用户名: 密码: 验证码:
迎风凹腔与逆向喷流组合强化防热结构复杂流场和传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热防护系统是高速飞行器设计与制造的关键技术之一,它直接关系到飞行器的飞行安全。由于高速飞行器飞行环境的恶劣和复杂,使得飞行器对热防护系统的要求很高,热防护系统设计一直是一项极富挑战性的前沿课题。
     本文针对高速飞行器的热防护系统设计展开研究。建立了超声速、高超声速飞行器头部复杂流场的数值计算模型,通过流场显影实验结合公开文献中的实验结果对数值方法进行了验证。在对独立的逆向喷流防热方法以及迎风凹腔防热方法开展数值研究的基础上,提出了将两者结合应用,构建迎风凹腔与逆向喷流组合热防护系统的防热设计方案,数值计算证明了该设计方案的有效性。
     数值研究了逆向喷流热防护系统对飞行器鼻锥流场、气动受力与气动热性能的影响。讨论了逆向喷流热防护系统的攻角特性,得到了该热防护系统在相应条件下的使用攻角范围。当飞行攻角为10°,逆向喷流鼻锥迎风面上的最大热流值已经接近没有热防护系统的鼻锥最大热流。可以认为在本文研究的飞行条件下,当飞行攻角为10°,逆向喷流热防护系统不再适用。
     对独立迎风凹腔热防护系统对飞行器鼻锥流场、气动受力与气动加热性能的影响进行了数值模拟。得到了带迎风凹腔鼻锥的全壁面热流分布并讨论了不同的迎风凹腔几何参数选择对鼻锥流场、气动受力以及结构冷却效果的影响。迎风凹腔结构能够有效的对高超声速飞行器的头部进行冷却,尤其是驻点区域附近,冷却效果很好。凹腔越深,飞行器鼻锥外壁面的气动加热热流值越低。鼻锥表面的最大热流并不在尖锐唇缘的顶点,而是位于凹腔的侧壁面接近唇缘的位置,凹腔的深度变化对最大热流的出现位置影响很小。外壁面的最大热流也位于壁面唇缘顶点之后。虽然整个鼻锥气动加热的极大值出现在凹腔侧壁面上,但是凹腔侧壁其他位置的热流普遍较低。除了很浅的凹腔(凹腔的长度与直径之比小于等于0.5),凹腔底面的热流值都非常小,基本可以忽略。
     提出并探讨了迎风凹腔与逆向喷流组合防热结构的设计方案及其冷却效果。对该组合防热结构的流场、气动力以及防热效能进行了数值分析。分别对组合热防护系统中,逆向喷流总压、逆喷马赫数以及迎风凹腔的深度与直径的选择对组合热防护系统鼻锥的影响进行了讨论。得到了不同逆喷工况、不同凹腔几何参数条件下,组合热防护系统的防热效能。迎风凹腔与逆向喷流组合热防护系统能够有效地对高速飞行器头部进行冷却,大大削弱鼻锥物面的气动加热。回流区域在鼻锥冷却过程中扮演着关键的角色。在相同的逆向喷流总压条件下,逆向喷流的速度越高,逆喷流量越大,鼻锥外壁面的冷却效果越好,采用组合防热结构鼻锥的阻力越小。在相同的逆向喷流马赫数条件下,飞行器鼻锥的气动阻力随逆喷总压提高单调下降,而外壁面热流的变化趋势较为复杂。在鼻锥流动条件(包含自由来流与逆向喷流)不变的情况下,组合热防护结构凹腔直径不变时,凹腔越深,鼻锥外壁面热流越小,组合结构的冷却效果越好;凹腔深度的变化对鼻锥气动阻力的影响不大。当凹腔长度不变,对于鼻锥外壁面热流,存在一个最优的凹腔直径选择,在本文的研究中,当凹腔直径取6mm时有最小的鼻锥外表面热流分布。
     最后,使用国防科技大学基于纳米粒子的平面激光流动成像系统(Nanoparticle-based Planar Laser Scattering,NPLS)对单纯迎风凹腔、逆向喷流以及两者的组合结构三种热防护结构进行了流场成像观测。得到了清晰的采用三种不同热防护方案鼻锥的流场图像,包括使用单纯逆向喷流和组合结构时,由自由来流与逆向流动作用形成的鼻锥前端的脱体激波以及再压缩波等复杂波系结构;使用单纯迎风凹腔时,鼻锥前端弓形脱体激波的往复震荡。进一步的,将实验结果与数值计算的结果相对比,两者非常吻合,再次验证了数值计算的正确性。
Thermal protection system (TPS) is a key technique of the high speed vehicles’design and manufacture, it is connected with the safety of the aerocraft directly. Thedesign of TPS is always a challenging work for the high requirement from the aerocraftby its inclement and complex aviation environment.
     The present dissertation is about research of thermal protection system design forhigh speed vehicles. The numerical simulation mode of the flow field of surpersonic andhypersonic vehicle nose-tip is established, and this numerical method is validated byflow imaging experiment and experimental date in the open literature. Based on thenumerical simulation of the single opposing jet and single forward-facing cavity coolingmethod, a kind of the forward-facing cavity and opposing jet combined TPS is designedand investigated numerically.
     The influence of the opposing jet TPS on the flow field, aerodynamic force, andsurface aerodynamic heating of the vehicle nose-tip was investigated numerically. Theproperties of attack angle for opposing jet TPS was discussed, the useful attach anglerange of opposing jet TPS was obtained. When the attack angle reaches10, the heatflux on the windward generatrix is close to the maximal heat flux on the wall surface ofthe nose-tip without thermal protection system, thus the thermal protection is failure.
     A numerical study on the effect of forward-facing cavity upon aerodynamicheating on the hypersonic vehicle nose was conducted. The flow field parameters, heatflux distribution along the outer body surface and the cavity wall were obtained, thecooling effect of the forward-facing cavity with different dimension was analyzed. Theresults show that the forward-facing cavity configuration dose well in cooling the noseof hypersonic vehicles especially at the stagnation point area. The deeper the cavity is,the smaller the heat flux is. The maximal heat flux dose not locates at the peak of thesharp lip, the maximal heat flux of the outer body surface and upper wall of the cavityare all behind the lip peak. The cavity length has little effect on the location of themaximal heat flux. In sum, there is a low heat flux on the upper wall, but the maximalaerodynamic heating point is located on it. There is a very low surface heat flux alongthe base wall of the cavity except the cavity is shallow enough.
