用户名: 密码: 验证码:
高速铁路列车运行控制系统安全风险辨识及分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路的发展,极大提高了列车的运行速度,缩短了城市间的时空距离,方便了人们的出行,促进了区域经济的繁荣与文化的交流。当列车运行速度提高到一定程度以后,依靠司机瞭望和人工驾驶已难以保证行车安全。根据国际铁路联盟规定,当列车运行时速超过160km时,为保证高速铁路的行车安全,必须装备列车运行控制系统(简称列控系统)。列控系统是实时控制列车安全运行间隔、防止列车超速运行的高速铁路核心技术装备和安全关键系统,对于保障高速铁路行车安全、提高运输效率具有重大作用。列控系统综合应用了计算机、现代通信和自动控制等技术,由车载设备和地面设备组成,系统庞大,在组成结构、功能层次、功能执行过程和状态变迁等方面都极其复杂,各种随机失效和系统失效均可能导致极其严重的后果,与传统铁路信号系统相比面临更加苛刻的安全需求。由于高速铁路列控系统是我国铁路信号领域中的新技术,系统未经过现场长期应用的验证,部分技术规范仍处于不断修订和完善之中,系统中许多潜在的安全风险尚未完全掌握,因此,基于经验及技术规范的传统安全保障手段已不能满足列控系统的安全需求。
     本文基于系统安全风险理论和方法,利用模糊不确定理论、基于逼近理想解的排序法(TOPSIS)、贝叶斯网络、可拓学以及Petri网等建模理论,围绕高速铁路列车运行控制系统安全风险辨识及分析的关键问题展开研究,论文的主要研究内容与成果包括:
     1.将列控系统自上而下划分为系统层、子系统层、单元层、单元板层和模块层,在分层的基础上,分别从系统组成、功能层次、状态变迁和功能执行过程等多维视角,提出了列控系统结构参考模型、功能分层模型、基于P/T系统的状态转移模型和基于SPN的功能执行过程模型的构建与验证方法,并结合危险与可操作性分析(HAZOP)技术,提出了基于结构参考模型、功能分层模型、状态转移模型和功能执行过程模型的安全风险辨识方法,可以提高列控系统安全风险辨识的系统性和全面性。以列控中心子系统为例,分别建立了列控中心的结构参考模型、功能分层模型、状态转移模型和临时限速设置功能执行过程模型,并给出了危险源识别的示例。
     2.针对安全风险等级分析过程中存在的模糊不确定性,建立了基于模糊不确定性理论的列控系统危险源的安全风险等级分析模型。首先基于风险矩阵构建了危险源的安全风险等级推理规则库,分别从危险源发生的可能性和后果严重性两个方面,利用模糊群决策、模糊层次分析法和多级模糊综合评判,建立了危险源的发生频率等级分析模型和后果严重度等级分析模型,最后结合推理规则,实现了危险源安全风险等级的模糊推理。
     3.在安全风险等级分析的基础上,提出了相同等级的危险源的安全风险排序问题。从危险源发生的可能性和后果的严重性两个方面,建立了列控系统危险源的风险评价指标体系,基于模糊层次分析法计算了各评价指标的权值。在指标体系构建及权值计算的基础上,应用TOPSIS法和模糊集理论,建立了基于多级模糊TOPSIS法的列控系统危险源安全风险排序模型,可以从众多相同安全风险等级的危险源中分离出风险更高的危险源,为加强危险源的重点管控提供科学依据。
     4.基于故障树和事件树的概率安全风险分析方法,融合贝叶斯网络和模糊集理论,研究了基于故障树和事件树的贝叶斯网络模型的构造方法、基于多专家模糊评判的贝叶斯网络根节点先验概率的分析算法以及基于等效死亡的危险源定量安全风险计算方法,提出了基于贝叶斯网络的列控系统危险源的定量安全风险分析模型,统一了危险源的原因分析模型和后果分析模型,继承了故障树和事件树建模的优点,降低了贝叶斯网络模型构造以及根节点先验概率获取的难度,既可以定量计算危险源的安全风险,又可以诊断分析导致不同后果的主要因素及其后验概率。以列控中心错误驱动信号继电器为例,建立了列控中心错误驱动信号继电器的贝叶斯网络模型,利用基于多专家模糊评判的根节点先验概率分析算法,通过仿真得到了贝叶斯网络模型中各个根节点的先验概率。最后利用基于聚类的贝叶斯网络推理算法,通过因果推理,定量计算了列控中心错误驱动信号继电器及各种可能后果的发生概率,并结合等效死亡的概念,得出了列控中心错误驱动信号继电器的安全风险;通过诊断推理,分析了导致不同后果发生的主要因素及其后验概率。
     5.从列控系统的系统层面和运营角度,提出了列控系统运营安全风险分析的问题。基于安全系统工程的原理,从设备、操作、维修、管理、环境和更新改造等方面,建立了列控系统运营安全风险的评价指标体系,并应用模糊层次分析法计算了各评价指标的权值。在指标体系构建及权值计算的基础上,将可拓学引入列控系统运营安全风险分析,建立了列控系统运营安全风险多级可拓分析模型,既可以评判列控系统运营的整体安全风险水平,又可以评判各单项评价指标的安全风险水平,为查找列控系统运营期存在的薄弱环节提供科学依据。
The development of high-speed railway leads to the great improvement of train speed, which decreases the time and distance between cities, facilitates trips, promotes the economic development and culture exchange. Manual driving and monitoring can no longer ensure traffic safety when speed is over certain level. According to international union of railways rules, trains with speed higher than160km/h must be equipped with train control system to ensure safety. Train control system is the core equipment and safety-critical system of high-speed railway which real-time controls train safe operation distance and protects train from over speed. It plays an important role in ensuring the high-speed railway safety and improving transport efficiency. Train control system integrates technology of computer, modern communication and automation, and it is an immense system that composed of on-board unit and ground equipment. It is very complex at composition, structure, functional level, function execution process and state transition aspects. So it has more oppressive safety requirements compared with traditional railway signaling systems, all kinds of random failure and system failure may leads to extremely serious results. Because high-speed railway train control system is the new technique in Chinese railway signaling area, it hasn't experienced tests with long-term field application, part of its technical manual are still under revise and polish, many potential safety risks are not mastered yet. So, traditional safety methods can no longer fulfill safety requirements of train control system.
