用户名: 密码: 验证码:
复杂含水弱胶结砂岩隧道围岩稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市隧道工程,主要包括解决城市交通拥挤问题的地下铁道、公路隧道,或穿越障碍物的各种地下通道以及各种市政地下工程和地下人防设施等。随着我国城市建设的快速发展,城市规模不断扩大,城市人口密度持续增长,许多大城市存在人口膨胀、建筑空间狭小、城市绿化减少、交通拥挤、环境污染等一系列问题,其中交通阻塞已成为我国许多城市的突出问题。一方面经济与社会的发展促使城市集约化程度越来越高,另一方面城市建设迅速发展的结果使得城市市区可供利用的地面面积越来越少。要解决城市建设与土地资源不足的矛盾,以促进城市的可持续发展和环境保护,合理地开发利用地下空间是一条非常有效的解决这些问题的途径。因此修建城市隧道日益受到世界各国的重视。然而,隧道是修筑在具有一定应力履历和构造迹象的各种围岩介质中的一种洞室结构体系,地质环境为隧道工程的自然载体,其地质构造、岩土介质、地应力和水文地质等因素不仅控制着工程地质灾害的规模、频率与发育特征,而且直接影响隧址区的地面稳定性、深部稳定性、山体稳定性和围岩稳定性。正确地理解和掌握围岩基本特征,对围岩稳定性做出评价,不仅关系到隧道的设计和施工方案,而且还决定着整个隧道工程的造价,因此,为了确保隧道工程的稳定,保障工程安全施工,必须就隧道的水文地质条件及围岩稳定性等问题开展系统而深入的研究。
     论文以在建桃树坪、胡麻岭隧道工程为依托,针对复杂含水弱胶结砂岩围岩的特性,采用现场工程地质调查、现场监测和地质探测、室内试验、理论分析和数值计算等方法,全面、系统地研究了桃树坪、胡麻岭隧道的水文地质和工程地质特征,通过地质分析建立了数值计算模型,模拟计算了不同工况条件下岩体失稳与时间的定量关系,并针对隧道所在区域的特殊水文地质条件采用不同的数学方法对隧道围岩的稳定性做出了评价。论文的主要研究成果如下:1、通过对隧道所在区域的工程地质调查和地质探测所获得大量数据进行分析表明,桃树坪、胡麻岭隧道位于祁连褶皱系的秦祁中间隆起带东南端,区内主要受前震旦纪、阿森特—加里东、燕山和喜马拉雅四个构造旋迥的影响,隧道区地貌上属黄土台塬区,地表水不发育,主要为各种沟内季节性流水,补给来源主要为大气降水,水量较小,洞身经过区域多为复杂含水弱胶结砂岩,成岩作用差,对隧道的施工有较大影响。
     2、采用有限元法建立计算模型对隧道施工过程中的地层位移和围岩应力分布情况进行模拟计算,模拟结果显示隧道的开挖对其周围的岩体稳定性影响较大,并且随着暴露时间的延长围岩失稳的现象越来越明显。隧道洞身在穿越第三系沙岩所在区域时围岩失稳的现象最为明显。
     3、运用物元理论进行隧道围岩分级。首先确定评价指标(本文选用了岩石强度Rc、RQD值、岩体完整性Kv值、地下水状态),对指标参数值进行无量纲化处理,然后构造相应的经典域物元和节域物元,再确定各个指标的权重,最后通过关联函数得出相应的围岩级别。
     4、将神经网络评判法、模糊综合评判法的评价过程与物元理论评价过程进行对比分析,其结果表明运用物元模型对含水弱胶结砂岩隧道围岩稳定性进行评判分析,其方法是可行的,结论是可靠的。
City Tunnel project, including various underground tunnels of the underground railway, highway tunnels, or through the obstacles to solve the problem of urban traffic congestion, as well as various municipal underground engineering and underground civil air defense facilities. With the rapid development of urban construction in China, the size of the cities continue to expand, and the continued growth of the urban population density, many large cities population expansion exists, narrow building space, urban greening to reduce traffic congestion, environmental pollution and a series of problems, including traffic congestion has become a outstanding problems in many of our cities. The tunnel is built in the surrounding rock medium with a certain stress resume and construct signs a cavern structure systems, to stress and hydro-geo-logical factors not only controls the magnitude, frequency, and developmental characteristics of the engineering geological disasters, but also directly affect the ground stability of the tunnel site, the stability of the deep, stability and the stability of surrounding rock of the mountain. Correctly understand and master the basic characteristics of surrounding rock stability of surrounding rock to make the evaluation, not only related to the tunnel design and construction program, but also determines the cost of the entire tunnel project, therefore, in order to ensure the stability of the tunnel project to ensure project construction safety, must be carried out on the tunnel hydro-geo-logical conditions and the surrounding rock stability of the system and in-depth research.
