1. [地质云]滑坡
旋转锥形液膜破碎过程实验与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以气体作用下锥形液膜和圆柱射流破碎过程为研究对象,研究了气体对液体燃料破碎的影响。在研究锥形液膜破碎时,以某型燃气发生器中使用的气液同轴离心式喷嘴为研究对象,从热试试验中选择燃烧性能和燃烧效率较高的一种喷嘴作为基准构型,采用理论、试验、仿真相结合的研究方法,系统地研究了锥形液膜的产生、发展以及破碎过程,在此基础上改变喷嘴的结构参数,研究结构参数对旋转锥形液膜产生、发展的影响。在研究圆柱射流破碎时,以实际使用的气液同轴剪切式喷嘴为对象,对比了有/无气体作用时的破碎过程。
     设计了透明喷嘴,利用界面追踪Volume of Fluid(VOF)方法模拟了基准喷嘴内部填充过程。液体进入喷嘴后,向切向口上下低压区填充,并将喷嘴内部的气体排挤出喷嘴,气相区的真空度不断增大,当液相流出喷嘴后,内部流场建立,液相填充旋流室和收缩段的时间占整个填充时间的大部分。分析了稳定后喷嘴内部速度、压力场,结果表明液相流经等直段时,轴向速度增加,切向速度减小,在收缩段和等直段存在较大的压力损失。
     利用大量的冷试试验获得喷嘴流量系数以及喷嘴出口喷雾图像,编制图像处理界面测量雾化锥角,定义无量纲影响因子衡量喷嘴结构参数对喷嘴性能的影响,得到了考虑喷嘴几何特性参数A、旋转直径比Ds/d0和长径比L0/d0等结构参数在内的流量系数以及雾化锥角表达式,补充了基于Abromvich理论的离心喷嘴设计准则。
     测量了离心式喷嘴在不同结构参数下的雾化粒径,通过改变喷嘴结构参数,基于Reitz的雾化粒径公式,得到了考虑喷嘴旋转直径比Ds/d0,喷嘴长径比L0/d0以及出口扩张角在内的雾化粒径表达式,为喷嘴设计和数值仿真中的初始条件给定提供了参考。
     设计了喷雾切刀,能够将喷雾锥一部分液体从流场中排开,排除了相对两侧液膜的干扰,尤其在喷嘴出口及高喷注压降工况下效果更明显。利用高速阴影系统、背光试验系统等多种试验方法观测了旋转锥形液膜一次破碎形态,在低韦伯数We下,液膜表面呈现穿孔破碎形态,在高韦伯数We下,液膜表面呈现湍流破碎形态。
     基于matlab图像处理功能编写了图像处理程序,定义不同轴向位置的液体含量获得液膜表面一次破碎特征。通过对阴影图像处理测量了液膜破碎长度;通过对喷雾切刀作用下的液膜破碎图像进行处理得到了液膜破碎时表面波长,统计得到锥形液膜雾化粒径SMD与破碎时表面波长之间的定量关系。改变喷嘴构型,基于Han的破碎长度公式得到适用于离心式喷嘴使用的破碎长度公式,公式中的破碎长度系数与喷嘴几何特性参数关系较大。
     利用平面片光技术观察了有/无气体作用时旋转锥形液膜破碎的形态特征,发现大液滴存在于锥形液膜边界,小液滴被空气卷入喷雾锥内部。利用互相关算法得到了液膜破碎后的速度场,在喷雾锥内部,径向速度沿着远离喷雾锥的方向不断增大。旋转锥形液膜喷雾锥中心的速度较小,两侧速度较大,呈现U型分布;锥形液膜在环缝气流作用下,小液滴不断被加速,喷雾锥中心速度较高,向两侧逐渐减小随后又增大,呈现W型分布。
     利用高速摄影观察了低喷注压降下的圆柱射流破碎形态,呈现波动破碎和剥离破碎两种形态,通过定量测量获得了雾化粒径SMD与表面波长之间的关系。
     通过对两种液体燃料破碎形式的比较可知,气体加入后,加剧了液体的不稳定,促进了液体表面扰动波的发展,使得液体断裂破碎位置提前;同时气体的加入为流场注入了能量,增加了流场的湍流强度以及液滴的速度,加快了由于湍流引起的液滴输运,雾化后的液滴直径都有减小。
This dissertation aimed at the liquid conical sheet and liquid jet breakup processaffected by coflowing gas. When studying the liquid conical sheet breakup process, thegas-liquid coaxial injector adopted by a type of gas generator was chosen. The baselinegeometry of the injector was selected from the hot tests in which it behaved best.Theorical analysis, experimental study and numerical simulation were combinedtogether to study the formation, the development and the breakup of the swirl conicalsheet. Different geometry parameters were analyzed to investigate their influence on theswirl conical sheet. When studying the liquid column jet breakup process, the actualliquid coaxial shear injector was chosen and the primary breakup characteristics wereinvestigated under lower pressure drop.