     The forward-facing cavity and opposing jet combined TPS was investigatedprimarily. The flow field parameters, aerodynamic force and surface heat fluxdistribution of this combined TPS nose-tip were obtained by numerical method. Theinfluence of the opposing jet stagnation pressure, Mach number and cavity length,diameter on the thermal protection efficiency of the TPS was discussed respectively.The performance parameter of the combined TPS with different opposing jet workcondition and cavity geometry parameter were obtained. This kind of combined TPS has an excellent impact on cooling the nose-tip of high speed vehicles. The recirculationregion plays an pivotal role for the reduction of heat flux. Under the same opposing jetstagnation pressure condition, with the opposing jet speed increasing, the coolingefficiency of the combined TPS is improved and the aerodynamic resistance isdecreasing. Under the same jet Mach number condition, with the stagnation pressure ofopposing jet decreases, the aerodynamic resistance is increasing but the heat flux alongouter body surface of the nose-tip does not increase monotonically. Under the sameflow condition (include the free stream and opposing jet flow), with a constant cavitydiameter, the combined TPS with larger length cavity has the higher heat flux reduction.The cavity length has little influence on the aerodynamic force. Both of theaerodynamic heating and the force do not variate monotonically with the cavitydiameter. There is an optimal choice of the cavity diameter for the aerodynamic heatingreducing of the nose-tip, in this researching, the aerodynamic heating has the minimumdistribution when the cavity diameter is6mm.
     The high-definition Nanoparticle-based Planar Laser Scattering (NPLS) is used toobserve the flowfield of nose-tip with the three different thermal protectionconfiguration, forward-facing cavity, opposing jet and their combined configuration.The complex structure of the flowfield with different thermal protection method can beobserved in detail, including the bowl shock wave in front of the nose and therecompression shock wave when the thermal protection method contains the opposingjet, and the bowl shock wave oscillation when the thermal protection method containsforward-facing cavity only. At last, these experiment images are compared with thecalculation results, there is a good agreement, which validates the calculation methodagain.
引文
[1]乐嘉陵等编.再入物理[M].北京:国防工业出版社,2005.
    [2] Fujino T, Ishikawa M. Numerical Simulation of Control of Plasma Flow WithMagnetic Field for Thermal Protection in Earth Reentry Flight[J]. IEEETransactions on Plasma Science,2006,34(2):409-420.
    [3] Shang J S. Plasma injection for hypersonic blunt-body drag reduction[J]. AIAAJournal,2002,40(6):1178-1186.
    [4] Shang J S, Hayes J, Menart J. Hypersonic Flow over a Blunt Body with PlasmaInjection[A].9th Aerospace Sciences Meeting&Exhibit[C],2001.
    [5] Sulliven L J. The Early History of Reentry Physics Research at LincolnLaboratory[J]. AD-A245595,1991.
    [6] Hayami R A. The Application of Light Gas Gun Facilities for HypervelocityAerophysics research[J]. AIAA92-3998,1992.
    [7] Rybak J P, Churchill R J. Progress in Reentry Communications[J]. IEEETransactions on Aerospace and Electernic Systems,1971, Vol.7No.5:879-894.
    [8] Lin T C, Sproul L K, Hall D W, et al. Reentry Plasma on Electromagnetic WavePropagation[A].26th AIAA Plasmadynamics and Lasers Conference[C], SanDiego, CA,1995.
    [9] Usui H, Matsumoto H, Yamashita F, et al. Computer experiments on radioblackout of a reentry vehicle[A].6th Spacecraft Charging TechnologyConference[C],2000:107-110.
    [10]陆海波,刘伟强.从头部外形设计看高超声速飞行器热防护系统的发展[J].飞航导弹,2012年第4期:88-92.
    [11]苏芳,孟宪红.三种典型热防护系统发展概况[J].飞航导弹,2006年第10期,57-60.
    [12]夏刚,程文科,秦子增.充气式再入飞行器柔性热防护系统的发展状况[J].宇航材料工艺,2003(6):47-51.
    [13]苏大亮,郑晓亚,张铎.飞行器头部热防护系统热分析[J].弹箭与制导学报,2006Vol.26No.1,:725-727.
    [14] Christopher L. Clay. High Speed Flight Vehicle Structures: An Overview[J]. J.Aircraft,2004,41(5):978-985.
    [15] David E. Glass, N. Ronald Merski, and Christopher E. Glass. Airframe Researchand Technology for Hypersonic Airbreathing Vehicles[R].2002,NASA/TM-2002-211752.
    [16] Mather D E, Pasqual J M, Sillence J P. Radio Frequency (RF) Blackout DuringHypersonic Reentry[A]. AIAA/CIRA13th International Space Planes andHypersonics Systems and Technolo[C],2005.
    [17] Allen H. J., Neice S.E., Problems of performance and heating of hypersonicvehicles[R]. NACA RM A55L15,1956.
    [18] Allen H. J., Eggers A. J. A study of the motions and aerodynamic heating ofballistic missiles entering the Earth’s atmosphere at high supersonic speeds[R].1957, NACA TN4047.
    [19] Dotts R L, Maraia J, Smith J A, Strouhal G. Thermal insulation protectionmeans[P]. US Patent No.:4151800,1979.
    [20] Graflin M., Schottle U. Flight performance evaluation of the re-entry missionIRDT-1[R]. IAF-01-V.3.05,2001.
    [21] Han Hongshuo. Analysis on thermal protection systems, structures and materialsfor space transportation systems abroad[J]. Aerospace Materials and Technology,1997(4):1-4.
    [22] Xia Gang, Qin Zizeng, Zhang Xiajin. Development status of inflatable thermalshield technology[J]. Missiles and Space Vehicles,2002(1):19-24.
    [23] B. Laub, E. Venkatapathy. Thermal Protection System Technology and FacilityNeeds for Demanding Future Planetary Missions[C]. Trajectory Analysis andScience, Lisbon, Portugal,6-9October2003.
    [24] Aiichiro Tsukahara, Hiroyuki Yamao. Advanced Thermal Protection Systems ForReusable Launch Vehicles[R]. AIAA2001-1909.