     Thesis in Cymbidium TAOshupin and HUmaling tunnel project as the basis of the geological survey of the field engineering, field monitoring and geological exploration, laboratory experiments, theoretical analysis and numerical calculation methods, a comprehensive and systematic study of the peach Ping HU ma Ling tunnel hydro-geo-logical and engineering geological features, geological analysis to establish the numerical model, the simulated rock stability with time, the quantitative relationship under different water and different hydro-geo-logical conditions for the region of the tunnel mathematical methods to make the evaluation of the stability of the tunnel surrounding rock. The main research results are as follows:
     1.Large amounts of data on the region of the tunnel engineering geological survey and geological exploration analysis showed that the Taoshupin tinnel and HUmaling tunnel in the Qin QI middle, Qilian fold system uplift belt in the southeastern end of the region is mainly affected by the pre-SINIAN, ASSEN special-Caledonian, Yan Shan and Himalayan four tectonic cycle, the landscapes of the tunnel area of the loess Plateau of surface water development within each gully seasonal water supply the main source of atmospheric precipitation, compared with water small hole body through regional multi-Tertiary mudstone, sandstone, conglomerate, genesis poor have a greater impact on the construction of the tunnel.
     2.Using the finite element method computational model for simulation of the ground displacement in the tunnel construction process and the stress distribution, the simulation results show that the excavation of the tunnel influence the stability of the slope, and with the exposure time surrounding rock instability of the phenomenon become increasingly evident.
     3.Using matter-element theory of tunnel surrounding rock classification. First indicators of access to (the selection of rock strength RC, the RQD value, rock integrity KV value, groundwater status), dimensionless indicator parameter values, and then construct the corresponding classical field objects and sections of domain objects and then determine the weight of each index, and finally obtained through the correlation function corresponding level of the surrounding rock
     4.Through fuzzy comprehensive evaluation method of the evaluation process with the matter-element theory of the evaluation process compared the results show that the matter element model for analysis of tunnel surrounding rock stability, the method is feasible, the conclusion is reliable from the calculation process look, the law has a clear concept, a simple calculation to evaluate the results of high resolution and.
引文
[1]钱七虎.迎接我国城市地下空间开始高潮[J].岩土工程学报,1998,20(1):112-116
    [2]刘宝深.综合利用城市地面及地下空间的几个问题[J].岩石力学与工程学报,1999,18(1):109-111
    [3]李华哗.地下洞室围岩稳定性分析[M].北京:中国水利水电出版社.1999
    [4]夏永旭..现代公路隧道发展概述[J].交通建设与管理,2006,12(3):45-39
    [5]樊毅,赵春燕,郝哲.我国长、大公路隧道发展综述[J].辽宁建材,2009,6(12):23-28
    [6]张弥,刘维宁,秦淞君.铁路隧道工程的现状和发展[J].土木工程学报,2000,33(2):6-10
    [7]王春生,王中勤.石太铁路客运专线太行山隧道施工组织设计[J].铁道标准设计,2007,26(4):78-85
    [8]孔祥金,张建功.秦岭终南山隧道建设记事[J].公路隧道,2007,17(33):34-38
