用户名: 密码: 验证码:
再入飞行器末制导与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
末制导与控制是再入飞行器提高打击精度的重要手段。经过长时间飞行后,飞行器携带的惯性测量装置积累了较大的误差,需要融合末制导测量信息和惯性器件信息,修正飞行器位置、姿态观测误差,以得到更为准确的飞行器运动状态。对于变化的预测目标点,如果按照标准弹道飞行,势必带来较大落点偏差,必须根据相对位置和相对速度来实时生成制导指令。本文以再入飞行器为研究对象,重点研究了末制导与控制技术,主要研究成果如下:
     提出了运用伪逆和四元数求解欧拉姿态角速率的方法,得到了奇异情况下欧拉角速率的解。运用最优导引律研究了弹道倾角、弹道偏角与视线高低角、方位角之间的关系,设计了需用攻角、侧滑角制导指令。提出了一种依赖相对视线信息求解转换矩阵的新方法,实现了从攻角、侧滑角制导指令到欧拉姿态角指令的转换。提出了一种滚转通道控制量为零的新制导指令组合。
     提出了考虑相对位置和相对速度间夹角信息的剩余时间估算方法。运用最优控制理论得到了最优加速度矢量作用下末端脱靶量的表达式,建立了末端脱靶量与零控脱靶量之间的关系。在最近接近点和直接碰撞路径两种拦截场景下,得到了新的剩余飞行时间的闭式解。当夹角较大时,剩余飞行时间估计误差较传统的一阶近似方法小。
     研究了末端攻击角度约束的自适应比例导引律和滑模变结构导引律两种制导律。建立了弹道倾角、航迹偏航角变化率和视线高低角、方位角的比例导引关系,根据俯冲平面和转弯平面的运动特点选择了合适导引参数,提出了基于飞行位置的导引参数自适应更新策略;设计了俯冲、转弯平面内的滑模切换函数和趋近律,给出了滑动模态的存在性证明,得到了视线系下的需要加速度。
     设计了基于状态相关Riccati方程(SDRE)方法的姿态控制器。给出了控制器的稳定性和最优性证明,根据SDRE控制器设计思想将再入运动方程写成参数化表达形式,提出了基于状态变量函数的权重矩阵表达式,运用Schur分解法实现了Riccati方程的在线求解,得到了系统的反馈控制律。运用SDRE姿态控制器得到了再入飞行器的舵偏角指令,针对姿态控制效果进行了仿真分析。
     研究了输入输出约束情况下的舵机约束预测控制方法。设计了连续预测控制的各项参数,通过将输入输出限制表示成不等式约束的形式,将输入输出约束情况下最优控制量的求解问题转化为标准二次规划问题。设计了舵机约束预测控制器,将舵机的约束控制环节加入到姿态控制回路中,减小了舵机的最大舵偏角、最大舵偏速率等伺服特性对姿态控制回路的影响,取得较好的姿态控制效果。
     建立了基于dSPACE实时仿真平台的“舵机+惯组”在回路半实物仿真系统。搭建了半实物仿真环境,解决了姿态模拟、飞控计算机设计、信号采集、仿真模型下载等仿真中的关键问题,测试了接口间的数据传输。仿真系统具有在线调参、实时仿真、目标代码快速原型化、精度高等优点,节约了研制成本,缩短了研制周期。基于仿真数据对再入飞行器的姿态控制效果进行了分析,制导指令生成正确,姿态跟踪效果良好,再入飞行器能够准确到达目标点。
     论文较为完整地研究了再入飞行器末制导与控制相关理论问题,研究工作是对高精度制导律和控制律的有益探索,具有一定的理论意义及工程参考价值。
This dissertation is intended to give a systematic study on the terminal guidanceand control for precise impact of reentry vehicles. The Inertial measurement unit willaccumulate errors after long-time flight. More accurate navigation information will beachieved with combined navigation, using inertia navigation and homing seeker.Furthermore, impact point error will be great guided by standard reentry trajectory iftarget point is changing. Then guidance command should be generated on relativeposition and relative velocity. By thoroughly discussing the theories and technicaldifficulties in terminal guidance and control, this study reaches an abundance of regularconclusions.
     First, commonly used coordinate system in reentry phase and the transformationmatrix between different coordinate are introduced, the motion equations of reentryvehicle are given. Based on the correlation between Euler angle rates and body anglerates, Euler angle rates are calculated with pseudoinverse and quaternion method whensingularity exists. Guided by optimal guidance law, the angle between velocity vectorand local horizontal and the angle between velocity vector and local vertical plane arecorrelated with elevation/azimuth, and the commanded angle of attack and sideslipangle are derived. In the transformation from attack angle and sideslip angle commandto Euler angle command, the traditional stratrgy relies on inclination angle, flight pathangle and bank angle, a new guidance command generation strategy using relativeposition is researched. Then, a new guidance command combination is generated whichexerts no control effort in roll plane.