    [25]关春龙等.可重复使用热防护系统防热结构及材料的研究现状[J].宇航材料工艺,2003(6):7-11.
    [26] John T. Dorsey, Carl C. Poteet, Roger R. Chen, Kathryn E. Wurster. MetallicThermal Protection System Technology Development. Concep ts, RequirementsAnd Assessment Overview[R]. AIAA2002-05-02.
    [27]杨亚政,杨嘉陵,方岱宁.高超声速飞行器热防护材料与结构的研究进展[J].应用数学和力学,2008, Vol.29No.1:47-56.
    [28]夏德顺.重复运载器金属热防护系统的述评[J].导弹与航天运载技术,2002,2:21-25.
    [29] David EMyers, Carl J, MaxL Blosser. Parametric Weight Comparison ofAdvanced Metallic, Ceramic Tile, and Ceramic Blanket Thermal ProtectionSystems[R]. NASA/TM-2000-210289.
    [30]赵剑,谢宗蕻,张磊.高温合金金属热防护系统设计与分析[J].宇航学报,2008, Vol.29, No.5:1677-1683.
    [31]赵玲,吕国志,任克亮,李元林.再入飞行器多层隔热结构优化分析[J].航空学报,2007, Vol.28, No.6:1345-1350.
    [32] Stauffer T. The effective t hermal conductivity of multi foilinsulation as a functionof temperature and pressure [R]. AIAA1992-2939,1992.
    [33] Spinnler M., Winter E. R. F., Viskanta R. Theoretical studies of high-temperaturemultilayer t hermal insulation using radiation scaling[J]. Journal of QuantitativeSpectroscopy and Radiative Transfer,2004,84:477-491.
    [34] Krishnaprakas C K, Narayana K B, Dutta P. Heat transfer correlations formultilayer insulation systems [J]. Cryogenics,2000,40:431-435.
    [35]崔红,李瑞珍,苏君明,李贺军,康沫狂.多元基体抗烧蚀炭/炭复合材料的微观结构分析[J].固体火箭技术,2010,24(3):63-67.
    [36] Frank S. milos. Galileo probe heat shield ablation experiment[J]. Journal ofspacecraft and rockets,1997,34(6):705-713.
    [37] Derbidge C, Powars C. Acceleration effects on internal insulation erosion[R].AIAA93-185.
    [38]姚承照,胡宝刚,冯志海,刘武.三维整体编织碳/酚醛复合材料烧蚀表面状态测试与分析[J].宇航材料与工艺,2001(6):72-76.
    [39]刘德英,王岳广,张友华,杨汝森.碳/酚醛复合材料烧蚀性能的实验研究[J].宇航材料与工艺,2004(1):59-61.
    [40] Basil Hassan, Kuntz D W,Potter D L. Coupled fliud/thermal prediction of ablatinghypersonic vehicles[C]. In:36thaerospace sciences meeting&exhibit,1998:12~15.
    [41] Dimitrienko Yu I. Thermomechanical behaviour of composite materials andstructures under high temperatures [R].2. Stuctures, Composites part A,1997,28:451-461.
    [42]俞继军,马志强,姜贵庆,童秉纲. C/C复合材料烧蚀形貌测量及烧蚀机理分析[J].宇航材料与工艺,2003(1):36-39.
    [43] Donghwan Cho, Byung L Yoon. Microstructural interpretation of the effect ofvarious matrices on the ablation properties of carbon-fiber-reinforcedcomposites[J]. Composites Science and Technology,2001,61:271~280.
    [44]陆海波,陈伟芳,袁雷,刘伟强.再入体碳基材料烧蚀特性分析与工程计算[J].弹道学报,2008,20(3):107-110
    [45]蔡巧言,陆海波,陈伟芳.碳酚醛材料烧蚀特性分析与工程计算[J].导弹与航天运载技术,2008年第5期:46-48.
    [46] Bhutta B A, Lewis C H. A new technique for low to high altitude predictions ofablative hypersonic flowfields[R]. AIAA-91-1392.
    [47] Keenan J A, Candler G V. Simulation of ablation in earth atmospheric entry[R],AIAA-93-2789.
    [48] Basil Hassan, Kuntz D W, Potter D L. Coupled fliud/thermal prediction ofablating hypersonic vehicles[C]. In:36thaerospace sciences meeting&exhibit,1998:12~15.
    [49]吕德生,宋桂明,周玉,王玉金,贾德昌,段小明.航天飞行器防热部件烧蚀行为的数值模拟[J].固体火箭技术,200225(2):67-69.
    [50]易法军,梁军,孟松鹤,杜善义.防热复合材料的烧蚀机理与模型研究[J].固体火箭技术,2000,23(3):48-56.
    [51]易法军,孟松鹤,梁军,杜善义.防热复合材料高温体积烧蚀模型[J].哈尔滨工业大学学报,2001,33(6):725-728
    [52]王建,孙冰,魏玉坤.超声速气膜冷却数值模拟[J].航空动力学报,200823(5):865-870.
    [53] Aupoix B., Mignosi A., Viala S. Experiment al and numerical study of supersonicfilm cooling[J]. AIAA J.,1998,36(6):916-923.
    [54]韩启祥,何小明,谈浩元,等.超声速射流气膜冷却效果的试验研究[J].南京航空航天大学学报,1998,30(5):491-495.
    [55] YANG Xiaobo, Badcockt K J, Richards B E, et al. A numerical study ofhypersonic turbulent film cooling [C].43rd AIAA Aerospace Sciences Meetingand Exhibit. Reno, Nevada:2005, AIAA2005-386.
    [56]朱惠人,许都纯,刘松龄.气膜孔形状对排孔下游冷却效率的影响[J].航空学报,2002,23(1):75-78.
    [57] D. G. Bogard and K. A. Thole. Gas turbine film cooling[J]. J. Propulsion andPower,22(2):249-270,2006.
    [58] M. Harrington, M. McWaters, D. G. Bogard, C. Lemmon, and K. Thole. Fullcoverage film cooling with short normal injection holes[J]. J. Turbomachinery,123:798-805,2001.
    [59]原和朋,朱惠人,孔满昭.后台阶三维缝隙冷却效率的数值模拟[J].燃气轮机技术,2006,19(4):38-42.