     This thesis uses system safety risk theory and method, together with modeling theories including Fuzzy uncertainty theory, TOPSIS, Bayesian Network, Extenics, Petri Net, to do research on key problems of high-speed railway train control system safety risk identification and analysis. The main research contents and achievements are listed below.
     1. Train control system was divided into system level, subsystem level, constitutional unit level, unit board level and module level from top to bottom. Base on such hierarchy, the thesis integrated the views of composition, functional level, state transition and function execution process to propose build and test methods of structural reference model, function hierarchical model, state transition model based on P/T system and function execution process model based on SPN of train control system. Combined with HAZOP, it also raised safety risk identification method which based on structural reference model, function hierarchical model state transition model and function execution process model. In the way, the systematicness and comprehensiveness of train control system safety risk identification was increased. Took train control centre as an example, the thesis set up structural reference model, function hierarchy model, state transition model and temporary speed restriction execution model, and also provided examples of hazard identification.
     2. Aiming at fuzzy uncertainty of safety risk level analysis, the thesis established the safety risk level analysis model of train control system hazard which based on Fuzzy uncertainty theory. Firstly, it set up hazard safety risk level inference rule library based risk matrix. Then, according to possibility and seriousness of hazard, it used FGDM FAHP and fuzzy comprehensive evaluation to build analytical models of hazard frequency grade and consequence seriousness grade. At last, combined with inference rule, it completed fuzzy inference of hazard safety risk level.
     3. Raised the question about how to reordering hazards with the same safety risk level based on safety level analysis. Set up risk assessment index system of hazard from possibility and seriousness and calculate weight of each index using FAHP. According to such evaluation index system, the thesis used TOPSIS and fuzzy set theory to build train control system hazard safety risk ordering model which based on multilevel fuzzy TOPSIS. Using this ordering model, more serious hazard can be isolated from hazards with the same safety risk level. In this way, scientific basis of enhancing hazard control was provided.
     4. The thesis raised train control system hazard quantitative safety risk analysis model which based on Bayesian Network by researching Bayesian network model construction method which based on fault tree and event tree, the algorithm of prior probability of Bayesian network root node based on multiple experts fuzzy evaluation, computing method of hazards quantitative safety risk which based on equivalent of death, and also combining Bayesian network, fuzzy set theory and probability safety risk analysis method which based on fault tree and event tree. This model integrated hazard's causes and consequences analysis model, inherited the advantage of fault tree and event tree modeling, decreased the difficulty of Bayesian network model structure and obtaining prior probability. It not only quantitatively calculated hazard's safety risk, but also diagnosed dominant factors and posterior probability for different consequences. Used error-driven signal relay in train control center as an example, the thesis established its Bayesian network model, and calculated prior probability of each root node in Bayesian network model according to algorithm based on multiple experts'fuzzy evaluation. At last, it used cluster Bayesian network inferential algorithm and causal inference to quantitatively calculate the probability of every possible consequence of error-driven signal relay, and also quantitatively analyzed major factors and posterior probability of each possible consequence through diagnostic reasoning.
     5. Posed the problems of train control system operational safety risk analysis from the system layer and operating aspect. Set up evaluation index system of train control system operational safety risks, calculated weight of each index using FAHP from equipments, operation, maintaining, management, environment and updating aspects. Then introduced Extenics to train control system operational safety extermination, built train control system operational safety risks multiple grade extenics evaluation model. So it can not only estimate the overall safety risks level of train control system operation, but also estimate single index of safety risks level. In this way the scientific basis for seeking vulnerable spot of train control system during the operation service period was provided.
引文
[1]Luo Ling, Cao Hong.High-speed railways' influence on regional economic development[C]. Proceedings of the 2nd International Conference on Transportation Engineering.2009:3483-3488.
    [2]郭进,张亚东.中国高速铁路信号系统分析与思考[J].北京交通大学学报,2012,36(5):90-94.
    [3]唐涛,郜春海.ETCS系统分析及CTCS的研究[J].机车电传动,2004(6),1-3.
    [4]宁滨,唐涛,李开成,董海荣.高速列车运行控制系统[M].北京:科学出版社,2012.
    [5]Clifton A.Ericson.Hazard analysis techniques for system safety [M].Hoboken, New Jersey:John Wiley&Sons, Inc.,2005.
    [6]French Simon,Bedford Tim,Atherton Elizabeth.Supporting ALARP decision making by cost benefit analysis and multiattribute utility theory [J].Journal of Risk Research,2005.8(3):207-223.
    [7]Melchers, R.E.On the ALARP approach to risk management [J].Reliability Engineering and System Safety,2001,71(2):201-208.
    [8]罗云,樊运晓,马晓春.风险分析与安全评价[M].北京:化学工业出版社.2005.