     A transparent injector was designed to study the filling process of the liquid phasein the pressure swirl injector. Interface tracking method Volume of Fluid (VOF) wasused to simulate the flow field inside the injector. The liquid phase enters the tangentialinlets, oppressing the gas phase out of the injector. When the liquid phase flows out ofthe injector, the flow field inside the injector is established. It takes a majority of thetotal filling time to occupy the swirl chamber and the convergent section. The velocityand pressure field were also analyzed. The tangential velocity of the liquid phasedecreases when it passes the orifice section. Most of the total pressure loss exsits in theconvergent section and orifice section.
     Many cold tests were carried out to study the parameter influence on the injectorperformance, including the discharge coefficient, the spray cone angle and the SauterMean Diameter (SMD). The spray cone angle was measured using the image processingprogramme to analyze images of the spray at the exit of the injector. A non-dimensionalparameter was defined to do a quantitive evaluation of geometry parameters’influence on the spray performance. Finally, new formule of the discharge coefficient,the spray cone angle and the SMD were deduced, which consider the geometryparameter A, the ratio of the diameter of the swirl chamber to that of the central post,and ratio of the length of the central post to the diameter of the central post and othergeometry parameters. The new formule give some refrences in the pressure swirlinjector design and supply the initial condtition of the numerical simulation of the gasgenerator.
     A spray cutter was designed to improve the back-illumination method, which canexclude the interaction between the liquid on the opposite sides of the conical liquidsheet. The spray cutter behaves better under the high pressure drop operating condition.Different methods, including the high-speed shadowgraph, and the high-speedback-illumination combined with the spray cutter, were used to investigate the breakupprocess of swirl conical liquid film. The surface of the conical liquid sheet breaks upwith the perforation pattern at lower Weber number, and with turbulent fragmentation patten at larger Weber number.
     Image proceeding codes were programmed to measure the primary breakupcharacteristics of the swirl conical liquid film. A non-dimensional parameter wasdefined to evaluate the liquid fraction at different distance to the exit of the injector. Thebreakup length was achieved through the high-speed shadowgraph images and thewavelength was got through the high-speed photography images with the spray cutter.The relationship between the breakup length and Weber number, also the wavelength atthe breakup point with the Weber number were achieved. Finally, the breakup lengthformula was achieved based on Han’s formula. The coefficient of the breakup lengthhas much to do with the geometry characteristic parameters of the pressure swirlinjector.
     The laser sheet technique was used to investigate the breakup process of swirlconical sheet with the coaxial gas. Larger droplets lie at the boundary of the liquid sheet,smaller droplets are enrolled by the surrounding gas into the center of the spray. Thecross-correlation algorithm was used to compute the flow field. Inside the primarybreakup region, the velocity at the center of the conical spray is smaller than that at theconical spray boundary. The velocity profile appears as U-patter. The radial velocity iscentrosymmetric, increases as the coordinate increases. Affected by the coflowing gas,the smaller droplets are accelerated more markedly than the larger ones. From the centerof the conical sheet to the spray boundary, the velocity of droplets decreases firstly, thenincreases. The velocity profile appears as W-patter.
     High speed photography was used to study the breakup process of gas-liquidcoaxial shear injector. Two kinds of breakup mechanism were found. One is the wavebreakup, the other is the peeling mechanism. The relationship between SMD and thewavelength at breakup point was deduced.