     Based on optimal control theory, this dissertation proposes a new time-to-goestimation algorithm. The terminal miss distance with optimal control effort and thecorrelation between terminal miss and zero-effort-miss are derived. With two differentintercept strategies called point of closet approach and straight collision path, two newequations of time-to-go estimation are given, these two equations make use of theincluded angle between relative position and relative velocity vector. When the includedangle is great, these two equations return less estimation error than traditional first-orderapproximation.
     Two guidance laws with terminal impact angle constraints are proposed usingadaptive proportional guidance and sliding mode control. The correlation betweeninclination/flight path anlge and elevation/azimuth is constructed based on proportionalguidance. Proper guidance parameter is selected in diving plane and tuming plane, andthe guidance parameter is updated with reentry trajectory. The sliding surface andreaching law for sliding mode in diving plane and turning plane are designed, and suchdesign satisfy the reaching condition for the sliding surface. The needed accelerations in target coordinate are given.
     To get better tracking performance of attitude command over the reentry phase ofvehicles, this dissertation carries on the use of state-dependent Riccati equation (SDRE)method for attitude controller design of reentry vehicles. SDRE control method employsfactorization of the nonlinear dynamics into a state vector and state dependent matrixvalued function, stability and optimality of SDRE controller are certificated. After theconstruction of SDRE, the solution to Riccatti equation is calculated real-timely withSchur decomposition method. State feedback control law u(x) is derived with linearquadratic regulator (LQR) method. State-dependent coefficients are derived based onreentry motion equations in pitch and yaw channels, and the rudder deflections are gotwith SDRE controller.
     Based on generalized predictive control(GPC), constrained predictive control isresearched when input, output and control are constrained. Then the solution to optimalinput is got with quadratic programming. Constrained predictive controller is developedbased on the transfer function of the actuator, then the new predictive controller is addedin the attitude control, and better control performance is achieved.
     At last, the dissertation conducts a hardware-in-the-loop simulation based ondSPACE environment. The actuators and inertial measurement unit are added in thesimulation loop, and guidance command and control output are calculated by on-boardcomputer. dSPACE system has such advantages as changing parameter value onlinely,rapid target prototype and high precision. Control performance are discussed based onsimulation data.
     To conclude, this dissertation gives a rather complete discussion on issuesconcerning terminal guidance and control both theoretically and pragmatically. Thisresearch work bears great significance in the theory development as well as engineeringpractice.
引文
[1]赵汉元.飞行器再入动力学与制导[M].长沙:国防科技大学出版社,1997.
    [2]刘玉文.末制导技术及其发展[J].科技研究,2009,25(6):11-16.
    [3]肖龙旭,王顺宏,魏诗卉.地地弹道导弹制导技术与命中精度[M].北京:国防工业出版社,2009.
    [4]姚秀娟,彭晓乐,张永科.几种精确制导技术简述[J].激光与红外,2006,36(5):338-340.
    [5]刘兴堂,戴革林.精确制导武器与精确制导控制技术[M].西安:西北工业大学出版社,2009.
    [6]杨树谦.国外精确制导技术发展述评[J].飞行力学,2001(6):66-69.
    [7]曹邦武.空地导弹制导与控制关键技术研究[D].南京:南京航空航天大学博士学位论文,2006.
    [8]李佑义.2020年的武器[M].北京:解放军出版社,1999.
    [9]范红旗.主动寻的制导中机动目标运动模式辨识技术[D].长沙:国防科技大学博士学位论文,2008.
    [10]陈佳实.导弹制导和控制系统的分析与设计[M].北京:宇航出版社,1987.
    [11]程国采.弹道导弹制导方法与最优控制[M].长沙:国防科技大学出版社,1987.
    [12] Vinh N X(著),茅振东(译).大气中飞行的最优轨迹[M].北京:宇航出版社,1987.
    [13]赵汉元.大气飞行器姿态动力学[M].长沙:国防科技大学出版社,1987.
    [14]廖朝佩.巡航导弹末制导技术的发展[J].战术导弹技术,1993(3):29-37.
    [15]田平,杜金名,罗晓春.国外巡航导弹末制导技术应用情况[J].航天发射技术,2007,(2):48-51.
    [16]侯明善.精确对地攻击姿态约束最优末制导设计[J].兵工学报,2008,29(1):63-67.
    [17]冯志刚,杨希祥.反舰导弹最优末制导律及其仿真研究[J].弹箭与制导学报,2007,27(2):39-41.
    [18] Joongsup Y, Ryoo C, Keeyoung C. Anti-ship Missile’s Guidance Law EstimationFilter[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,Toronto, Ontario Canada,2010: AIAA2010-8186.
    [19] Ananthasayanam M R, Sarkar A K, Bhattacharya A. Nonlinear Observer StateEstimation from Seeker Measurement and Seeker-radar Measurement Fusion[C].AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco,California,2005: AIAA2005-6066.
    [20] Ma L L, Cao C Y, Hovakimyan N. Development of a Vision-based Guidance Lawfor Tracking a Moving Target[C]. AIAA Guidance, Navigation, and ControlConference and Exhibit, Hilton Head, South Carolina,2007: AIAA2007-6744.