    [9]陈国华.风险工程学[M].北京:国防工业出版社,2007.
    [10]International Electrotechnical Commission.IEC61508 Functional safety of electrical/electronic/programmable electronic safety-related Systems[S]. Brussels: International Electrotechnical Commission,2000.
    [11]Muller Jorg R, Stander Tobias, Schnieder Eckehard.Improving system safety modelling in accordance to IEC 61508 by using Monte Carlo simulations[C].2nd IFAC Workshop on Dependable Control of Discrete Systems,2009:193-197.
    [12]燕飞,唐涛.IEC61508及其在铁路安全相关系统研制开发中的应用研究[J].铁道学报,2005,27(3):124-128.
    [13]李佳玉,员春欣.IEC61508功能安全国际标准及安全性分析[J].中国铁路,2001:44-45.
    [14]Blackmore Lawrence. IEC61508-practical experience in increasing the effectiveness of SIL assessments[C].ISA TECH/EXPO Technology Update Conference Proceedings, 2000:117-126.
    [15]Catelani M., Ciani, L., Luongo V. The FMEDA approach to improve the safety assessment according to the IEC61508[C].Microelectronics Reliability,2010:1230-1235.
    [16]刘建侯.功能安全技术基础[M].北京:机械工业出版社,2008.
    [17]European Committee for Electrotechnical Standardization.EN 50126 Railway applications-The specification and demonstration of Reliability, Availability, Maintainability and Safety (RAMS) [S].Brussels:European Committee for Electrotechnical Standardization,2003.
    [18]European Committee for Electrotechnical Standardization.EN 50126-2 Railway applications —the specification and demonstration of Reliability. Availability, Maintainability and Safety (RAMS) —Part 2:Guide to the application of EN 50126-1 for safety[S].Brussels:European Committee for Electrotechnical Standardization,2007.
    [19]European Committee for Electrotechnical Standardization.EN 50126-3 Railway applications —The specification and demonstration of Reliability, Availability, Maintainability and Safety (RAMS) —Part 3:Guide to the application of EN 50126-1 for rolling stock RAMS[S].Brussels:European Committee for Electrotechnical Standardization, 2006.
    [20]European Committee for Electrotechnical Standardization.EN 50128 Railway applications —Communications, signalling and processing systems —Software for railway control and protection systems[S].Brussels:European Committee for Electrotechnical Standardization,2001.
    [21]European Committee for Electrotechnical Standardization.EN 50129 Railway applications —Communication, signalling and processing systems —Safety related electronic systems for signalling[S].Brussels:European Committee for Electrotechnical Standardization,2003.
    [22]赵大伟,田小芳,谭永东.EN50129及其在铁路安全相关系统中的应用研究[J].中国安
    全科学学报,2007,17(10):102-107.
    [23]European Committee for Electrotechnical Standardization.EN 50159-1 Railway applications —Communication, signalling and processing systems —Part 1:Safety-related communication in closed transmission systems[S].Brussels:European Committee for Electrotechnical Standardization,2001.
    [24]European Committee for Electrotechnical Standardization.EN 50159-2 Railway applications —Communication, signalling and processing systems —Part 2:Safety-related communication in open transmission systems[S].Brussels:European Committee for Electrotechnical Standardization,2001.
    [25]唐涛,燕飞,郜春海.轨道交通信号系统安全评估与认证体系研究[J].都市快轨交通,2004,17(1):28-32.
    [26]徐中伟,黄银霞,等.安全评估国际标准转化框架体系的研究[J].铁道技术监 督,2008,36(1):6-11.
    [27]黄银霞,孙超,等.信号系统评估体系构架[J].铁道通信信号,2008,44(11):33-39.
    [28]马章.欧洲铁路信号系统安全性标准的学习与引进[J].铁道通信信号,2007,43(8):10-11.
    [29]燕飞,唐涛.轨道交通信号系统安全技术的发展和研究现状[J].中国安全科学学报,2005,15(6):94-99.
    [30]郜春海,燕飞,唐涛.轨道交通信号系统安全评估方法研究[J].中国安全科学学报,2005,15(10):74-79.
    [31]燕飞.列车运行控制系统安全保障与认证方法研究[J].中国安全科学学报,2010,20(12):98-104.
    [32]郜春海,唐涛,燕飞.轨道交通ATP安全完善度等级SIL的分析[J].控制工程,2003:34-36.
    [33]郜春海,唐涛,燕飞.基于CENELEC铁路标准的列车自动防护系统车载设备研究与设计[J].铁道学报,2006,28(1):99-107.
    [34]黄银霞,崔勇,等.强化全过程安全管理的CTCS-3级列控系统系统评估[J].铁道通信信号,2010,46(11):5-11.
    [35]赵阳,张萍,等.我国铁路信号系统安全评估的研究[J].铁道通信信号,2010,46(2):18-19.
    [36]范明,王菲.高速铁路信号系统的安全评估研究[J].中国铁路,2009:23-25.
    [37]邓琼.安全系统工程[M].西安:西北工业大学出版社,2009.
    [38]徐志胜.安全系统工程[M].北京:机械出版社,2007.
    [39]吴涛.安全评估方法在轨道交通中的应用[J].城市轨道交通研究,2002:52-55.
    [40]邵玉华.轨道交通信号系统安全评估综述[J].城市轨道交通研究,2012:18-23.
    [41]胡斯另.头脑风暴法在创造性决策中的应用[J].决策探索,2004(10):15-16.
    [42]International Electrotechnical Commission.IEC 61882 Hazard and operability studies (HAZOP studies) —Application guide[S].International Electrotechnical Commission,2001.