     When gas was added around the liquid, the liquid surface tends to be more instableand the liquid phase breakup earlier. Meanwhile, the turbulent intensity increases, whichaugments the turbulence transport and the SMD minishes correspondingly.
引文
[1]庄逢辰.液体火箭发动机喷雾燃烧的理论、模型及应用[M].长沙:国防科技大学出版社,1995
    [2]W.A.Sirignano. Review of theory of distortion and disintegration of liquid streams.
    [Progress in energy and combustion science,2000,
    [3]李清廉.同轴式三组元喷嘴性能分析、工程应用及设计评定[D].长沙:国防科学技术大学研究生院,2003.
    [4]朱宁昌等编.液体火箭发动机设计(上)[M].北京:宇航出版社,1994
    [5]Vigor.杨, W.E.安德松主编.液体火箭发动机燃烧不稳定性[M].北京:科学出版社,2001
    [6]George P.Sutton. History of liquid propellant rocket engines in the United States[J].Journal of Propulsion and Power,2003,19(6):978-1007.
    [7]George P.Sutton. History of liquid propellant rocket endines in Russia, formerly theSoviet Union[J]. Journal of Propulsion and Power,2003,19(6):1008-1037.
    [8]Matthew J.Casiano, James R.Hulka, Vigor Tang. Liquid propellant rocket enginethrottling: a comprehensive review[Journal of Propulsion and Power,2010,26(5):897-923.
    [9]http://www.pw.utc.com/products/pwr/assets/pwr-rl10a-4.pdf[
    [10]Rahman S A, Santoro R J. A review of coaxial gas liquid spray experiments andcorrelation[C].30th Joint Propulsion Conference,1994.
    [11]D.M.Kalitan, D.Salgues, A.G.Mouis. Experimental liquid rocket swirl coaxialinjector study using non-intrusive optical techniques [C].41st Joint PropulsionConference&Exhibit,2005.
    [12]杜玉洁. RL10液体火箭发动机的研制过程[J].火箭推进,2000,2:49-58.
    [13]http://en.wikipedia.org/wiki/RL-10-(rocket-engine)
    [14]http://www.614643.de/spacerockets-2/United-States-3/Centaur/Centaur.htm[
    [15]邱明熠.用于轨道转移飞行器的RL10衍生发动机[J].导弹与航天运载技术,1990,2:6-13.
    [16]http:www.astronautix.com/engines/rl10a3.htm[
    [17]Binder, Michael P. A transient model of the Rl10A-3-3A rocket engine[R]. NASAcontractor report CR-195478.1954.
    [18]Guoqiu Liu, Mingchun Gu. The development of Oxygen/Hydrogen rocket engine inChina[J]. Aerospace China,1994:5-8.
    [19]殷秀峰.震天惊雷倾听液体火箭发动机的轰鸣[M].北京:中国宇航出版社,2007
    [20]王珩. YF-75发动机的设计特点及进展情况[J]. CNKI:72.
    [21]董丽双,范军,罗巧军.以YF-75发动机为平台的三组元液体火箭发动机系统设计[J].导弹与航天运载技术,2005,4:1-6.
    [22]段增斌.中国大型液体火箭发动机研制[J]. CNKI:13-28.
    [23]尘军,范军,张楠. YF-75氢氧发动机故障仿真与诊断研究[J].推进技术,1997,18(1):31-35.
    [24]陈闽慷,茹家欣.神箭凌霄长征系列火箭的发展历程[M].上海:上海科技教育出版社,2007
    [25]甘晓华著.航空燃气轮机燃油喷嘴技术[M].北京:国防工业出版社,2006
    [26]Guildenbecher D R, Rachedi R R, Sojka P E. Pressure-scaling of pressure-swirlatomizer cone angles[J]. Journal of Engineering for Gas Turbines and Power,2008,130(11):1-5.
    [27]侯凌云,侯晓春.喷嘴技术手册[M].背景:中国石化出版社,2007:93-107.
    [28]Shim Y S, Choi G M, Kim D J. Numerical modeling of hollow-cone fuelatomization,vaporization and wall impingement process under high ambienttemperature[J]. International Journal of Automotive Technology,2008,9(3):267-275.
