦.新轨道力学[M].徐涌,等译.北京:中国铁道出版社,2001,454-464
    [82]丁祖德,彭立敏,陈松洁.盾构隧道基底软硬过渡地段列车振动响应分析[J].郑州大学学报(工学版),2010,31(3):87-91.
    [83]梁波,罗红,孙常新.高速铁路振动荷载的模拟研究[J].铁道学报,2006,28(4):89-94.
    [84]徐海清,傅志峰,等.列车荷载作用下紧邻垂直多孔隧道环境振动分析[J].岩土力学,2011,32(6):1869-1873.
    [85]高建敏,翟婉明,王开云.高速行车条件下轨道几何不平顺敏感波长研究[J].铁道学报,2011,34(7):83-88.
    [86]邬强.武广高铁红黏土路堑基床动响应现场测试与分析[J].铁道工程学报,2011,8(155):47-52.
    [87]Kuhlemeyer R L, Lysmer J. Finite element method accuracy for wave propagation problems. Journal of Soil Mechanics and Foundation Engineering, ASCE,1973,99 (SM5):421-427.
    [88]Rucker.W. Measurement and evaluation of random vibrations[J], Porc.DMSR 77/Karlsurhe, 1407-1421.1977.
    [89]London Transport Office of the Scientific Advisor. Vibration Measurement at Bkaer Street (JubileeLine),1982.
    [90]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [91]White W, Valliappan S, Lee K. Unified boundary for finite dynamic models[J]. Journal of the Engineering Mechanics Division,ASCE,1977,103(EM5):949-964.
    [92]J.Lysmer and R.L. Kulemeryer. Finite Dynamic Model for Infinite Media. Journal of Engineering Mechanics Divison, ASCE.1969,95(4):759-877
    [93]OWEN D R J, HINTON E. Finite elements in plasticity, theory and practice[M]. Swansea:Pineridge Pross Limited,1980.
    [94]汪伟松.列车荷载作用下立体交叉隧道结构动力响应分析[D].西南交通大学硕士学位论文,2009.
    [95]高峰,郭剑勇.列车荷载作用下地铁区间双层隧道模型试验研究[J].铁道学报,2011,33(12):94-100.
    [96]Yu Heran, Zhou Xiaojun, Li Bin. Introduction and analysis of a construction measure on up-down crossing tunnels[C]. ICTE 2011:1824-1829
    [97]Yu Heran, Zhou Xiaojun, Wang Xiaobo.Numerical simulation analysis on a construction method of ultra-closing over-cross transportation tunnels[J]. Advanced Materials Research.2011. 261-263:1287-1291
    [98]中华人民共和国行业标准JTG D70-2004公路隧道设计规范[S].北京:人民交通出版社,2004
    [99]COENRAAD ESVELD. Modern Railway Track (Second Edition) [M]. Holand: MRT-Productions,2001.
    [100]郑俊杰,包德勇,龚彦峰,资谊.铁路隧道下穿既有高速公路隧道施工拧制技术研究[J].铁道工程学报,2006,(08)
    [101]张胜,沈洪波,王飞.不同施工工法对既有隧道影响的数值模拟研究[J].合肥工业大学学报(自然科学版),2007,(05)
    [102]Shinozuka M. Digital simulation of random processes and its application[J]. Journal of Sound Vibration,1972,25:111-128.
    [103]李德武,高峰.隧道洞口段三维地震反应分析[J].兰州铁道学院学报.1998.6,17(2):1-5
    [104]李育枢.山岭隧道地震动力响应及减震措施的研究[D].博士学位论文.上海:同济大学,2006.6
    [105]Itasca Consulting Group, Inc.. Fast Language Analysis of continua in 3 dimensions, version 3.0, user's manual. Itasca Consulting Group, Inc.,2005.
    [106]郝瀛.铁道工程[M].北京:中国铁道出版社,2004
    [107]Garg V K, Dukkipati R V. Dynamics of railway vehicle systems[M]. Academic Press,Canada,1984.
    [108]郑颖人,沈珠江,龚晓南.岩上塑性力学原理[M].北京:中国建筑工业出版社.2002.
    [109]郑颖人,龚晓南.岩土塑性力学基础[M].北京:中国建筑工业出版社,1989.
    [110]TB10108-2002,铁路隧道喷锚构筑法技术规范[S].
    [111]姜德义,刘春,李光扬,等.大跨度隧道围岩竖直压力计算值的对比分析.[J].中国矿业,2005,14(11):63.
    [112]林乐彬,刘寒冰,刘辉.隧道围岩压力的应力分析方法[J].土木工程学报,2007,40(8):85-89.
    [113]谷兆祺,彭守拙,李仲奎.地下洞室工程[M].北京:清华大学出版社,1994.
    [114]KIM Hak Joon. Estimation for tunnel lining loads[D]. Canada:University of Alberta,1997.
    [115]喻波,王呼佳.压力拱理论及隧道埋深划分方法研究[M].北京:中国铁道出版社,2008
    [116]HAN J. Study on safety factor of loess cave dwellings with pitted courtyard in different rainfall infiltration[J]. Advanced Materials Research,2012,(446/449):1555-1558.
    [117]梁晓丹,宋宏伟,赵坚.隧道压力拱与围岩变形关系[J].西安科技大学学报,2008,28(4):647-650,656
    [118]Cook N W G. The failure on rock[J]. Int. J Rock Mech. Min. Sci. & Geomech. Abstr.,1965,2(3):389-403
    [119]BRADY B HG.BROWN ET.Rock mechanics for underground mining[M].London:George Allen&Unwin,1985.212-213.
    [120]Takemiya H,Bian X C.Substructure simulation of inhomogeneous track and layered ground dynamic interaction under train passage[J] Journal of Engineering Mechanics,2005,131(7):699-711
    [121]关宝树.隧道工程设计要点集[M].北京:人民交通出版社,2003.
    [122]曲海锋,杨重存,朱合华,等.公路隧道围岩压力研究与发展.[J].地下空间与工程学报,2007,3(3):536.
    [123]沈明荣.岩体力学[M].上海:同济大学出版社,1991.
    [124]F.J. Santarelli, E.T.Brown, VMaury, Analysis of Borehole Stresses Using Pressure-dependent, linear Elasticty [J]. J.rock Mech. Min. sci&Geomech Absir,1999,23(6):445-449.
    [125]徐则民,黄润秋,王士天.隧道的埋深划分[J].中国地质灾害与防治学报,2000,11(4):5-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700