    [43]Dunjo Jordi, Fthenakis Vasilis, etc.Hazard and operability (HAZOP) analysis. A literature review [J] Journal of Hazardous Materials,2010,173(1-3):19-32.
    [44]Perez-Marin M, Rodriguez-Toral M.A.HAZOP-Local approach in the Mexican oil & gas industry [J] Journal of Loss Prevention in the Process Industries,2013,26(5):936-940.
    [45]Mushtaq F, Chung P.W.H.Systematic Hazop procedure for batch processes, and its application to pipeless plants [J] Journal of Loss Prevention in the Process Industries,2000,13(1):41-48.
    [46]Wu jing, Zhang Laibin, etc.Hazard identification of the offshore three-phase separation process based on multilevel flow modeling and HAZOP[C].26th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, 2013:421-430.
    [47]Bailey Mark. Application of hazard and operability studies (HAZOP) to failure analysis[C].Materials Science and Technology Conference,2005:61-71.
    [48]Daramola Olawande, Stalhane Tor,etc.Enabling hazard identification from requirements and reuse-oriented HAZOP analysis[C].4th International Workshop on Managing Requirements Knowledge,2011:3-11.
    [49]Wang Kai-Quan, Li Sha.etc.Risk analysis of vector chain based on HAZOP[J] Journal of Northeastern University,2011,32(2):355-360.
    [50]Rossing Netta Liin, Lind Morten,etc.A functional HAZOP methodology [J].Computers and Chemical Engineering,2010,34(2):244-253.
    [51]王秀军,陶辉.HAZOP分析方法在石油化工生产装置中的应用[J].安全、健康和环境,2005,5(2):6-9.
    [52]张斌,赵东风,等.HAZOP分析技术改进研究[J].中国安全科学学报,2007,17(10):160-164.
    [53]周荣义,李石林,刘何清.HAZOP分析中LOPA的应用研究[J].中国安全科学学报,2010,20(7):76-81.
    [54]Freeman Raymond A, Lee Roberto,etc.Plan HAZOP studies with an expert system[J].Chemical Engineering Progress,1992,88(8):28-32.
    [55]Wittkower Bob, Botto Adriana. Brownfield hazop/PHA application for residual risk removal creating a safer future from current studies[C].23rd International Offshore and Polar Engineering Conference,2013:598-608.
    [56]Johnsen S.O.Use of resilience in risk assessment such as PHA and HAZOP[C].European Safety and Reliability Annual Conference,2010:2337-2344.
    [57]Baum Dick, Faulk Nancy. Improved integration of LOPA with HAZOP analyses [J].Process Safety Progress,2009,28(4):308-311.
    [58]Trammell Steven R,Davis Brett J.Using a modified Hazop/FMEA methodology for managing process risk[J] Journal of the Semiconductor Safety Association,2002,15(3-4):32-39.
    [59]Fu Wan-Fa, Luo De-Li,etc.Safety analysis of tritium processing system based on PHA[J].Nuclear Power Engineering,2012,33(2):11-14.
    [60]胡玢,靳江红,王晓冬.生产工艺过程危险、有害因素辨识方法[J].安全与环境学报,2008,8(1):166-169.
    [61]王涛.基于PHA-LEC法的油田地面工程作业场所潜在风险分析[J].安全与环境工程,2013,20(3):143-148.
    [62]刘辉,张智超,刘强.基于PHA-LEC-SCL法公路隧道施工安全评价研究[J].现代隧道技术,2010,47(5):32-36.
    [63]王长申,孙亚军,杭远.安全检查表法评价中小煤矿潜在突水危险性[J].采矿与安全工程学报,2009,26(3):297-303.
    [64]刘明礼,李明.周大为.安全评价中安全检查表的编制[J].石油与天然气化工,2003,32(5):324-326.
    [65]Thivel P X.Bultel Y.Delpech F.Risk analysis of a biomass combustion process using MOSAR and FMEA methods [J]. Journal of Hazardous Materials,2008,151(1):221-231.
    [66]Bachmann Ovi, Messner Bernhardt, Messnarz Richard. Adapting the FMEA for safety critical design processes[C].18th European Conference on System and Software Process Improvement,2011:290-297.
    [67]Xu K, Tang L C, etc.Fuzzy assessment of FMEA for engine systems [J].Reliability Engineering and System Safety,2002,75(1):17-29.
    [68]Park Gee-Yong, Hur Sup,etc.Software FMEA analysis for safety software[C].17th International Conference on Nuclear Engineering,2009:831-837.
    [69]王绍印.故障模式和影响分析(FMEA)[M].广州:中山大学出版社,2003.
    [70]张悦,石超,方来华.基于FMEA和HAZOP的综合分析方法及应用研究[J].中国安全生产科学技术,2011,7(7):146-150.
    [71]Ingleby Michael, Mee David J.Calculus of hazard for railway signaling[C].Workshop on Industrial-Strength Formal Specification Techniques,1995:146-158.
    [72]Guenab F., Boulanger J.L., Schon W.Safety of railway control systems:A new Preliminary risk analysis approach[C].IEEE International Conference on Industrial Engineering and Engineering Management,2008:1309-1313.
    [73]Hwang Jong-Gyu,Jo Hyung-Jeong, Kim Dong-Hee.Hazard Analysis of Train Control System Using HAZOP-KR Methods[C].International Conference on Electrical Machines and Systems,2010:1971-1975.
    [74]施嘉申,钱雪军,赵惠祥.基于初步危害分析的城市轨道交通系统安全性分析[J].城市轨道交通研究,2006:11-14.