    [60]刘江涛,吴海玲,陶涛,等.斜孔气膜冷却数值模拟分析[J].工程热物理学报,2004,25(6):1034-1036.
    [61] Carlos A C, Marshall A W. Surface and gas-phase temperatures near a film cooledwall[R]. AIAA-2004,3654,2004.
    [62] Han Jechin, Jenkins P E. Predict ion of f ilm cooling effectiveness of stream[R].AIAA-3654,2004.
    [63]杨宝庆,陈建华,周立新.推力室多条内冷却环带近壁层混合比计算新模型[J].火箭推进,2002,28(4):20-25.
    [64]陈建华,卢钢,张贵田,周立新,孙宏明.冷却环带喷注结构对煤油超临界液膜的影响研究[J].航空动力学报,2008,23(2):336-341.
    [65] Matesanz A, Velazquez A, Rodriguez M. Performance of algebraic and models inthe study of film cooling problems inside convergent-divergent nozzles[R].AIAA-94-3384,1994.
    [66] Katorgin B I, Chvanov V K, Chelk is F J. RD-180engine production and flightexperience[R]. AIAA-2004-3998,2004.
    [67] Cook R T, Quentmeyer R J. Advanced cooling techniques for high pressurehydrocarbon fuel rocket engines [R]. AIAA80-1266,1980.
    [68] Wolkmann J C, Mcleod J M, Claflin S E. Investigation of throat film coolant foradvanced LOX/RP-1thrust chambers[R]. AIAA91-1979, Int.27thAIAA/SAE/SAME/ASEE Joint Propulsion Conference,1979.
    [69] Grisson W M. Liquid film cooling in rocket engines[R]. AD-A234288,1989.
    [70] Lezuo M, Haidn O J. Transpiration cooling in H2/O2combustion Devies[R].AIAA96-2581.
    [71] John E Terry. Transpiration and film cooling of liquid rocket nozzles[R]. AD98-486409.
    [72]朱森元.氢氧火箭发动机及其低温技术[M].北京:国防工业出版社,1995.123.
    [73] Carton E P, Stuivinga M, Keizers H. Shock wavefabricated ceramic-metalozzles[J]. Appl. Comp. Mater.,1999,6(3):139.
    [74] Swann R T. Numerieal analysis of the transient response of advanced thermalprotection systems for atmospheric entry[J]. J. Spacecraft Rockets,2001,38(4):15.
    [75] Lezco M, Haidn O J. Transpiration cooling using gaseous Hydrogen[R]. AIAA97-2909.
    [76] Kuntz R J, Blubaugh A L. Transpiration-cooled devices[P]. U.S. Patent3,585,800.
    [77] Laotz R J. Transpiration cooling washer assembly[P]. U.S. Patent3,925,983.
    [78] Wassel A B, Bhangu J K. The development and application of improvedcombustor wall cooling techniques[R].1980, ASME-80GT-66.
    [79]张峰,刘伟强,层板发汗冷却结构的非均匀温度分布受热皱损的求解[J].航空学报,2007,28(1):138-141.
    [80] Robbers B. A., Anderson B. J., Hayes W. A., Hewitt R. A., Brown M. G. PlateletDevices-Limited Only by One’s Imagination[R].2006, AIAA2006-4542.
    [81]刘伟强.液体推进剂火箭发动机推力室层板发汗冷却研究[D].国防科技大学博士学位论文,1999.
    [82]刘伟强,孙文胜,张峰等.发汗冷却层板结构的受热皱损分析[J].航空学报,2006(2):56-59.
    [83] Liu W Q, Chen Q Z. Recession analysis for carbon-carbon composite nozzle ofliquid propellant rocket engine[R]. AIAA Paper96-3214.
    [84] Liu W Q, Chen X H, Ma D Y, et al. Liu W Q. Thermal analysis of multipurposerocket propulsion system[R]. AIAA Paper96-3215.
    [85] Liu W Q, Chen Q Z. The effect of transpiration cooling with liquid oxygen on theflow field[R]. AIAA Paper98-3515.
    [86] Liu W Q,Gao C Q,Zhang F, et al. Numerical study of heat transfer andthermo-soakback in orbit control rocket engine[A]. International Symposium onSpace Propulsion[C]. Shanghai, Aug.2004.
    [87] Liu W Q, Chen Q Z. Transpiration cooling of rocket thrust chamber with liquidoxygen[R]. AIAA Paper98-0890.
    [88]刘伟强,陈启智,吴宝元.典型结构的层板发汗冷却推力室传热特性的推算方法[J].推进技术,1998,19(6):15-19.
    [89] Wassel A B, Bhangu J K. The development and application of improvedcombustor wall cooling techniques[C]. ASME-80GT-66,1980.
    [90] Blubaugh A L, Zisk E J. Demonstration of an advanced transpiration cooled thrustchamber[R]. AD385085.
    [91] Robbers B.A., Anderson B.J., Hayes W.A., Hewitt R.A. and Brown M.G. PlateletDevices-Limited Only by One’s Imagination[R].2006, AIAA2006-4542
    [92]金韶山,姜培学,苏志华.钝体头锥发汗冷却对流换热实验研究[J].工程热物理学报,2009,30(6):1002-1004.
    [93]吉洪亮,张长瑞,曹英斌.发汗冷却材料研究进展[J].材料导报,2008,22(1):1-3.
    [94]金韶山,姜培学,孙纪国.发汗冷却喷管多孔壁面的分段设计分析[J].航空动力学报,2008,23(12):2346-2352.
    [95] Steffen Bayer, Georges Cahuzac. Piah-socar fuel-cooled composite rnaterialsstrueture for dual-mode ramjet and liquid rocket engines[R]. AIAA2004-3653.
    [96] Serbest, Greuel, Korger. Effusion cooling of throat regin in rocket enginesallpying fiber reinforced ceramics[R]. AIAA2002-3435.
    [97]杨学实.热防护发汗冷却控制[J].自动化学报,1985,11(4):11-16.
    [98] Glass D E, Arthur D. Numerical Analysis of Convection/Transpiration cooling[R].NASA/TM-1999-209828,1999.
    [99]徐燕候,杨学实.发汗冷却控制系统及其特性[J].应用数学和力学,1993,14(11):1047-1056.