    [21]张洪克.地地导弹自寻的末制导技术应用研究[J].科技研究,2006,22(11):39-42.
    [22]欧建军,张斌,寇英信.寻的导弹导引规律研究[J].电光与控制,2005,15(2):31-33.
    [23]赵勋杰,李成金.红外半实物仿真系统的关键技术[J].红外与激光工程,2007,36(3):326-329.
    [24]杨凯,曹小军.比例导引规律在导弹控制系统设计中的应用[J].弹箭与制导学报,1976,12(7):526-532.
    [25]孙胜.有限时间收敛寻的导引律[D].哈尔滨:哈尔滨工业大学博士学位论文,2010.
    [26] Guelman M. The Closed-form Solutions of True Proportional Navigation [J].IEEE Transactions on Aerospace and Electronic Systems,1976,12(3):472-482.
    [27]李君龙,胡恒章.最优偏置比例导引律[J].宇航学报,1998,19(4):75-80.
    [28]杨军.红外寻的制导空空导弹变结构比例导引律研究[J].西北工业大学学报,1998,16(1):38-41.
    [29] Tahk M J, Ryoo C K, Hangju C. Recursive Time-To-Go Estimation for HomingGuidance Missiles[J]. IEEE Transactions on Aerospace and Electronic Systems,2002.38(1):13-24.
    [30]吕永佳,王宝贵,陈晓刚.剩余飞行时间改进估算方法研究[J].弹箭与制导学报,2012,32(4):112-114.
    [31]常青,邢超,李言俊.利用导弹轴向加速度估计剩余飞行时间的新方法[J].弹箭与制导学报,2002,22(4):112-114.
    [32] Kim M, Grider K V. Terminal Guidance for Impact Attitude Angle ConstrainedFlight Trajectories[J]. IEEE Transactions on Aerospace and Electronic Systems,1973,9(6):852-859.
    [33] Byung S K, Jang G L, Hyung S H. Biased PNG Law for Impact With AngularConstraint[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(1):277-288.
    [34] Jeong S K, Cho S J, Kim E G. Angle Constraint Biased PNG[C].20045thAsianControl Conference,2004:1849~1854.
    [35]陈兴林,花文华.具有终端约束的地面目标拦截比例导引[J].弹道学报,2010,22(2):15-18.
    [36] Lu P, David B D, John D S. Adaptive Terminal Guidance for HypervelocityImpact in Specified Direction[J]. Journal of Guiadnce, Control and Dynamics,2006,29(2):269-278.
    [37]陈克俊,赵汉元.一种适用于攻击地面固定目标的最优再入机动制导律[J].宇航学报,1994,15(1):1-7.
    [38]刘大卫,夏群利,崔莹莹.具有终端位置和角度约束的广义弹道成型制导律[J].北京理工大学学报,2011,31(12):1408-1413.
    [39]刘丹,祁载康.限制导弹落角和落点的最优制导律[J].北京理工大学学报,2001,21(3):278-281.
    [40]胡正东.天基对地打击武器轨道规划与制导技术研究[D].长沙:国防科技大学博士学位论文,2009.
    [41] Ryoo C K, Hangju C, Tahk M J. Closed-form Solutions of Optimal GuidanceWith Terminal Impact Angle Constraint[C]. Proceedings of2003IEEEConference on Control Applications, CCA2003, IEEE,2003:504-509.
    [42] Lee Y I, Ryoo C K, Eulgon K. Optimal Guidance with Constraints on ImpactAngle and Terminal Acceleration[C]. AIAA Guidance, Navigation, and ControlConference and Exhibit, Austin, TX,2003.
    [43] Ryoo C K, Hangju C, Tahk M J. Time-to-Go Weighted Optimal Guidance WithImpact Angle Constraints[J]. IEEE Transactions on Control SystemsTechnology,2006.14(3):483-492.
    [44] Jeon I S, Lee J I, Tahk M J. Guidance Law to Control Impact Time and Angle[C].2005International Conference on Control and Automation, Budapest, Hungary,June27-29,2005:852~857.
    [45]李静,左斌,胡云安.基于变结构控制理论的导弹平滑导引律研究[J].海军航空工程学院学报,2007,22(3):313-316.
    [46]赵红超,顾文锦,于进勇.反舰导弹基于反演的滑模控制[J].海军航空工程学院学报,2004,19(1):105-108.
    [47]童春霞,张天桥.倾斜转弯导弹的变结构制导律研究[J].弹箭与制导学报,2005,25(3):8-11.
    [48] Song J, Zhang T. Passive Homing Missile’s Variable Structure ProportionalNavigation with Terminal Angular Constraint[J]. Chinese Journal of Aeronautics,2001,14(2):83-87.
    [49]杨军.红外寻的制导空空导弹的变结构比例导引律研究[J].西北工业大学学报,1998,16(1):38-41.
    [50]宋建梅,张天桥.带末端落角约束的变结构导引律[J].弹道学报,2001,13(1):16-19.