    [9]陈卫东,张绍成.太平驿水电站工程勘察综述[J].水电站设计,2006,9(04):15-21
    [10]沈佩君,邵东国,郭元裕.国内外跨流域调水工程建设的现状与前景[J].武汉水利电力大学学报,1995,17(5):28-44
    [11]刘伟.21世纪初我国公路隧道的关键技术[J].公路,2000,11:8-12
    [12]王建宇.长大隧道修建技术的发展[J].地下空间,1991,8(5):17-20
    [13]徐军,郑颖人.隧道围岩弹塑性随机有限元分析及可靠度计算[J].岩土力学,2003,24(1):70-74
    [14]余卫平.有限元网格图形处理技术及计算结果的可视化[J].计算机辅助设计与图形学学报,2003,12:32-40
    [15]余卫平,汪小刚,杨健,王玉芳.地下洞室群围岩稳定性分析及其结果的可视化[J].岩石力学与工程学报,2005,34(20):45-51
    [16]王春生,周翠英.梅河高速公路隧道稳定性数值模拟[J].中山大学学报(自然科学版),2005,1(01):67-73
    [17]房明,刘镇,周翠英.史海欧新建隧道盾构下穿施工对既有隧道影响的三维数值模拟[J].铁道科学与工程学报,2011,8(1):67-73
    [18]王成虎,沙鹏,胡元芳.隧道围岩挤压变形问题探究[J].岩土力学,2011,32(02):143-148
    [19]C. Fairhurst, J. Pei.A Comparison Between the Distinct Element Method and the Finite Element Method for Analysis of the Stability of an Excavation in Jointed Rock[J].Tunneling and Underground Space Technology,1990,5(1):111~117
    [20]P. Kuma. Elements for Numerical Analysis of Underground Excavations [J].Tunneling and Underground Technology,2000,15(1):117~124
    [21]张华兵,倪玉山,赵学勐.黄土隧道围岩稳定性粘弹塑性有限元分析[J].岩土力学,2004(增刊):247-250
    [22]李德海,王东攀,高保彬.围岩粘弹性模型有限元模拟分析[J].矿冶工程,2005,(1):1-8
    [23]朱合华,陈清军,杨林德.边界元法及其在岩土工程中的应用[M].上海:同济大学出版社,1997
    [24]王鲁明,赵洪先,华安增.分层介质对巷道裂隙围岩稳定性影响的数值分析[J].矿山压力与顶板管理,2004,(3):8-14
    [25]魏作安.锚喷支护巷道围岩变形与破坏的边界元分析[J],有色冶金设计与研究,1995,16(3):3-5
    [26]许瑾,郑书英.边界元法分析边坡动态稳定性[J].西北建筑工程学院学报(自然科学版),2000,11(04):78-85
    [27]刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,12(04):69-73
    [28]魏群.散体单元法的基本原理数值方法及程序[M].北京:科学出版社,1991
    [29]王泳嘉,邢纪波.v离散单元法及其在岩上力学中的应用[M].沈阳,东北工学院出版社,1992
    [30]焦红光,赵跃民.用颗粒离散元法模拟筛分过程[J].中国矿业大学学报,2007,36(2):232-236
    [31]许树柏.层次分析法原理[M].天津:天津大学出版社,1986
    [32]曹文贵,张永杰.地下结构岩体质量分类的变权重二级模糊综合评判方法研究[J].岩石力学与工程学报,2006.,25(8):1612-1618
    [33]傅鹤林,韩汝才.隧道衬砌荷载计算理论及岩溶处治技术[M].中南大学出版社,2005.4
    [34]高谦,地下工程系统分析与设计[M].中国建材工业出版社,2005-02
    [35]汪坚,屈峥旭,牛录彩.公路隧道渗漏水原因分析与处理[J].湖南交通科技2007,18(9):135-137
    [36]蔡美峰,何满朝.岩石力学与工程[M].北京:科学出版社2001
    [37]周德培,朱本珍,毛坚强.流变力学原理及其在岩土工程中的应用[M].西南交通大学,1996
    [38]同济大学.公路隧道健康诊断的应用技术研究[R].2006.8
    [39]雷晓燕.岩土工程数值方法.北京,中国铁道出版社[M].1999
    [40]司徒丽新,邹友泉.衬砌背后空洞对于公路隧道的危害性研究[J].山西建筑,2004,18(3):301-302
    [41]刘海京,夏才初,蔡永昌.存在衬砌背后空洞的隧道计算模型研究及应用[J].公路隧 道,200727(4):41-45
    [42]罗鑫,李志斌,郑佳艳.公路隧道衬砌背后空洞的研究[J].现代隧道技术,2006,(增刊):79-82
    [43]王海滨,山岭隧道地下水规律及防治方法研究[D],西南交通大学硕士论文,2002.9
    [44]夏才初,李永盛.地下工程测试理论与监测技术[M].上海:同济大学出版社,1999
    [45]孙均,侯学渊.地下结构[M].科学出版社,1987
    [46]王芝银,李云鹏.岩体流变理论及其数值模拟[M].科学出版社,2008.1
    [47]V.kontogiann Panosp, Simoulis Stathis Stiors.What is the contribution of time deformation in tunnel convergence [J]. Engineering Geology,2006,65(82):264-267
    [48]Huang S L. Investigations into the creep behaviour of CRREL tunnel [J], Proc 1st International Symposium on Mine in the Arctic, Fairbanks.1989,122(48):65-73
    [49]F.I. Shalabi. FE analysis of time-dependent behavior of tunneling in squeezing ground using two different creep models [J]. Tunnelling and Underground Space Technology,2005, 20(5):271-279
    [50]Nicolae Cristescu. Viscoplastic creep of rocks around a lined tunnel. International Journal of Plasticity,1988,16(4):393-412
    [51]Bardet J P. A comprehensive review of strain localization in elastoplastic solis[J].Computers and Geotechnics,1990,10:163-188.