    [100]Wang J H, Messner J, Stetter H. An experimental investigation of transpirationcooling, Part II-Comparison of cooling methods and media[J]. InternationalJournal of Rotat ing Machinery,2004,9(10):355-363.
    [101]吴慧英,程惠尔,牛禄.层板发汗冷却推力室壁温的数值模拟[J].工程热物理学报,2001,22(1):104-106.
    [102]Eckert E R G, Cho H H. Transition from transpiration to film cooling[J]. Int. J.Heat Mass Transfer,1994,37(Suppl.1):3-82.
    [103]孙冀,罗学波,杨学实.多层介质的发汗冷却自适应控制[J].数学的时间与认识,2004,34(9):70-76.
    [104]Anthony F. Rocket chamber and method of making[P]. U.S. Patent3,910,039
    [105]Love E. S., The Effects of a Small Jet of Air Exhausting from the Nose of a Bodyof Revolution in Supersonic Flow[R]. NACA RM L52I19a,1952.
    [106]Love E. S., Grigsby C. E., Lee L.P., and Woodling M. J. Experimental andTheoretical Studies of Axsymmetric Free Jets[R]. NACA TR No.6,1959.
    [107]Takami G., Aso S., Karashima K. and Sato, K. A Study on Opposing Jet Flowswith Oscillating Shock Wave[R]. ISTS2000-e-16,2000
    [108]Fujita M. Axisymmetric Oscillations of an Opposing Jet from a HemisphericalNose[J]. AIAA J.,1995,33:1850-1856.
    [109]Li-Wei Chen, Guo-Lei Wang and Xi-Yun Lu. Numerical investigation of a jetfrom a blunt body opposing a supersonic flow[J]. J. Fluid Mech.2011,684:85-110.
    [110]Chen, L. W., Xu, C. Y. and Lu, X.-Y. Large eddy simulation ofopposing-jet-perturbed supersonic flow past a hemispherical noses[J]. Mod. Phys.Lett. B2010,24:1287-1290.
    [111]Fujita, M. Three-dimensional oscillations of a supersonic opposing jet flow arounda hemispherical nose[J]. J. Japan Soc. Aeronaut. Space Sci.2002,50:373–379.
    [112]姜宗林,韩桂来,刘云峰.一种高超声速逆向脉冲爆炸防热和减阻方法[P].中国, ZL2006101696843,2008.10.08.
    [113]毛枚良,董维巾,邓小刚,强激光与高超声速球锥流场干扰数值模拟研究[J].空气动力学学报,2001,19(2):172-176
    [114]Fomin V.M., Tretyakov P.K., Taran J.P. Flow control using various plasma andaerodynamic approaches[J], Aerospace Science and Technology,2004,8:411-421.
    [115]Riggins D. W., Nelson H. F., Johnson E. Blunt body wave drag reduction usingfocused energy deposition[J]. AIAA Journal,1998,37(4):460-504.
    [116]Levin V. A., Georgievsky P. Y. U. Effentive flow-over-body control by energyinput upstream[R]. AIAA2003-0038,2003.
    [117]Hutt C R, Howe A J. Forward facing spiked effects bodies of differentcrosssection in supersonic flow [J]. The Aeronautical Journal of the RoyalAeronautical Society,1989,93(6):229-234.
    [118]Grawford D H. Investigation of the flow over a spiked nose hemisphere cylinderat Mach number6.8[R]. NASA TN-D118,1959.
    [119]Maull D J. Hypersonic flow over axially symmetric spiked bodies[J]. J. F. M.,1960,8(4):584-592.
    [120]张涵信,黄洁高树椿.带针尖杆的钝体粘性绕流的数值模拟[J].航空学报,1994,15(5):519-525.
    [121]耿云飞,阎超.高超声速自适应激波针数值研究[J].力学学报,2011,43(3):441-446.
    [122]Ahmed M.Y.M., Qin N. Metamodels for aerothermodynamic design optimizationof hypersonic spiked blunt bodies[J]. Aerospace Science and Technology2010,14:364-376.
    [123]Mehta R.C. Numerical Simulation of Self-Sustained Oscillations Over SpikedBlunt-Bodies[R]. AIAA2001-0262,2011.
    [124]Mehta R.C. Heat Transfer Analysis over Disc and Hemispherical Spike Attachedto Blunt-Nosed Body at Mach6[R]. AIAA2011-2228,2011.
    [125]YAMAUCH I. M., FUJII K., HIGASHINO F. Numerical investigation ofsupersonic flows around a spiked blunt-body[R]. AIAA93-0887,1993.
    [126]MEHTA R. C. Numerical heat transfer study over spikedblunt bodies at Mach6.80[R]. AIAA2000-0344,2000.
    [127]Viren Menezes, S. Saravanan, G. Jagadeesh, and K. P. J. Reddy. ExperimentalInvestigations of Hypersonic Flow over Highly Blunted Cones with Aerospikes[J].AIAA J.,2003,41(10):1955-1966.
    [128]J. Michael Shoemaker. Aerodynamic Spike Flowfield Computed to SelectOptimum Configuration at Mach2.5with Experimental Validation[J].AIAA-90-0414,1990.
    [129]Lawrence D. Huebner, Anthony M. Mitchell. Experimental Results on theFeasibility of an Aerospike for Hypersonic Missiles[R]. AIAA95-0737,1995.
    [130]Motoyama, N., Mihara, K., Miyajima, R., Watanuki, T. and Kubota, H., ThermalProtection and Drag Reduction with use of Spike in Hypersonic Flow[R], AIAApaper2001-1828,2001, Vol.32, No.1, January-February1995
    [131]Bogdonoff, S. M, and Vas, I. E. Preliminary Investigations of Spiked Bodies atHypersonic Speeds[J]. Journal of the Aero. Space Sciences, Vol.26, No.2,1959,pp.65-74.
    [132]Masafumi Yamauchi, Kozo Fujii and Fumio Higashino. Numerical Investigationof Supersonic Flows Around a Spiked Blunt Body[J]. J. of Spacecraft and Rockets,1995,32(1):32-42.
    [133]培强.三叉戟I型导弹的减阻空气锥[J].现代军事,1985,1:25-29.
    [134]J. Hartmann, B. Troll: On a new method for the generation of sound waves[J].Physics Review,1922,20:719-727.