    [51]赵红超,王凤莲,顾文锦.带落角约束的反舰导弹变结构中制导律研究[J].战术导弹控制技术,2006,14(1):20-26.
    [52]刘永善,贾庆忠,刘藻珍.电视制导侵彻炸弹落角约束的变结构导引律[J].弹道学报,2006,18(2):9-14.
    [53]吕红剑,刘藻珍,单家元.带末端角约束的机载布撒器最优滑模制导律设计[J].弹箭与制导学报,2006,26(3):5-7.
    [54]周凤岐,郭建国,周军.基于扩展滑动模态控制的末制导律设计[J].西北工业大学学报,2005,23(2):249-252.
    [55] Brierley S D, Longchamp R. Application of Sliding-Mode Control to Air-AirInterception Problem[J]. IEEE Trans. On Aerospace and Electronis Systems,1990.26(2):306-325.
    [56]周荻.寻的导弹新型导引规律[M].北京:国防工业出版社,2002.
    [57]周荻,邹昕光,孙德波.导弹机动突防滑模制导律[J].宇航学报,2006,27(2):213-216.
    [58]周荻,胡恒章,胡国辉.一种自适应变结构制导律[J].宇航学报,1996,17(4):9-12.
    [59] Zhou Di, Mu Chun-di, Ling Qiang, Xu Wen-li. Study of Optimal Sliding-modeGuidance Law[J]. Chinese Juournal of Aeronautics,1999.12(4):236-241.
    [60] Di Zhou, Chundi Mu, Qiang Ling, Wenli Xu. Optimal Sliding-mode Guidance ofA Homing-missile[C]. Proceedings of the38th Conference on Decision andControl,1999.
    [61] Di Zhou, Chundi Mu, Wenli Xu. Adaptive Sliding-Mode Guidance of a HomingMissile [J]. Journal of Guidance, Control, and Dynamics,1999.22(4):589-594.
    [62] Byung S K, Jang G L, Hyung S H, et al. Homing Guidance with TerminalAngular Constraint against Non-Maneuvering and Maneuvering Targets. AIAAPaper97-3474,1997.
    [63]孙未蒙.空地制导武器多约束条件下的制导律设计[D].长沙:国防科技大学博士学位论文,2008.
    [64]吴鹏.带末端攻击角度约束的制导方法研究[D].哈尔滨:哈尔滨工业大学大学博士学位论文,2009.
    [65]佘文学,周凤岐,周军.考虑自动驾驶仪动态鲁棒自适应变结构制导律[J].系统工程与电子技术,2003,25(12):1513-1516.
    [66]佘文学,周凤岐.三维非线性变结构寻的制导律[J].宇航学报,2004,25(6):681-685.
    [67]佘文学,周凤岐,周军.非线性变结构制导律[J].宇航学报,2003,24(6):638-641.
    [68]窦荣斌,张科.基于二阶滑模的再入飞行器末制导律研究[J].宇航学报,2011,32(10):2009-2114.
    [69]张友安,胡云安.导弹控制和制导的非线性设计方法[M].北京:国防工业出版社,2003.
    [70] Pearson J D. Approximation Methods in Optimal Control[J]. Journal ofElectronics and Control,1962,13(2):453~465.
    [71] Cloutier J R. State-Dependent Riccati Equation Techniques: An Overview[C].American Control Conference, New Mexico,1997:932~936.
    [72] Cloutier J R, Souza C N, Mracek C P. Nonlinear Regulation and Nonlinear HControl Via the State-Dependent Riccati Equation Techniques: Part1, Theory[C].1stInternational Conference on Nonlinear Problems in Aviation and Aerospace,Baytona Beach, FL,1996:117-130.
    [73] Cloutier J R, Souza C N, Mracek C P. Nonlinear Regulation and Nonlinear HControl Via the State-Dependent Riccati Equation Techniques: Part2,Examples[C].1stInternational Conference on Nonlinear Problems in Aviation andAerospace, Baytona Beach, FL,1996:131-142.
    [74] Donald T S, Cloutier J R. Nonlinear Control of Satellite Formation Flight[C].AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, CO,2000: AIAA2000-4436.
    [75] Noboru S, Seiichi K and Satoshi S. Multi-Inputs Stabilization of Pendulum onFlexible Base[C]. SICE Annual Conference, Fukui,2003:1440-1444.
    [76]张军,徐世杰.基于SDRE方法的挠性航天器姿态控制[C].第十二届空间及运动体控制技术学术年会,桂林,2006:11-17.
    [77] Menon P K, Sweriduk G D and Vaddi S S. Nonlinear Discrete-time DesignMethods for Missile Flight Control Systems[C]. AIAA Guidance, Navigation, andControl Conference and Exhibit, Providence, Rhode Island,2004: AIAA2004-5326.
    [78] Andrea B, Mario I and Lorenzo P. Estimation of the Region of Attraction forState-Dependent Riccati Equation Controllers[J]. Journal of Guidance, Control,and Dynamics,2006,29(6):1427-1432.