    [29]林玉静.旋流喷嘴射流及其破碎机理研究[D].天津:天津大学研究生院,1999.
    [30]Taylor G I. The boundary layer in the converging nozzle of a swirl atomizer [J].Journal of Mech. and Applied Math,1949, III:129-139.
    [31]I.I. Novikov. Atomization of liquids by centrifugal nozzles[J]. Journal of TechnicalPhysics1948,18(3):345-354.
    [32]C.Dumouchel, M. I. G. Bloor, N. Dombrowski. Viscous Flow in a SwirlAtomizer[Chemical Engineering Science,1992,48
    [33]N.K.Rizk, A.H.Lefebvre. Internal flow characteristics of simplex swirlatomizers[C].22nd Aerospace Sciences Meeting,1984.
    [34]H. Lefebvre. Atomization and Sprays[M]. Hemisphere Publishing Corporation,1989
    [35]N.K. Rizk, A.H. Lefebvre. The Influence of liquid film thickness on airblastatomization[J]. Transactions of ASME,1980,102:706-710.
    [36]葛明龙.离心式喷嘴理论的改进[J].宇航学报,1981,2:85-97.
    [37]王之任.离心式喷嘴工况理论分析[J].推进技术,1996,17(5):1-8.
    [38]周猛.气液同轴式喷注器雾化特性和激光散射测粒技术的研究[D].长沙:国防科技大学研究生院,1991.
    [39]刘卫东.同轴式喷注器雾化试验和喷雾模型研究.[D].国防科技大学研究生院,1992.
    [40]M Horvay, W Leuckel. LDA-Measurements of liquid swirl flow in converging swirlchambers with tangential inlets[Type]. Proc.2nd Int. Symp. LDA Lisbon,1985,
    [41]D.Holtzclaw, T.Sakman, M.A.Benjamin. Investigation of Flow in a Simplex FuelNozzle [J]. AIAA Journal,1997, AIAA-2970-622:1-8.
    [42]Jeng S M, Jog M A, Benjamin M A. Computational and experimental study ofliquid sheet emanating from simplex fuel nozzle[J]. AIAA Journal,1998,36(2):201-207.
    [43]Eun J.Lee, Sang Youp Oh, Ho Y.Kim. Measuring air core characteristics of apressure-swirl atomizer via a transparent acrylic nozzle at various Reynoldnumbers[J]. Experimental Thermal and Fluid Science,2010,34:1475-1483.
    [44]Youngbin Yoon, In-Seuk Jeung. Effects of ambient gas pressure on the breakup ofsprays in like-doublet and swirl coaxial injectors[International Symposium on"Energy Conversion Fundamentals",2004.
    [45]赵其寿,甘晓华.空气雾化喷嘴内液膜厚度研究[J].工程热物理学报,1985,6(4)
    [46]赵其寿,甘晓华.三元空气雾化喷嘴内液膜厚度的实验研究[R].1984.
    [47]Dash S K, Halder M R. Formation of air core in nozzles with tangential entry[J].Journal of Fluids Engineering,2001,123:829-835.
    [48]Sunghyuk Kim, Taeock Khil, Dongjun Kim. Effect of geometric parameters on theliquid film thickness and air core formation in a swirl injector[J]. MeasurementScience and Technology,2009,20:1-11.
    [49]Moon Seoksu, Essam Abo-Serie, Bae Choongsik. Liquid flim thickness inside thehigh pressure swirl injectors: Real scale measurement and evaluation of analyticalequations[J]. Experimental Thermal and Fluid Science,2010,34:113-121.
    [50]Takao Inamura, Hiroshi Tamura, Hiroshi Sakamoto. Characteristics of liquid filmand spray injected from swirl coaxial injector[J]. Journal of Propulsion and Power,2003,19(4):632-639.
    [51]Zhanhua Ma. Investigation on the internal flow characteristics of pressure swirlatomizer[D]. Cincinnati: University of Cincinnati,2001.
    [52]D Copper, A.J Yule. Waves on the air core/liquid interface of a pressure swirlatomizer[ILASS-Europe,2001.