    [52]N. Cristescu, I.Duda. A tunnel support analysis incorporating rock creep and the compressibility of a broken rock stratum [J]. Computers and Geotechnics,1989, 43(13):239-254
    [53]B.V.Winkel, K.H.Gerstle, H.Y.Ko. Analysis of Time-Dependent Deformations of Openings in Salt Media.Int.J.Rock Mech [M],1972
    [54]朱昌星,阮怀宁,朱珍德,罗润林.锦屏深埋长大引水隧洞围岩蠕变特性仿真分析[J].地下空间与工程学报,2006,12(6):921-925
    [55]Shigeyuki Kohno, Alfredo HS Ang, Wilson H Tang. Reliability evaluation of idealized tunnel system [J]. Structural Safety,1992,11(9):81-93
    [56]公路隧道养护技术规范JTG H12-2003[M],北京:人民交通出版社2003
    [57]刘波,韩彦辉FLAC原理、实例与应用指南[M].人民交通出版社2005
    [58]Itasca Consulting Group Inc. FLAC3D (Version 2.1) Users Manual [M],2002
    [59]王学滨.剪胀对岩样全部变形特征的影响[J].四川大学学报,2005,37(5):25-30
    [60]陈洪凯,李明.公路隧道健康研究现状与趋势[J].公路,2005,16(7):203-207
    [61]V.I. Pushkarev, B.G.Afanasev.A Rapid Method of Determining the Long Term Strengths of Weak Rocks [J]. Sov.Min.Sci.1983,9(5):56-57
    [62]A.N.Stavrogin and E.V.Lodus. Creep and the Time Dependence of the Strength in Rocks.Sov.Min.Sci.,10(6),1974
    [63]Kawamoto, Y.Ichikawa, T.Kyova. Deformation and Fracturing Behaviour of Discontinous Rock Mass and Damage Mechanics Theory [J]. Int.J.Num.Analy.geo,1988, Vol.(12), No.4:321~327
    [64]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社1999
    [65]王芳其,刘永华,王连成.重庆八一隧道病害检测与整治[J].公路交通技术,2008.2(3):112-115
    [66]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评[J],地震工程与工程震动,2002,22(3):82-90
    [67]邵国建,卓家寿,章青.岩体稳定性分析与评判准则研究[J].岩石力学与工程学报,2003,11(05):109-114
    [68]吴兆营,薄景山,刘德东.岩体边坡地震稳定性动安全系数分析方法[J].防灾减灾工程学报,2004,17(04):81-87
    [69]R.W.I.Brachman, I.D.Moore, R.K.Rowe. The performance of a laboratory facility for evaluating the structural response of small-diamerer buried pipes [J].Canadian GeotechnicalJournal,2001,38 (2):260~275
    [70]In-Mo Lee, Jae-Sung Lee, Seok-Woo Nam. Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting [J]. Tunnelling and Underground Space Technology,2004, n19:p551-565
    [71]X.B.Qiu, S.C. Li.W.Z.Chen. Numerical analysis of rock cover thickness of subsea tunnel[J]. Tunnelling and Underground Space Technology,2004,v19:p426
    [72]刘康和.灰色聚类在围岩稳定性分类中的应用[J].勘察科学技术,1993,11(2):31-34
    [73]冯夏庭,王丽娜.利用神经网络学习的岩体分级[J].东北工学院学报,1993,14(3):226-230
    [74]贾超,肖树芳,刘宁.可拓学理论在洞室岩体质量评价中的应用[J].岩石力学与工程学报,2003,22(5):751-756
    [75]赵洪波,冯夏庭.基于支持向量机的岩体工程分级[J].岩土力学,2002,23(6):698-701