    [79] Rama K Y, Praveen S and David B D. Combining State Dependent RiccatiEquation Approach with Dynamic Inversion: Application to Control of FlightVehicles[R]. Ohio: Air Force Research Laboratory,2003: VA-WP-TP-2003-300.
    [80]郭润夏.基于非线性模型的无人直升机自动飞行控制方法研究[D].天津:天津大学博士学位论文,2011.
    [81]孙平,刘昆. SDRE方法及其在导弹自动驾驶仪设计中的应用[J].导弹与航天运载技术,2010,308(4):41-45.
    [82]刘智平,周凤岐,周军.战术导弹现代自动驾驶仪设计方法综述.航天控制,2006,24(5):91-96.
    [83]贾正望.旋转稳定弹复合控制与制导技术研究[D].南京:南京理工大学博士学位论文,2011.
    [84] Menon P K, T. Lam, Crawford L S. Real-Time Computation Methods for SDRENonlinear Control of Missiles[C]. American Control Conference, Anchorage,2002:232-237.
    [85] Menon P K, Iragavarapu V R, Ohlmeyer E J. Software Tools for NonlinearMissile Autopilot Design[C]. AIAA99-3975.
    [86] Judith D G. A Stabilized Matrix Sign Function Algorithm for Solving AlgebraicRiccati Equations[J]. SIAM Journal on Scientific Computing,1997,(18):1393-1411.
    [87] Xin M, Balakrishnan S N. Missile Longitudinal Autopilot Design Using a NewSuboptimal Nonlinear Control Method[J]. Control Theory Appl.,2003,150(6):577-584.
    [88] Xin M, Balakrishnan S N. Nonlinear H∞Missile Longitudinal Autopilot Designwith θ-D Method[J]. IEEE Transactions on Aerospace and Electronic Systems,2008,44(1):44-55.
    [89]王振,吴忠.再入弹头复合执行机构控制分配研究[C].第三十一届中国控制会议,合肥,2012:793-798.
    [90] Kishore W C, Sen S, Ray G. Dynamic Control Allocation for TrackingTime-Varying Control Demand[J]. Journal of Guidance, Control, and Dynamics,2008,31(4):1150-1157.
    [91] Yu L, Andrea S and Stephen Y. Model-Predictive Dynamic Control AllocationScheme for Reentry Vehicles[J]. Journal of Guidance, Control, and Dynamics,2007,30(1):100-113.
    [92]李红增,胡昌华.基于滑模和控制分配的飞翼无人机容错控制方法[C].第三十一届中国控制会议,合肥,2012:5390-5395.
    [93]张望根.寻的防空导弹总体设计[M].北京:宇航出版社,1991.
    [94]赵善友.防空导弹武器寻的制导控制系统设计[M].北京:宇航出版社,1992.
    [95]朱忠惠.推力矢量伺服控制系统[M].北京:宇航出版社,1995.
    [96]魏环.连续时间广义预测控制及其实现方法研究[D].北京:北京化工大学博士学位论文,2008.
    [97]袁天宝.弹道导弹滚动飞行动力学与控制研究[D].长沙:国防科技大学博士学位论文,2005.
    [98] Clarke D W,Mohtadi C, Tuffs P S. Generalised Predictive Control; Part1: theBasic Algorithm, Automatica,1987,2:137-148.
    [99] Clarke D W, Mohtadi C, Tuffs P S. Generalised Predictive Control; Part2:Extensions and Interpretations, Automatica,1987,2:49-160.
    [100] Gawthop P J, Demireioglu H. Continous-Time Generalized Predictive Control(CGPC)[C]. IFAC Symposium on Adaptive Systems in Control and SignalProcessing, Glasgow, UK,1989,67-72.
    [101] Ogata K, Fujii S, Hayakawa Y. The Simplification of Computation and theImprovement of Tracking Performance in the Continuous-time GeneralizedPredictive Control [C]. Transactions of the Society of Instrument and ControlEngineers,1993,29(2):188-193.
    [102] Demircioglu H, Clarke D W. CGPC with Guaranteed Stability Properties[J]. IEEProceedings-D,1992,139(4):371-380.
    [103] Garcia C E. Quadratic Programming Solution of Dynamic Matrix Control[J].Chem Engng. Commum,2001,46(l):73-87.
    [104] Little D L. Predictive Control Using Constrained Optimal Control[C]. ACC,1986:1365-1371
    [105] Dion J M. Multivariable Adaptive Control with Input Constrains[C]. IEEEControl and Decision Conference,1987:1233-1238.
    [106] Su Baili, Chen Zengqiang, Yuan Zhuzhi. Constrained Predictive control Based onT-S Fuzzy Model for Nonlinear Systems [J]. Journal of Systems Engineering andElectronics,2007,18(1):95-100.
    [107]符文星,于云峰.精确制导导弹制导控制系统仿真[M].西安:西北工业大学出版社,2010.
    [108] Marko B, Monte M. Hardware-in-the-loop Simulation of Aerodynamic Objects
    [C]. AIAA2007-6465, AIAA Modeling and Simulation Technologies Conferenceand Exhibit, South Carolina, USA, August20-23,2007.