    [53]T.Marchione, C.Allouis, A.Amoresano. Experimental investigation of a pressureswirl atomizer spray[J]. Journal of Propulsion and Power,23(5)
    [54]M.R.Halder, S.K.Dash, S.K.Som. Influence of nozzle flow and nozzle geometry onthe shape and size of an air core in a hollow cone swirl nozzle[J]. Proc. Instn Mech.Engrs, Part C: J. Mechanical Engineering Science,2003,217207-217.
    [55]Ashraf a Ibrahim, Milind a Jog. Nonlinear breakup model for a liquid sheetemanating from a pressure-swirl atomizer[J]. Journal of Engineering for GasTurbine and Power,2007,129:945-953.
    [56]周立新,张会强,雷凡培等.离心式喷嘴内流场特性的数值模拟[J].推进技术,2002,23(6):480-484.
    [57]A Datta, Sk So. Numerical prediction of air core diameter, coefficient of dischargeand spray cone angle of a swirl spray pressure nozzle[Int J Heat Fluid Flow,2000,21:412-419.
    [58]Li-Jun Yang, Ming-He Ge, Meng-Zheng Zhang. Spray characteristics of a recessedgas-liquid coaxial swirl injector[J]. Journal of Propulsion and Power,2008,24(6):1332-1339.
    [59]A.T.Sakman, S.Jha, M.A.Jog. A numerical parameteric study of simplex fuel nozzleinternal flow and performance[C].AIAA Conference,1998.
    [60]J.Xue, M.A.Jog, S.M.Jeng. Effect of geometric parameters on simplex atomizerperformance[J]. AIAA Journal2004,42(12):2408-2415.
    [61]杜本德.喷口形状对离心式喷嘴雾化角的影响[Z]. China Academic JournalElectronic Publishing House33-36.
    [62]田章福.低浓度酒精/过氧化氢燃气发生器喷雾燃烧过程研究[D].国防科技大学研究生院,2006.
    [63]U.Maatje, E.Von Lavante. Numerical simulation of unsteady effects in simplexnozzles[C].32nd AIAA Fluid Dynamics Conference and Exhibit,2002.
    [64]Beau Pa Menard T, Tanguy S, Demoulin Fx, Berlemont A.2006. Primary breakupmodeling, part A: DNS, a tool to explore primary break up[Proceedings of10thInternational Conference of Liquid Atomization and Spray, Kyoto, Japan,2006,
    [65]王晓刚.离心式喷嘴的先进制造工艺技术研究[D].西安:西北工业大学研究生院,2005.
    [66]G.P.萨顿, O.比布拉兹(著),洪鑫.火箭发动机基础[M].北京:科学出版社,2003:45-49.
    [67]F C. Zhuang. Effects of swirl coaxial injector parameters on LOX/GH2enginecombustion performance[C].38th Joint Propulsion Conference,2002.
    [68]周进,胡小平,黄玉辉.氢氧发动机气液同轴式喷嘴流量特性研究[J].国防科技大学学报,1996,11(4):397-401.
    [69]周进,胡小平,黄玉辉.液体火箭发动机气液同轴式喷嘴混合特性实验研究[J].国防科技大学学报,1997,19(4):8-13.
    [70]周进,胡小平,黄玉辉.液体火箭发动机气液同轴式喷嘴声学特性的实验研究[J].国防科技大学学报,1996,17(4):37-41.
    [71]胡小平,周进,黄玉辉.气液同轴式喷嘴缩进比对雾化细度影响的实验[J].国防科技大学学报,1996,18(3):15-19.
    [72]黄玉辉,周进,胡小平.气液同轴式喷嘴自激振荡的试验现象和声学模型及对火箭发动机不稳定燃烧的影响[J].声学学报,1998,23(5):459-465.
    [73]周进,胡小平,黄玉辉.液体火箭发动机气液同轴式喷嘴声学特性的实验研究[J].推进技术,1996,17(8):37-41.
    [74]杨立军,葛明和,张向阳.喷口长度对离心喷嘴雾化特性的影响[J].推进技术,2005,26(3):209-214.
    [75]Maksud Ismailov, Stephen D.Heister. Nonlinear modeling of classical swirl injectordynamics [C].45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference2009.