    [75]张苑,刘朝英,等.无线闭塞中心系统安全风险分析及对策[J].中国铁道科学,2010,31(4):112-117.
    [76]王海峰.一种基于模型的功能性危险源分析方法及应用[J].北京理工大学学报,2010,30(7):849-863.
    [77]燕飞,唐涛,郜春海.城市轨道交通安全评价体系研究[J].都市快轨交通,2010,23(3):32-36.
    [78]Fei YAN, Xianqiong ZHAO, Tao TANG. Functional Safety Analysis and Modeling Approach Research[C].System Simulation Technology & Application,2011:155-160.
    [79]李雷,王海峰,唐涛.安全苛求系统综合功能危险源分析方法的研究[J].铁路计算机应用,2011,20(7):1-4.
    [80]陈宝智.系统安全评价与预测[M].第2版.北京:冶金工业出版社,2005.
    [81]谢振华.安全系统工程[M].北京:冶金工业出版社,2010.
    [82]Markowski Adam S, Mannan M Sam. Fuzzy risk matrix [J] Journal of Hazardous Materials,2008,159(1):152-157.
    [83]Smith Eric D, Siefert William T, Drain David. Risk matrix input data biases [J].Systems Engineering,2009,12(4):344-360.
    [84]Ni Huihui, Chen An, Chen Ning.Some extensions on risk matrix approach [J].Safety Science,2010,48(10):1269-1278.
    [85]Li Xiaosong, Liu Shushi,etc.The application of risk matrix to software project risk management[C]. International Forum on Information Technology and Applications,2009:480-483.
    [86]Garg Arun, Murray Susan L.Managing project risks:A generic risk matrix[C].27th Annual National Conference of the American Society for Engineering Management, 2006:176-181.
    [87]Yi Chao Jue, Zheng Chao Yu, Fu, Qi Hao.Improvement and application of risk matrix[C].3rd International Conference on Civil Engineering, Architecture and Building Materials,2013:2650-2654.
    [88]Braband Jens.On the justification of a risk matrix for technical systems in European Railways[C].8th Symposium on Formal Methods for Automation and Safety in Railway and Automotive Systems,2010:185-193.
    [89]朱启超,匡兴华,沈永平.风险矩阵方法与应用述评[J].中国工程科学,2003,5(1):89-94.
    [90]阮欣,尹志逸,陈艾荣.风险矩阵评估方法研究与工程应用综述[J].同济大学学报,2013,41(3):381-385.
    [91]景国勋,熊俊杰,王小俊.基于PHA与LEC对煤矿提升运输系统的安全性分析[J].煤矿安全,2011(7):171-173.
    [92]朱渊岳,付学华.改进LEC法在水利水电工程建设期危险源评价中的应用[J].中国安全生产科学技术,2009,5(4):51-54.
    [93]Zhang Lingling, Fu Gang, Wang Xianfu.Application of the FTA in the risk management of refined oil pipeline[C].International Conference on Vibration, Structural Engineering and Measurement,12:2211-2216.
    [94]Takeichi Masahiko, Sato Yoshinobu, etc.Failure rate calculation with priority FTA method for functional safety of complex automotive subsystems[C].International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering,2011:55-58.
    [95]Bluvband Zigmund, Polak Rafi1, Grabov Pavel.Bouncing Failure Analysis (BFA):The unified FTA-FMEA methodology[C].Proceedings:The International Symposium on Product Quality and Integrity,2005:463-466.
    [96]Chen Jianmin,Yang Renshu.Analysis of mine water inrush accident based on FTA[C].2nd International Conference on Challenges in Environmental Science and Computer Engineering,2011:1550-1554.
    [97]赵冬安.基于故障树法的地铁施工安全风险分析[D].武汉:华中科技大学博士学位论文,2011.
    [98]李建华.基于故障树分析的长输管道定量风险评价方法研究[D].兰州:兰州理工大学博士学位论文,2008.
    [99]王永刚,孙瑶.基于BN的FTA在通用航空风险评价中的应用[J].中国安全科学学报,,2010,20(3):19-23.
    [100]董豆豆,周忠宝,等.基于故障树的系统安全风险实时监测方法[J].国防科技大学学报,2006,28(2):111-116.
    [101]朱云斌,黄晓明,常青.模糊故障树分析方法在机场环境安全中的应用[J].国防科技大学学报,2009,31(6):126-131.
    [102]Sejnoha J, Jaruskova D.Risk quantification for tunnel excavation process [J].World Academy of Science, Engineering and Technology,2009:393-401.
    [103]Meloy Anthony F.Arenal-type pyroclastic flows:A probabilistic event tree risk analysis[J] Journal of Volcanology and Geothermal Research,2006,157(1-3):121-134.
    [104]Ferdous Refaul, Khan Faisal.Fault and Event Tree Analyses for Process Systems Risk Analysis:Uncertainty Handling Formulations [J].Risk Analysis,2011,31(1):86-107.
    [105]Hong Eun-Soo, Lee In-Mo.Quantitative risk evaluation based on event tree analysis technique:Application to the design of shield TBM [J].Tunnelling and Underground Space Technology,2009,24(3):269-277.
    [106]金朝光,林焰,纪卓尚.基于模糊集理论事件树分析方法在风险分析中应用[J].大连理工大学学报,2003,43(1):97-100.
    [107]邢辉,吕安勤,等.基于事件树分析的沉船碍航概率风险评估[J].大连海事大学学报,2012,38(1):29-32.