    [109]常同立,丛大成,叶正茂.空间对接地面半物理仿真台系统仿真研究[J].航空学报,2007,28(4):975-980.
    [110]单家元,孟秀云,丁艳.半实物仿真[M].北京:国防工业出版社,2008.
    [111]谢道成,王中伟,曾庆华.基于dSPACE的飞行器控制半实物仿真系统快速搭建[J].宇航学报,2010,31(11):2557-2562.
    [112]徐德华.实时半实物仿真系统关键技术的研究[D].哈尔滨:哈尔滨工程大学硕士学位论文,2005.
    [113]王松辉.基于dSPACE的无人机飞行控制系统半实物仿真研究[D].南京:南京航空航天大学硕士学位论文,2008.
    [114]贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科技大学出版社,2010.
    [115]钱杏芳.导弹飞行力学[M].北京:北京理工大学出版社,2009.
    [116]陈世年.控制系统设计[M].北京:宇航出版社,1996.
    [117] George M S. Missile Guidance and Control Systems[M]. New York: Springer-Verlag.2004.
    [118] Gorecki R M. A Baseline6Degree of Freedom (DOF) Mathematical Model of aGeneric Missile[R]. Australia: DSTO Systems Sciences Laboratory, DSTO-TR-0931,2003.
    [119] Shuster M D. A Survey of Attitude Representations[J]. Journal of theAstronautical Sciences,1993,41(4):439-517.
    [120] Henderson D M. Euler angles, Quaternions, and Transformation Matrices forSpace Shuttle Analysis[R]. USA: NASA Report, NASA-CR-151435,1977.
    [121] Phillips W F, Hailey C E, Gebert G A. Review of Attitude Representations Usedfor Aircraft Kinematics[J]. Journal of Aircraft,2001,38(4):718-737.
    [122] Whitmore S A. Closed-form Integrator for the Quaternion (Euler angle)Kinematics Equations[R]. United States Patent US006061611A, NASA,2000.
    [123] Sheelu J, Dhekane M V. Quaternion Implementation in Autopilot[C].24thAIAAInternational Communications Satellite Systems Conference (ICSSC), San Diego,California, USA, June2006,1-13.
    [124] Shepperd S W. Quaternion from Rotation Matrix[J]. Journal of Guidance andControl,1978,1(3):223-224.
    [125] Arribas M, Elipe A, Palacios M. Quaternions and the rotation of a rigid body[C].Celestial Mech Dyn Astr,2006,239-251.
    [126] Hankey W L, Miller L E, Scherr S J. Use of Quaternions in Flight Mechanics[R].Ohio: Flight Dynamic Laboratory,1984, AFWRL-TR-84-3045.
    [127] Markley F L. Unit Quaternion from Rotation Matrix [J]. Journal of Guidance,Control, and Dynamics,2008,31(2):440-442.
    [128] Klumpp A R. Singularity-Free Extraction of a Quaternion from a Direction-Cosine Matrix [J]. Journal of Spacecraft and Rockets,1976,13(12):754-755.
    [129] Spurrier R A. Comment on Singularity-Free Extraction of a Quaternion from aDirection-Cosine Matrix [J]. Journal of Spacecraft and Rockets,1978,15(4):254-255.
    [130] Grubin C. Quaternion Singularity Revisited [J]. Journal of Guidance and Control,1979,2(3):255-256.
    [131] Charlton M C. A Sounding Rocket Attitude Determination Algorithm Suitable forImplementation Using Low Cost Sensors [D]. Ph.D. thesis, The University ofAlaska Fairbanks,2003.
    [132] Azor R, Bar I, Deutschmann J K. Angular-rate Estimation Using DelayedQuaternion Measurements[C]. AIAA-99-3972, USA,1999.
    [133] Falco D D, Pennestri E, Vita L. Investigation of the Influence of PseudoinverseMatrix Calculations on Multibody Dynamics Simulations by Means of theUdwadia-Kalaba Formulation[J]. Journal of Aerospace Engineering,2009,22(4):365-372.
    [134] James E S. Classical and High-order Sliding Mode Attitude Control for LaunchVehicle Systems[D]. Ph.D. thesis, The University of Alabama in Huntsville,2009.
    [135]罗家洪.矩阵分析引论[M].广州:华南理工大学出版社,1998.
    [136]苏育才,姜翠波,张跃辉.矩阵理论[M].北京:科学出版社,2006.
    [137]陈海东,余梦伦,董利强.具有终端角度约束的机动再入飞行器的最优制导律[J].航天控制,2002,(1):6-11.
    [138] James R C. Dynamic Conversion of Flight Path Angle Commands to BodyAttitude Commands[C]. Proceedings of American Control Conference, May2002,Anchorage, USA.
    [139] Wei Du. Dynamic Modeling and Ascent Flight Control of Ares-I Crew LaunchVehicle[D]. Ph.D. thesis, Iowa State University,2010.
    [140]朱仁璋.航天器交会对接技术[M].北京:国防工业出版社,2007.