    [135]Burbank P. B., Stallings R. L. Heat-transfer and pressure measurements on a flatnose cylinder at a mach number range of2.49to4.44[R]. NASA TM X-221,1959.
    [136]Gunes H., Fenercioglu I., Yuceil B.. Instantaneous imaging of highly unstablebow shock wave caused by a hypervelocity projectile with a streamwise nosecavity[C].11thInternational Symposium on Flow Visualization, Notre Dame,Indiana, USA,2004
    [137]Yuceil B. and Dolling D.S. Nose cavity effects on blunt body pressure andtemperature at Mach5[J]. Journal of Thermophysics and Heat Transfer,1995,Vol.9.
    [138]Yuceil, B., Dolling, D. S. IR Imaging and Shock Visualization of Flow over aBlunt Body with a Nose Cavity[R]. AIAA96-0232,1996.
    [139]Farnsworth, S. and Wilson, D.E., A Preliminary Investigation of the HelmholtzResonator Concept for Heat Flux Reduction Part I: Experimental Program[R].IAT.P0024, Institute for Advanced Technology, The University of Texas at Austin,Oct.1992.
    [140]Marquart, E. J., Grubb, J. P. and Utreja, L. R. Bow shock dynamics of aforward-facing nose cavity[R]. AIAA87-2709,1987.
    [141]耿云飞,阎超.联合激波针一逆向喷流方法的新概念研究[J].空气动力学学报,2010,28(4):436-440.
    [142]David E, Glass. Ceramic Matrix Composite (CMC) Thermal Protection System(TPS) and Hot Structures for Hypersonic Vehicles[R], AIAA-2008-2068,15thAIAA Space Planes and Hypersonic Systems and Technologies Conference,Dayton, Ohio, Apr,2008.
    [143]Niblock, G. A., Reeder, J. C. and Huneidi, F. Four Space Shuttle Wing LeadingEdge Concepts[J]. Journal of Spacecraft and Rockets,1974, Vol.11, No.5:314-320.
    [144]Alario, J. P., and Prager, R. C. Space Shuttle Orbiter Heat Pipe Application[R].NASA CR128498, April1972.
    [145]Anon. Study of Structural Active Cooling and Heat Sink Systems for SpaceShuttle[R]. NASA CR123912, June1972.
    [146]Anon. Design, Fabrication, Testing, and Delivery of Shuttle Heat Pipe LeadingEdge Test Modules[R]. NASA CR124425, April1973.
    [147]Camarda, C. J. Analysis and Radiant Heating Tests of a Heat-Pipe-CooledLeading Edge[R]. NASA TN D-8468, Aug.1977.
    [148]Wojcik C C, Clark L T. Design, analysis, and testing of refractory metal heat pipeusing lithium as the working fluid[C]. Proc26th AIAA Thermo physicsConference. Honolulu, Hawaii: AIAA Press,1991:1-14.
    [149]Thornton E A. Thermal structures: four decades of progress[J]. Journal of Aircraft,200229:485-498.
    [150]Roukis, J., Rogovin, J and Swerdling, B., Heat Pipe Applications to SpaceVehicles[C], AIAA6th Thermophysics Conference. April26-28,1971,AIAA-71-0410.
    [151]Scollon, T. R. Jr., Heat Pipe Energy Distribution System for Spacecraft ThermalControl[C], AIAA6th Thermophysics Conference. April26-28,1971,AIAA-71-0412.
    [152]Buffone, C., Bruno, C. and Sefiane, K., Liquid Metal Heat Pipes for CoolingRocket Nozzle Walls[C],39th AIAA/ASME/SAE/ASEE Joint PropulsionConference and Exhibit20-23July2003, AIAA-2003-4452.
    [153]Glass D E, Camarda C J, Merrigan M A, et al. Fabrication and testing of moreheat pipes embedded in carbon/carbon[J]. Journal of Spacecraft and Rockets,1999,36:79-86.
    [154]Tawil, M., Alario, J., Prager, R. and Bullock, R. Heat Pipe Applications for theSpace Shuttle[C], AIAA6th Thermophysics Conference. April10-12,1972,AIAA-72-0272.
    [155]Donovan, B. D., Chang, W. S. and Gottschlich, J. M., Missile Fin Heat PipeCooling[R]. AD358663, May1998.
    [156]Bruno C., Buffone C. Nozzle Cooling in the Future Rubbia’s Engine TestFacility[C],2002, Paper ISTS2002-a-22, presented at the23rd InternationalSymposium on Space Technology and Science, May26-June02, Matsue, Japan.
    [157]Glass D E, Camarda C J, Merrigan M A, et al. Fabrication and testing of moreheat pipes embedded in carbon/carbon[J]. Journal of Spacecraft and Rockets,1999,36:79-86.
    [158]陈连忠,欧东斌,刘德英.高温热管在热防护中应用初探[J].前沿科学,2009,2(3):41-44.
    [159]姜贵庆,艾邦成,俞继军,陈连忠.高温热管在疏导热防护技术中的应用[C].第十一届全国热管会议.威海,2008:72-78.
    [160]李同起,胡子君,定向高导热碳材料及其热管理结构设计[J].航空材料工艺,2007,1:16-18.
    [161]李军伟,刘玉.三维数值模拟再生冷却喷管的换热[J].推进技术,2005, Vol.26No.2:22-26.
    [162]孙健,刘伟强.内嵌定向高导热层疏导式结构热防护机理分析[J].物理学报,2012,61(12):124401.
    [163]孙健,刘伟强.尖化前缘高导热材料防热分析[J].航空学报,2011,32(9):1622-1628.
    [164]Laptoff M. Wingflow study of pressure drag reduction at transonic speed byprojecting a jet of air from the nose of a prolate spheroid of fineness ratio6[R].NACA RM L5109,1951.
    [165]Warren C H E. An experimental investigation of the effect of ejecting a coolantgas at the nose of a bluff body[J], Journal of Fluid Mechanics,1960,8:400-417.
    [166]Finley P J. The flow of a jet from a body opposing a supersonic free stream[J].Journal of Fluid Mechanics,1966,26(2):337-368.
    [167]Fujita M. Axisymmetric oscillations of an opposing jet from a hemisphericalnose[A].32nd Aerospace Sciences Meeting and Exhibit[C]. Reno, NV, US.January,1994. AIAA94-0659.