    [108]Haile J.P.Quantified risk assessment in railway system design and operation [J].Quality and Reliability Engineering International,1995,11(6):439-443.
    [109]Leighton C.L., Dennis C.R.Risk assessment of a new high speed railway [J].Quality and Reliability Engineering International,1995, 11(6):445-455.
    [110]Anandarao Sudhir, Martland Carl D.Level crossing safety on East Japan Railway Company:application of probabilistic risk assessment techniques [J].Transportation,1998, 25(3):265-286.
    [111]Watanabe Ikuo,Hirao Yuji, Iwata Koji.Study on quantitative evaluation methods for safety of railway signalling systems[J].Quarterly Report of RTRI,2002,43(4):163-168.
    [112]Muttram R.I.Railway Safety's Safety Risk Model[C].Proceedings of the Institution of Mechanical Engineers,2002,216(2):71-79.
    [113]Kohda T., Fujihara H.Risk analysis of level crossing accidents based on systems control for safety [C]. Proceedings of the European Safety and Reliability Conference,2007:2619-2628.
    [114]Jo Hyun-Jeong, Hwang Jong-Gyu.Investigation of risk analysis methods for safety assurance in the train control system[C].Proceeding of International Conference on Electrical Machines and Systems,2007:1858-1862.
    [115]Eberhardt Markus, Beck Rainer.Functional risk analysis for electronic interlocking systems [J]. ZEV Rail Glasers Annalen,2008,132(4):128-139.
    [116]Cesario P., Sacco N., Sciutto M.A Discrete time markov chain approach to global risk analysis in railway transportation[C].Computer System Design and Operation in the Railway and Other Transit Systems-Computers in Railways XI.2008:123-131.
    [117]Jin Ahn, Jongwoo Lee.A Study on the Train Control System Risk Assessment Apply BP-risk[C].The International Conference on Electrical Engineering,2009:1-6.
    [118]Jang Yoon-Suk, Choi Kyu-Hyoung.A risk assessment approach to safety management of electric railway facilities[J].Transactions of the Korean Institute of Electrical Engineers,2009,58(5):960-967.
    [119]Zheng Wei, Mueller J.R.Function Modelling and Risk Analysis of Automated Level Crossing Based on National Statistical Data[C].2nd International Asia Conference on Informatics in Control, Automation and Robotics,2010:281-284.
    [120]An Min, Chen Yao, Baker Chris J.A fuzzy reasoning and fuzzy-analytical hierarchy process based approach to the process of railway risk information:A railway risk management syst em [J]. Information Sciences,2011,181(18):3946-3966.
    [121]Mahboob Q., Straub D.Comparison of fault tree and Bayesian Networks for modeling safety critical components in railway systems[C].European Safety and Reliability Conference:Advances in Safety, Reliability and Risk Management,2011:89-95.
    [122]Meyers Timothy, Stambouli Amine, et al.Risk assessment of positive train control by using simulation of rare events[J].Transportation Research Record,2012:34-41.
    [123]Mahboob Qamar, Schone Eric, et al.Application of importance measures to transport industry:Computation using Bayesian networks and Fault Tree Analysis[C].Proceedings of 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering,2012:17-22.
    [124]Mahboob Qamar, Kunze Michael, et al.A flexible and concise framework for hazard quantification[C].Proceedings of 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering,2012:49-54.
    [125]王铁江,郦萌,徐翥.安全苛求软件的模糊风险评价[J].计算机应用,2003:182-184.
    [126]王云珠,陈邦兴.故障树分析法在C3列控系统风险分析中的应用[J].信息技术,2009:10-16.
    [127]朱海宏,徐中伟,等.基于贝叶斯网络的高铁系统概率安全评估方法研究[J].计算机应用与软件,2011,28(3):26-31.
    [128]苏旭明,王艳辉,等.改进的故障模式及影响分析在城市轨道交通运营安全评价中的应用[J].城市轨道交通研究,2011:65-69.
    [129]刘敬辉,戴贤春,郭湛,等.铁路系统基于风险的定量安全评估方法[J].中国铁道科学,2009,30(5):123-128.
    [130]郭湛,商小雷,李海.基于AHP的轨道交通安全评价体系模型[J].中国铁道科学,2011,32(3):123-125.
    [131]刘世豪,刘志刚.地铁安全性能模糊综合评价模型及其应用研究[J].铁道工程学报,2011:100-104.
    [132]潘科,王洪德,石剑云.多级可拓评价方法在地铁运营安全评价中的应用[J].铁道学报,2011,33(5):14-19.
    [133]中华人民共和国铁道部.科技运[2004]14号CTCS技术规范总则[S].北京:铁道部科技司,2004.
    [134]中华人民共和国铁道部.科技运[2008]34号CTCS-3级列控系统总体技术方案[S].北京:铁道部科技司,2008.
    [135]中华人民共和国铁道部.科技运[2010]138号列控中心技术规范[S].北京:铁道部科技司,2010.
    [136]林闯.随机Petri网和系统性能评价[M].第2版.北京:清华大学出版社,2005.
    [137]袁崇义.Petri网原理[M].北京:电子工业出版社,1998.
    [138]蒋昌俊.Petri网理论与方法研究综述[J].控制与决策,1997,12(6):631-636.
    [139]Gehlot Vijay,Nigro Carmen.An introduction to systems modeling and simulation with colored petri nets[C].43rd Winter Simulation Conference,2010:104-118.
    [140]Jin Guo, Zhongzi Huang, Mingyuan Liu.Research on the Railway Safety Critical System with Petri nets[C].6th International Conference on ITS Telecommunications Proceedings,2006:118-121.