    [76]宫凤强,李夕兵.距离判别分析法在岩体质量等级分类中的应用[J].岩石力学与工程学报,2007,26(01):190-194
    [77]冯夏庭,林韵梅.专家系统在围岩分类中的应用[J].吉林冶金,1991,34(4):12-16
    [78]韩凤山,康立勋.煤矿巷道锚杆支护围岩分类专家系统[J].岩石力学与工程学报,2002,21(增):2238-2241
    [79]J Desruse and R Chambon.Shear band analysis for granular materials:The question of incremental of nonlinearity[J].Ingenieur-Archiv,1989,59(9):185-196
    [80]Scott, T. E., and Nielsen, K. C. The effects of porosity on the brittle-ductile transition in sandstones[J], Journal of Geophysical Research,1991,96 (B1),405-414
    [81]DiMaggio, F. L., and Sandler, I. S. Material model for granular soils[J], Journal of the Engineering Mechanics Division,1971,97 (3),935-950
    [82]Erikson J.M., Mueggenburg N.W., Jaeger H.M., Nagel S.R., Force distributions in three-dimensional compressiblegranular packs, Physical ReviewE,2002,66:040301
    [83]Roscoe K H.The influence of strain in soil mechanics[J].Geotechnique,20(2):129-170
    [84]蒋树屏,黄伦海,宋从军.利用相似模拟方法研究公路隧道施工力学形态[J].岩土力学与工程学报,2002,21(5):662-666
    [85]郭文兵,李楠,王有凯.软岩巷道围岩应力分布规律光弹性模拟实验研究[J].煤炭学报,2002,27(6):596-600
    [86]祝方才.不同应力路径下相似材料模型破坏的试验研究[J].中南工业大学学报,2002,33(增):8-13
    [87]李仲奎,卢达溶,中山元.三维模型试验新技术及其在大型地下洞群研究中的应用[J].岩石力学与工程学报,2003,22(9):1430-1426
    [88]邢彭龄,张国有,杨德全.隧道渗流的数值方法[J].内蒙古民族大学学报(自然科学版).2006.21(1):1-3
    [89]Noorishad J,AyatoJJahi M S.A finite element method for stress and fluid flow analysis infractured rock masses[J], Int.J.Rock Mech.Min.Sci.& Geomech.Abstr.1982,v19:185-193
    [90]Barton, N., Bandis, S., Bakhtar, K., Steength. Deformation and conductivity coupling of rock joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1985, v 22, n 3:p 21-140
    [91]李宁,陈蕴生,陈方方.地下洞室围岩稳定性评判方法新探讨[J].岩石力学与工程学报2006,25(9):1942-1945
    [92]T.Kawamoto,Y.Ichikawa,T.Kyova. Deformation and Fracturing Behaviour of DiscontinousRock Mass and Damage Mechanics Theory[J].Int.J.Num.Analy.geo,1988, Vo1.12, No.4:321-327
    [93]秦四清,等.非线性工程地质学导引[M].成都:西南交通大学出版社,1993
    [94]孙钧、朱合华.软弱围岩隧洞施工性态的力学模拟与分析[J].岩土力学,1994,Vo1.15,No.4:20-32
    [95]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996
    [96]朱合华,陈清军.边界元法及其在岩土工程中的应用[M].上海:同济人学出版社
    [97]Kolmogorov A.N. Preservation of conditionally periodic movements with small change in the Hamilton Function [J]. Akad Navk.SSSR Doklady,1954,34(6):113-119
    [98]符文熹,聂德新,尚岳全,金伟良.软弱夹层工程地质性质的室内仿真研究[J],浙江大学学报(工学版),2003,37(1):1-4
    [99]朱浮胜,郑雨天,谭云亮等.锚杆支护回采巷道围岩类型的最优模糊识别[J].煤炭学报,1997,22(03):265-269