    [168]Aso S, Kurotaki T. Experimental and computational study on reduction ofaerodynamic heating load by film cooling in hypersonic flows[A].35th AIAAAerospace Sciences Meeting and Exhibit[C]. Reno, NV,1997. AIAA97-0770.
    [169]Meyer B, Nelson H F, Riggins D. Hypersonic drag and heat-transfer reductionusing a forward-facing jet[J].Journal of Aircraft,2001,38(4):680-686.
    [170]Aso S, Hayashi K, Mizoguchi M. A study on aerodynamic heating reduction dueto opposing jet in hypersonic flow[A].40th AIAA Aerospace Sciences Meetingand Exhibit[C]. Reno, NV,2002. AIAA2002-0646.
    [171]Takagi R. Numerical simulation of heating rate reduction by directed energy airspike[J]. Journal of the Japan Society for Aeronautical and Space Sciences,2002,50:109-117.
    [172]Hayashi K, Aso S. Effect of pressure ratio on aerodynamic heating reduction dueto opposing jet[A].33rd AIAA Fluid Dynamics Conference and Exhibit[C].Orlando, FL, US,2003. AIAA2003-4041.
    [173]Kitamura T, Ohnishi N, Sawada K. Computational analysis of opposing jet fromvertical-lander space vehicle[A].42nd AIAA Aerospace Sciences Meeting andExhibit[C]. Reno, NV,2004. AIAA2004-0871
    [174]Hayashi K, Aso S, Tani Y. Numerical study of thermal protection system byopposing jet[A].43rd AIAA Aerospace Sciences Meeting and Exhibit[C]. Reno,NV,2005. AIAA2005-188.
    [175]Hayashi K, Aso S, Tani Y. Experimental study on thermal protection system byopposing jet in supersonic flow[J]. Journal of Spacecraft and Rockets,2006,43(1):233-235.
    [176]Suzuki T, Nonaka S, Inatani Y. Computations of opposing jet from verticallanding rocket vehicle[A].24th AIAA Applied Aerodynamics Conference[C]. SanFrancisco, CA, US,2006. AIAA2006-3329
    [177]王兴,裴曦,陈志敏,徐敏.超声速逆向喷流的减阻与降热水[J].推进技术,2010,31(3):261-264.
    [178]王振清,吕红庆,雷红帅.钝体前缘喷流热防护数值分析[J].宇航学报201031(5):1266-1271
    [179]李海燕,额日其太.反向喷流减小了气动加热技术[J].飞航导弹,2006(1):28-30.
    [180]李海燕,额日其太.反向喷流降低钝体头部气动加热的数值模拟研究[A].第三届工程计算流体力学会议[C].2006:287-293.
    [181]耿湘人,桂业伟,王安龄,贺立新.利用二维平面和轴对称逆向喷流减阻和降低热流的计算研究[J].空气动力学学报,2006,24(1):85-89.
    [182]田婷,阎超.超声速场中的反向喷流数值模拟[J].北京航空航天大学学报,2008,34(1):9-12.
    [183]何琨,陈坚强,董维中.逆向喷流流场模态分析及减阻特性研究[J].力学学报,2006,38(4):438-445.
    [184]戎宜生,刘伟强.再入飞行器鼻锥逆向喷流对流场及气动热的影响分析[J].航空学报,2010,31(8):1552-1557.
    [185]陈延辉,关于超声速气流中喷嘴逆向喷射降低气动热问题的研究[J].飞航导弹,2004(12):47-52.
    [186]Ericsson L. E. Asymmetric Unsteady Flow in Forward Facing Cavities[J]. Journalof Spacecraft and Rockets,1978,15(6):321–327.
    [187]Engblom WA, Goldstein DB Fluid Dynamics of Hypersonic Forward-FacingCavity Flow[J]. J. Spacecraft Rockets1997,34(4):437
    [188]Daniel Lamberson, Hiroshi Higuchi, Michel van Rooij. Characteristics of Flowwithin Concave-nosed Bodies[R]. AIAA99-1738,1999.
    [189]Kim J. D. and Park S.O. Unsteady characteristics of hypersonic forward facingcavity[R]. AIAA2000-3925,2000.
    [190]R. Rifki and A. Ahmed. Flowfield of a Forward-Facing Shaped-Charge Cavity[J].Journal of aircraft,2009,46(3):1059-1062.
    [191] Auman, L. M. and Dahlke, D. Aerodynamic Characteristics of Ribbon-StabilizedGrenades[R]. AIAA Paper2000-0270,2000.
    [192]Johnson, R. H. Instability in Hypersonic Flow About Blunt Bodies[J]. The Physicsof Fluids, Vol.2, No.5,1959, pp.526–532.
    [193]Baysal, O., and Stallings, R. L., Jr., Computational and Experimental Investigationof Cavity Flow Fields[J]. AIAA Journal,1988,26(1):7.
    [194]Marquart, E. J., and Grubb, J. P. Bow Shock Dynamics of a Forward-Facing NoseCavity[R]. AIAA Paper1987-2709,1987.
    [195]Huebner, L. D. and Utreja, L. R. Experimental Flow Field Measurements of aNose Cavity Configuration[J]. Society of Automotive Engineers, Paper871880,1987.
    [196]Yuceil, B., Dolling, D. S., and Wilson, D. A Preliminary Investigation of theHelmholtz Resonator Concept for Heat Flux Reduction[R]. AIAA Paper1993-2742,1993.
    [197]Morgenstern, A., Jr., and Chokani, N. Hypersonic Flow Past Open Cavities[R].AIAA Paper1993-2969,1993.
    [198]Morgenstern, A., Jr., and Chokani, N. Hypersonic Flow Past Open Cavities[J]AIAA Journal,1994, Vol.32, No.12:2387-2393.
    [199]Silton, S. I., and Goldstein, D. B. Use of an Axial Nose-Tip Cavity for DelayingAblation Onset in Hypersonic Flow[J]. Journal of Fluid Mechanics, Vol.528, No.7, April2005, pp.297-321.
    [200]Silton, S. I., and Goldstein, D. B. Ablation Onset in Unsteady Hypersonic FlowAbout Nose Tip with Cavity[J]. Journal of Thermophysics and Heat Transfer,2000,14(3):421-434.