    [141]Liu Zengkai, Liu Yonghong Y.RAMS analysis of hybrid redundancy system of subsea blowout preventer based on stochastic petri nets[J].International Journal of Security and its Applications,2013,7(4):159-166.
    [142]Badamchizadeh M.A, Joroughi M.Deterministic and stochastic Petri net for urban traffic systems[C].2nd International Conference on Computer and Automation Engineering,2010:364-368.
    [143]林闯,李雅娟,单志广.基于随机Petri网的系统性能评价[J].清华大学学报,2003,43(4):475-479.
    [144]赵文,袁崇义,等.基于P/T系统化简方法的工作流过程模型验证[J].软件学报,2004,15(10):1423-1430.
    [145]胡宝清.模糊理论基础[M].第2版.武汉:武汉大学出版社,2010.
    [146]张振良.模糊集理论与方法[M].武汉:武汉大学出版社,2010.
    [147]蔡良君.基于模糊层次分析法的管道风险因素权重分析[J].天然气与石油,2010,28(2):1-3.
    [148]刘勇.基于三角模糊数的煤与瓦斯突出危险性评价[J].洁净煤技术,2011,17(2)78-81.
    [149]张吉军.模糊层次分析法(FAHP)[J].模糊系统与数学,2000,14(2):80-88.
    [150]徐泽水.三角模糊数互补判断矩阵的一种排序方法[J].模糊系统与数学,2002,16(1):47-50.
    [151]许树柏.层次分析法原理[M].天津:天津大学出版社,1988.
    [152]Chen Shyi-Ming.Fuzzy group decision making for evaluating the rate of aggregative risk in software development [J].Fuzzy Sets and Systems,2001,118(1):75-88.
    [153]Olcer A I,Odabasi A Y.A new fuzzy attributive group decision making methodology and its application to propulsion/manoeuvring system selection problem [J]. Journal of Operational Research,2005:93-114.
    [154]Wang Cheng,Zhang Zhongcheng,etc.Fuzzy group decision making method and its application[C].6th International Symposium on Neural Networks,2009:1090-1097.
    [155]Wang Ying-Ming, Elhag Taha M.S.A fuzzy group decision making approach for bridge risk assessment[J].Computers and Industrial Engineering,2007,53(1):137-148.
    [156]徐泽水.基于语言信息的决策理论与方法[M].北京:科学出版社,2008.
    [157]吴叶科,宋如顺.陈波.梯形模糊数的信息安全风险群决策评估方法[J].南京师范大学学报,,2011,11(1):51-55.
    [158]陈治宏,卢国明,吴晓华,等.基于AHP的群决策风险评估方法[J].计算机应用,2009,29(6):125-127.
    [159]秦大力,张利,李吉慧.基于FAHP的信息安全风险群组决策评估方法[J].计算机应用研究,2009,26(7):2744-2746.
    [160]吕琛.故障诊断与预测-原理、技术及应用[M].北京:北京航空航天大学出版社,2012.
    [161]Fu Qingpeng, Guo Li, Zhu Zhigang.Study on the evaluation of green building design based on the comprehensive fuzzy evaluation principles[C].International Conference on Electric Technology and Civil Engineering,2011:6907-6910.
    [162]Wu Qunli, Zhang Feng.Comprehensive fuzzy evaluation on risk management of electric power enterprise project[C]. International Conference on Business Management and Electronic Information,2011:654-657.
    [163]Qu Zhiming, Niu Junping.Application of comprehensive fuzzy evaluation in network course[C].1st International Workshop on Education Technology and Computer Science,2009:494-498.
    [164]Wang Yaonan, Li Chunsheng, Zuo Yi.A selection model for optimal fuzzy clustering algorithm and number of clusters based on competitive comprehensive fuzzy evaluation[J].IEEE Transactions on Fuzzy Systems,2009,17(3):568-577.
    [165]马一太,曾宪阳,刘万福.地铁火灾危险性的模糊综合评判[J].铁道学报,2006,28(3):106-110.
    [166]李亮,胡剑波,等.基于模糊理论的多属性航空安全风险评估[J].控制工程,2007:33-38.
    [167]Tavana Madjid, Hatami-Marbini Adel. A group AHP-TOPSIS framework for human spaceflight mission planning at NASA [J].Expert Systems with Applications,2011, 38(11):13588-13603.
    [168]Torlak Gokhan, Sevkli Mehmet,etc.Analyzing business competition by using fuzzy TOPSIS method:An example of Turkish domestic airline industry [J].Expert Systems with Applications,2011,38(4):3396-3406.
    [169]Krohling Renato A, Campanharo Vinicius C.Fuzzy TOPSIS for group decision making: A case study for accidents with oil spill in the sea[J]. Expert Systems with Applications,2011,38(4):4190-4197.
    [170]Sgora Aggeliki, Chatzimisios Periklis,etc.Access network selection in a heterogeneous environment using the AHP and fuzzy TOPSIS methods[C].2nd International ICST Conference on Mobile Lightweight Wireless Systems,2010:88-98.
    [171]Wang Jia-Wen, Cheng Ching-Hsue,etc.Fuzzy hierarchical TOPSIS for supplier selection[J].Applied Soft Computing Journal.2009,9(1):377-386.
    [172]Karimi Marziel, Moztarzadeh Fathollah.etc.Application of fuzzy TOPSIS for group decision making in evaluating financial risk management[C]. International Conference on Innovation, Management and Technology Research,2012:215-219.