    [100]吕小平.隧道围岩分类的层次类比系统方法[J].水文地质工程地质,1993,12(4):10-13
    [101]伍永平,吴学明,张建华,蔡晓芒,吴少学.富水软岩环境下斜井稳定性分析[J],矿业工程研究,2009,24(1):35-38
    [102]张开智,夏均民,蒋金泉.软岩锚杆强壳体支护结构及合理参数研究[J],岩石力学与工程学报,2004,23(4):668-674
    [103]Chin L.Y., Rajagopal Raghavan, Thomas L.K. Fully coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability [J].SPE Journal,2000, V5(1):32~45
    [104]David tran, Settari A., Long Nghiem. New iterative coupling between a reservoir simulator and a geomechanics module [J].SPE Journal,2004,V9(3):362-369
    [105]McLatchie A.S., Hemstock R.A., Young J.W. The effective compressibility of reservoir rock and its effects on permeability [J].Journal of Petroleum Technology,1988,V10(6):49-51
    [106]代平,孙良田,李闽.低渗透砂岩储层孔隙度、渗透率与有效应力关系研究[J].天然气工业,2006,26(5):93-95
    [107]王掌洪.复杂岩性地层物性参数实验评价[J].岩石力学与工程学报,2003,22(增1):2338-2343
    [108]陈永明,阎振来,吕金信.岩心三个力学参数的测试.探矿工程[J],1997,10(1):41-43
    [109]赵杏媛.粘土矿物与粘土矿物分析[M].北京:海洋出版社,1992
    [110]张新红,秦积舜.低渗岩心物性参数与应力关系的试验研究[J].石油大学学报(自然科学版),2001,25(4):56-60
    [111]Huston, R.L. Passerello, Multibody structural dynamics including translation between the bodies[J]. Computers and Structural,1980,v12,p:713-720
    [112]G. Hocking, Development and application of the boundary integral and rigid block methods for geotechnics.1980,Ph.D. Thesis, Imperial College, London, England.
    [113]孔令辉.弱胶结软岩巷道围岩稳定性分析及支护优化研究[M].山东科技大学,2011
    [114]范庆忠,高延法.软岩蠕变特性及非线性模型研究[J].岩石力学与工程学报,2007,4(02):34-40
    [115]晏启祥,姚勇.软岩隧道施工特性及其动态力学行为研究[J].岩石力学与工程学报,2006,8(03):113-120
    [116]罗平,含水弱胶结砂岩隧道地层特性及施工技术研究[M].北京交通大学,2011
    [117]中铁第一勘察设计院集团有限公司,北京交通大学.含水弱胶结砂岩地层物理力学参数试验研究[R].西安,2010
    [118]李义连,杨玉环,卢学实.水-岩相互作用模拟的研究进展[J].水文地质工程地质,2003,5(03):78-82
    [119]薛琳.岩体粘弹性力学模型的判定定理与应用[J].岩土工程学报,1994,10(05):8-14
    [120]吴家龙编著.弹性力学[M].高等教育出版社,2001
    [121]金英玉,杨兆华编著.弹塑性力学[M].地质出版社,2011
    [122]储学能,刘犇,代建华.基于Ansys的软土基坑支护工程仿真应用研究[J].山西建筑,2010,24:36-42
    [123]王新敏编著Ansys结构工程分析[M].人民交通出版社,2008
    [124]曹文贵,张永杰,杨期君.岩体质量分类区间非线性模糊评判方法研究[J].岩石力学与工程学报,2007,26(03):620-625
    [125]汪益敏.边坡岩体稳定质量的模糊评价[J].华南理工大学学报(自然科学版),1997,13(4):45-49
    [126]陈昌彦,王思敬,沈小克.边坡岩体稳定性的人工神经网络预测模型[J].岩土工程学报,2001,6(05):36-42
    [127]高隽编著.人工神经网络原理及仿真实例[M].机械工业出版社,2010
    [128]杨春燕,蔡文.可拓工程[M].科学出版社,2007
    [129]孙振岩,物元与系统理论的应用[M].大连理工大学出版社,2011
    [130]李克纲,许江,李树春,陶云奇.基于可拓理论的边坡稳定性评价研究[J].重庆建筑大学学报,2004,23(04):18-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700