    [141] Vincent C L. Time-to-Go Estimate for Missile Guidance[C]. AIAA Guidance,Navigation, and Control Conference and Exhibit, August2005, San Francisco,California.
    [142] Behrouz E, Mohsen B, Jafar R. Optimal Sliding-mode Guidance With TerminalVelocity Constraint for Fixed-interval Propulsive Maneuvers[J]. ActaAstronautica,2008,(62):556-562.
    [143] Asif F, David N L. Bank-to-turn Missile Guidance with Radar ImagingConstraints [J]. Journal of Guidance, Control and Dynamics,2005,28(6):1157-1170.
    [144] Robert W M. A New Paradigm In Optimal Missile Guidance[D]. Ph.D thesis, TheUniversity of Arizona,2009.
    [145] Deived P N, Tiwari S N, Bhattachrya A. A ZEM Dynamics Based IntegratedEstimation Guidance and Control of Interceptors[C]. AIAA Guidance, Navigation,and Control Conference, Portland, Oregon,2011: AIAA2011-6420.
    [146] Deived P N, Tiwari S N, Bhattachrya A. A ZEM Based Effective IntegratedEstimation Guidance of Interceptors in Terminal Phase[C]. AIAA Guidance,Navigation, and Control Conference, Portland, Oregon,2011: AIAA2011-6420.
    [147]程国采.航天飞行器最优控制理论与方法[M].长沙:国防科技大学出版社,1997.
    [148]高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990.
    [149]高为炳.变结构控制的理论与设计方法[M].北京:科学出版社,1996.
    [150]孙志毅.非线性系统控制理论与方法[J].太原重型机械学院学报,2003,24(4):249-253.
    [151]姚琼荟,黄继起,吴汉松.变结构控制系统[M].重庆:重庆大学出版社,2003.
    [152]胡剑波,庄开宇.高级变结构控制理论及应用[M].西安:西北工业大学出版社,2008.
    [153]王丰尧.滑模变结构控制[M].北京:机械工业业出版社,1995.
    [154]瞿少成.不确定系统的滑模控制理论及应用研究[M].武汉:华中师范大学出版社,2008.
    [155]沈林成,彭双春,牛轶峰. BTT导弹制导律研究综述[J].国防科技大学学报,2011,33(4):106-112.
    [156]连葆华,崔平远,崔祜涛.高速再入飞行器的变结构控制及其六自由度仿真研究[J].航天控制,2002,(4):39-45.
    [157]王洪强,方洋旺,伍友利.基于随机变结构控制理论的再入弹头制导律[J].系统仿真学报,2009,21(1):5-8.
    [158]王洪强,方洋旺,伍友利.滑模变结构控制在导弹制导中的应用综述[J].飞行力学,2009,27(4):11-15.
    [159]顾文锦,赵红超,杨智勇.变结构控制在导弹制导中的应用综述[J].飞行力学,2005,23(1):1-4.
    [160]王洪强,方洋旺,周晓滨.随机最优控制理论在再入机动弹头制导中的应用[J].弹道学报,2008,20(3):92-95.
    [161] Lian B H, Hyochoong B. Adaptive Backstepping Control Based Autopilot Designfor Reentry Vehicle[C]. AIAA Guidance, Navigation, and Control Conference andExhibit, Providence, Rhode Island,2004: AIAA2004-5328.
    [162] Schumacher D A. Tactical Missile Autopilot Design Using Nonlinear Control [D].Ph.D thesis, The University of Michigan,1994.
    [163] Kevin A W. Nonlinear Control of Missiles[R]. Missouri: Air Force Office ofScientific Research,1995.
    [164] Kevin A W. A Trade Study On Missile Autopilot Design Using Optimal ControlTheory[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,Hilton Head, South Carolina,2007: AIAA2007-6673.
    [165] Praveen S, Rama K Y and David B D. Stability Domain Estimation for DynamicInversion Embedded SDRE Flight Controller[C]. AIAA Guidance, Navigation,and Control Conference and Exhibit, Providence, Rhode Island,2004: AIAA2004-4871.
    [166] Kelly D H. Control of Nonlinear Systems via State Feedback State-DependentRiccati Equation Techniques [D]. Ph.D thesis, Air Force Institute of Technology,1997:10-23.
    [167] Andrea B, Mario I, Lorenzo P. Estimation of the Region of Attraction for State-Dependent Riccati Equation Controllers [J]. Journal of Guidance, Control andDynamics,2006,29(6):1427-1430.
    [168] Jeff S. Shamma, James R. Cloutier. Existence of SDRE Stabilizing Feedback [J].IEEE Transactions on Automatic Control,2003,48(3):513-517.
    [169] Xie Daocheng, Wang Zhongwei, Zhang Weihua. Attitude controller for reentryvehicles using state-dependent Riccati equation method. Journal of Central SouthUniversity,2013,20(7):1861-1867.
    [170] Andrea B, Mario I, Lorenzo P. A Newton Algorithm for Implementation of SDREControllers[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit,San Francisco, California,2005: AIAA2005-6386.