    [173]Lo Chi-Chun, Chen Ding-Yuan, Tsai Chen-Fang,etc.Service selection based on fuzzy TOPSIS method[C].24th IEEE International Conference on Advanced Information Networking and Applications Workshops,2010:367-372.
    [174]宋占岭,王永良,王亚莉.基于三角模糊数TOPSIS的火炮发射阵地优选[J].兵工自动化,2010,29(8):35-38.
    [175]侯志东,吴祈宗.基于Hausdauff度量的模糊TOPSIS方法研究[J].数学的实践与认识,2005,35(3):233-237.
    [176]徐玖平.基于Hausdorff度量模糊多指标群决策的TOPSIS方法[J].系统工程理论与实践,2002:84-93.
    [177]晏远春,刘浩学,等.基于模糊TOPSIS的道路危险货物运输企业安全评价方法[J].中国安全科学学报,2010,20(9):32-37.
    [178]向隅.基于三角模糊数的TOPSIS评价方法在新建铁路线路选择中的应用[J].石家庄铁道大学学报,2011,24(2):56-60.
    [179]Lough Katie Granthaml.Detailed risk analysis for failure prevention in conceptual design:RED (Risk in Early Design) based probabilistic risk assessments[C].ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,2008:385-394.
    [180]Danihelka Pavel, Polednak Pavel.Risk analysis-General approach [J].Komunikacie, 2008,10(1):20-23.
    [181]Lebecki K, Rosmus P.Quantitative risk assessment of natural hazards in mining based on the EN61508 methodology [C].European Safety and Reliability Conference,2007:1231-1236.
    [182]Mokhtari Kambiz, Ren Jun.Application of a generic bow-tie based risk analysis framework on risk management of sea ports and offshore terminals [J] Journal of Hazardous Materials,2011,192(2):465-475.
    [183]顾基发,赵丽艳.航天系统安全性分析的概率风险评估方法[J].系统工程与电子技术,1999,21(8):28-31.
    [184]赵丽艳,顾基发.概率风险评估(PRA)方法在我国某型号运载火箭安全性分析中的应用[J].系统工程理论与实践,,2000:91-97.
    [185]Xu Hong, Dugan Joanne Bechtal.Combining dynamic fault trees and event trees for probabilistic risk assessment[C].Proceedings:International Symposium on Product Quality and Integrity,2004:214-219.
    [186]J H Sigurdsson, L A Walls, J L Quigley. Bayesian Belief Nets for Managing Expert Judgement and Modelling Reliability [J]. Quality and Reliability Engineering International. 2001,181-190.
    [187]P. Webern, G. Medina-Oliva, C. Simon, B. lung. Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas [J]. Engineering Applications of Artificial Intelligence.2005.16(5):18-22.
    [188]Bjrn Axel Gran. Assessment of programmable systems using Bayesian belief nets [J].Safety Science.2009:797-812.
    [189]Mahadevan S, Zhang RX, Smith N. Bayesian Network for System Reliability Reassessment [J]. Structural Safety,2001:231-251.
    [190]Helge Langseth, Luigi Portinale. Bayesian networks in reliability [J]. Reliability Engineering and System Safety,2007,92:92-108.
    [191]周忠宝,周经伦,胡云兰,等.基于贝叶斯网络的概率安全评估方法研究[J].系统工程学报,2006.
    [192]尹晓伟,钱文学,谢里阳.系统可靠性的贝叶斯网络评估方法[J].航空学报,2008,29(6):1482-1488.
    [193]张连文,郭海鹏.贝叶斯网引论[M].北京:科学出版社,2006.
    [194]史志富,张安.贝叶斯网络理论及其在军事系统中的应用[M].北京:国防工业出版社,2012.
    [195]陈国兵,杨自春,孙吉宏.基于FMEA/FTA的贝叶斯网络安全性分析方法[J].质量与可靠性,2011:21-26.
    [196]A. Bobbio, L. Portianl, M. Minichino, et al.Improving the analysis of dependable systems by mapping fault trees into Bayesian Networks [J]. Reliability Engineering and System Safety,2001,71:249-260.
    [197]Liu Wensheng, Guo Liwen, Zhu Ming.Bayesian network based on FTA for safety evaluation on coalmine haulage system[C].lst International Conference on Information Computing and Applications,2010:143-149.
    [198]Chen Guobing, Yang Zichun, Sun Jihong.Applying Bayesian networks in nuclear power plant safety analysis[C].Symposium on Security Detection and Information Processing,2010:81-87.
    [199]Yang Dong-Peng, Li Jin-Lin, Zhou Chao.Improving fault tree analysis with Bayesian networks on reliability modeling[J]. Journal of Beijing Institute of Technology,2008:162-166.
    [200]王永刚,孙瑶.基于BN的FTA在通用航空风险评价中的应用[J].中国安全科学学报,2010,20(3):19-23.
    [201]张超,马存宝,胡云兰,等.基于贝叶斯网络的故障树定量分析方法研究[J].弹箭与制导学报,2005,25(2):235-237.
    [202]周忠宝.基于贝叶斯网络的概率安全评估方法及应用研究[D].长沙:国防科技大学博士学位论文,2006.
    [203]周建方,唐椿炎,许智勇.事件树、故障树、决策树与贝叶斯网络[J].河海大学学报,2009,37(3):351-355.
    [204]蔡文,杨春燕,林伟初.可拓工程方法[M].北京:科学出版社,1997.
    [205]杨春燕,蔡文.可拓工程[M].北京:科学出版社,2007.
    [206]王锦国,周志芳,袁永生.可拓评价方法在环境质量综合评价中的应用[J].河海大学学报,2002,30(1):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700