    [201]Engblom, W. A., Yuceil, B., Goldstein, D. B., and Dolling, D. S. HypersonicForward-Facing Cavity Flow: An Experimental and Numerical Study[R]. AIAAPaper1995-0293,1995.
    [202]Engblom, W. A., Yuceil, B., Goldstein, D. B., and Dolling, D. S. Experimentaland Numerical Study of Hypersonic Forward-Facing Cavity Flow[J] Journal ofSpacecraft and Rockets,1996,33(3):353-359.
    [203]Engblom, W. A., Ladoon, D., and Schneider, S. Fluid Dynamics ofForward-Facing Cavity Flow[R]. AIAA Paper1996-0667,1996.
    [204]Engblom, W. A., and Goldstein, D. B. Nose-Tip Surface Heat ReductionMechanism[R]. AIAA Paper1996-0354,1996.
    [205]Engblom, W. A., and Goldstein, D. B. Nose-Tip Surface Heat ReductionMechanism[J]. Journal of Thermophysics and Heat Transfer,1996,10(4):598–606.
    [206]耿云飞,阎超.高超声速前缘空腔数值模拟研究[J].空气动力学报,2011,29(4):470-475.
    [207]Launder, B. E. and Spalding, D. B. Mathematical Models of Turbulence[M].Academic Press,1972.
    [208]Chieng C-C and Launder B. E. On the Calculation of Turbulent Heat TransportDownstream form an Abrupt Pipe Expansion[J]. Numerical Heat Transfer,1980,3:33-38.
    [209]Liou M-S. A Sequel to AUSM: AUSM+[J]. Journal of Computational Physics,1996,(129):364.
    [210]Liou M-S. A Further Development of the AUSM+Scheme Towards Robust andAccurates Solutions for All Speeds[C]. AIAA2003-4116.2003.
    [211]Liou M-S. A sequel to AUSM, Part II: AUSM+-up for all speeds[J]. Journal ofComputational Physics,2006,214:137.
    [212]Wada Y, Liou M-S. A Flux Splitting Scheme With High-Resolution andRobustness for Discontinuities[C]. AIAA94-0083.1994.
    [213]Kim K H, Kim C, Rho O H. Accurate Computations of Hypersonic Flows UsingAUSMPW+Scheme and Shock-Aligned Grid Technique[C]. AIAA98-2442.1998.
    [214]Kim K H, Lee J H, Rho O H. An Improvement of AUSM Schemes byIntroducting the Pressure-Based Weight Functions[J]. Computers and Fluids,1998,27(3):311.
    [215]Yasuhiro Wada, M.–S.Liou. An accurate and robust flux splitting scheme forshock and contact discontinuities[J], AISM J. Sci.Comput.1997,118(3):633-657.
    [216]Roe P L. Characteristic-based schemes for the Euler equations[J]. Annual Reviewof Fluid Mechanics,1986,18:337-365.
    [217]姜贵庆,刘连元.高速气流传热与烧烛热防护[M].北京:国防工业出版社,2003.
    [218]Fay J A, Riddell F R. Theory of stagnation point heat transfer in dissociated air[J].Journal of Aerospace Science,1958,25(2):73-85.
    [219]Eckert E R G. Engineering relations for heat transfer and friction in high velocitylaminar and turbulent boundary layer flow over surfaces with constant pressureand temperature[J]. ASME paper55-A-31,1955.
    [220]张学军,姜贵庆.体-翼干扰区热环境特性分析及预测[A].全国第十三届高超声速气动力(热)学术交流会议论文集[C].2005:329-332
    [221]Wada Y, LiouM S. A flux sp litting scheme with high2resolution and robustnessfor discontinuities[R]. AIAA94-0083,1994.
    [222]Fujita, M., Karashima, K. An experimental and computational study onself-excited oscillations in supersonic opposing jet flow[J]. Trans. Japan Soc.Aeronaut. Space Sci.1999,42:112–119.
    [223]Aso S, Hayashi K, MizoguchiM. A study on aerodynamic heating reduction due toopposing jet in hypersonic flow[R]. AIAA2002-0646,2002.
    [224]刘君,张涵信,高树椿.超声速主流中逆向喷流流场的数值模拟[J].空气动力学报,1994,12(4):383-390.
    [225]耿湘人,桂业伟,王安龄.利用二维平面和轴对称逆向喷流减阻和降低热流的计算研究[J].空气动力学学报,2006,24(1):85-89.
    [226]周伟江,马汉东.反向喷流与主流干扰数值模拟[J].空气动力学学报,1994,12(3):295-300
    [227]黄伟,王振国.高超声速飞行器攻角特性数值研究[J].固体火箭技术,2008,3l(6):561-568
    [228]Sambamurthi J K, Huebner L D, Utreja L R. Hypersonic Flow over a Cone withNose Cavity[R]. AIAA87-1193,1987.
    [229]Yuceil B, Dolling D S. Effects of a Nose Cavity on Heat Transfer and Flowfieldover a Blunt Body at Mach5[R]. AIAA1994-2050,1994.
    [230]Silton S I, Goldstein D B. Modeling of Nose Tip Ablation Onset in UnsteadyHypersonic Flow[R]. AIAA2000-0204.
    [231]Sidra I Silton, David B Goldstein. Optimization of an Axial Nosw-tip Cavity forDelaying Ablation Onset in Hypersonic Flow[R]. AIAA2003-152,2003.
    [232]Silton, S. I. Ablation onset in unsteady hypersonic ow about nose-tip with aforward-facing cavity[D], Ph.D. thesis, The University of Texas, Austin,2001.
    [233]Seiler F, Srulijes J, Pastor M Gimenez, Mangold P. Heat Fluxes Inside a CavityPlaced at the Nose of a Projectile Measured in a Shock Tunnel at Mach4.5[J].New Res. In Num. and Exp. Fluid Mech, VI, NNFM96,2007:309-316.
    [234]Saravanan S., Jagadeesh G., Reddy K. P. J. Investigation of Missile-Shaped Bodywith Forward-Facing Cavity at Mach8[J]. Journal of Spacecraft and Rockets,2009,46(3):557-591.
    [235]王博.基于微型涡流发生器的激波/边界层干扰控制研究[D].国防科技大学研究生院.2010
    [236]赵玉新.超声速混合层时空结构的实验研究[D].国防科技大学研究生院.2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700