    [171] Peter B, Ralph B. An Exact Line Search method for Solving GeneralizedContinuous-time Algebraic Riccati Equations[J]. IEEE Transactions on AutomaticControl,1998,43(1):101-107.
    [172] Kleinman D L. On an Iterative Technique for Riccati Equation Computations [J].IEEE Transactions on Automatic Control,1968,13(2):114-115.
    [173] Alan J L. A Schur Method for Solving Algebraic Riccati Equations[J]. IEEETransactions on Automatic Control,1979,24(11):913-921.
    [174] Judith D G. A Stabilized Matrix Sign Function Algorithm for Solving AlgebraicRiccati Equations [J]. SIAM Journal on Scientific Computing,1997,(18):1393-1411.
    [175] William F Arnold, Alan J L. Generalized Eigenproblem Algorithms and Softwarefor Algebraic Riccati Equations [J]. Proceedings of the IEEE,1984,72(12):1746-1754.
    [176] Menon P K. Real-Time Computational Methods for SDRE Nonlinear Control ofMissiles[C]. Anchorge: Proceedings of American Conference, May2002.
    [177]袁晖坪,陈尚杰.酉对称矩阵的Schur分解[J].西南大学学报(自然科学版),2012,34(10):1-6.
    [178]姜长生,吴庆宪,陈文华等.现代鲁棒控制基础[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [179]刘尔琦.汉英导弹词典[M].北京:宇航出版社,2007.
    [180]孙平. xx飞行器运载段姿态控制方法研究[D].长沙:国防科技大学博士学位论文,2010.
    [181]侯明哲.寻的导弹导引与控制一体化设计[D].哈尔滨:哈尔滨工业大学博士学位论文,2011.
    [182]刘兴堂.导弹制导控制系统分析、设计与仿真[M].西安:西北工业大学出版社,2006.
    [183]杨军.导弹控制原理[M].北京:国防工业出版社,2008.
    [184] Demircioglu H, Yavuzyilmaz C. Constrained Predictive Control inContinuous Time [J]. IEEE Control Systems Magazine,2002,(8):57-67.
    [185] Demircioglu H. Constrained Continuous-time Generalised Predictive Control[J].IEE Proc Control Theory Appl,1994,141(5):470-476.
    [186]王伟.改进的广义预测控制算法研究[D].南京:南京信息工程大学硕士学位论文,2009.
    [187]刘洪娥.广义预测控制的研究与仿真[D].东营:中国石油大学(华东)硕士学位论文,2008.
    [188]舒迪前.预测控制系统及其应用[M].北京:机械工业出版社,1995.
    [189]王伟.广义预测控制理论及其应用[M].北京:科学出版社,1998.
    [190]诸静.智能预测控制及其应用[M].杭州:浙江大学出版社,2002.
    [191]李国勇.智能预测[M].北京:电子工业出版社,2009.
    [192]李书臣,徐心和,李平.预测控制最新算法综述[J].系统仿真学报,2006,16(6):1314-1319.
    [193]粟塔山.最优化计算原理与算法程序设计[M].长沙:国防科技大学出版社,2002.
    [194]非线性最优化理论与方法[M].长沙:国防科技大学出版社,2002.
    [195]董锡君,杨莉莉.某防空导弹制导控制半实物仿真系统设计[J].上海航天,2006,(5):42-45.
    [196]唐静,史贤俊,石伟峰.某反舰导弹控制系统半实物仿真平台设计[J].海军航空工程学院学报,2004,19(1):127-130.
    [197]王刚.基于dSPACE的无人机飞行控制快速原型设计[D].南京:南京航空航天大学硕士学位论文,2008.
    [198]马培蓓,吴进华,纪军等. dSPACE实时仿真平台软件环境及应用[J].系统仿真学报,2004,16(4):667-670.
    [199]翟坤,杨涤,朱承元等.基于dSPACE的挠性卫星姿轨控实时仿真系统[J].航天控制,2004,22(1):17-25.
    [200]王继河,王峰,施梨等.基于dSPACE的微型核仿真验证系统[J].系统工程与电子技术,2007,29(12):2149-2153.
    [201]朱承元,杨涤,杨旭.卫星姿轨控实时仿真系统及串口通信建模[J].哈尔滨工业大学学报,2005,37(1):26-31.
    [202]彭嵩,肖建秋,马青芳等.基于dSPACE的频率特性测试系统的研究[J].微电子学与计算机,2008,25(11):221-224.
    [203]潘峰,薛定宇,徐心和.基于dSPACE半实物仿真技术的伺服控制研究与应用[J].系统仿真学报,2004,16(5):936-939.
    [204] dSPACE GmbH. dSPACE Realtime Interface (RTI and RTI-MP) ImplementationGuide[M]. Paderborn: dSPACE GmbH Technology,2004.
    [205] dSPACE GmbH. Controldesk: Hardware Installation and Configuration Reference[M]. Paderborn: dSPACE GmbH Technology,2004.
    [206]董锡君.基于Matlab的制导控制系统模块化仿真[R].上海机电工程研究所,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700