    [76]吴晋湘.不同反压下大流量气液同轴式喷嘴雾化特性及喷雾两相流场的试验和理论研究[D].长沙:国防科技大学研究生院,1993.
    [77]Takao Inamura, Kei Miyata, Hiroshi Tamura. Spray characteristics of swirl coaxialinjector and its modeling[C].37th Joint Propulsion Conference and Exhibit,2001.
    [78]王振国. YF-75发动机燃烧室燃烧过程计算机仿真[D].长沙:国防科技大学研究生院,1989.
    [79]王振国.液体火箭发动机燃烧室内部工作过程数值模拟[D].长沙:国防科学技术大学航天技术系,1993.
    [80]J. Hulka, D. Makel. Liquid oxygen hydrogen testing of a single swirl coaxialinjector element in a windowed combustion chamber[C].29th Joint PropulsionConference,1993.
    [81]Doug Howell, Eric Petersen, Jim Clark. Performance characteristics of LOX-H2,tangential-entry,swirl-coaxial,rocket injectors.[31st Aerospce Sciences Meeting,,1993.
    [82]钟战.燃气发生器点火与燃烧性能研究[D].长沙:国防科技大学研究生院,2008.
    [83]A.Maskrey, C.Puissant, M.Glogowski. Shear coaxial injector spray combustionexperiments in a single element rocket chamber[C].31th Joint PropulsionConference and Exhibit,1995.
    [84]Essam A. Ibrahim, R.Jeremy Kenny, Nathan B. Walker. A computational andexperimental investigation of shear coaxial jet atomization[J]. AIAA,2006:1-15.
    [85]Kriille G, Mayer W, Schley C-A. Recent advances in H2/O2high pressure coaxialinjector performance analysis[J]. AIAA Paper:90-1959,1990,
    [86]Kriille G, Mayer W, Schley C-A. Status of coaxial injector modeling andexperiments at DLR Lampoldshausen[C].8th ISTS Symposium,1992.
    [87]Mayer W, Kriille G. Rocket engine coaxial injector liquid/gas interface flowphenomena[J]. AIAA Paper:92-3389,1992,
    [88]Mayer W, Labani R, Kriille G. Theoretical investigations of droplet flow undertypical coaxial injector flow conditions of cryogenic rocket engines[J]. AIAA Paper:92-3121,1992,
    [89]P.G. Han, K.H. Kim, Y. C. Woo. Development of liquid rocket engines usingliquified natural gas in hyundai MOBIS[C].41th Aerospace Sciences Meeting,Jan.2003.
    [90]Shingo Matsuyama, Junji Shinjo, Yasuhiro Mizobuchi. A numerical investigation onshear coaxial LOX/GH2jet flame at supercritical pressure[C].44th AIAAAerospace Science Meeting and Exhibit,2006.
    [91]Mayer W. Coaxial atomization of a round liquid jet in a high speed gas stream: Aphenomenological study[J]. Experiments in Fluids,1994,16:401-410.
    [92]M.A.Beisler, S.Pal, M.D.Moser. Shear Coaxial injector atomization in a LOX/GH2propellant rocket[C].30th Joint Propulsion Conference,1994.
    [93]B.Ivancic, W.Mayer, G.Krulle. Experimental and numerical investigation of timeand length scales in LOX/GH2rocket combustors[C].35th Joint PropulsionConference and Exhibit,1999.
    [94]J.Lux, D.Suslow, M.Bechle. Investigation of sub-and supercritical LOX/Methaneinjection using optical diagnostics[C].42th Joint Propulsion Conference&Exhibit2006.
    [95]Nan Zong, Vigor Yang. A numerical study of high-pressure Oxygen/Methanemixing and combustion of a shear coaxial injector[43th AIAA Aerospace ScienceMeeting and Exhibit,2005.
    [96]Poong-Gyoo Han, Jaehoon Seol, Seongha Hwang. The spray characteristics of swirlcoaxial injectors [C].41st Aerospace Sciences Meeting and Exhibit,2003.
    [97]Michelle M. Zaller, Mark D. Klem. Coaxial Injector Spray Characterization UsingWater/Air as Simulants[R]. N92-14112.1992.
    [98]M.Zailer. LOX/Hydrogen coaxial injector atomization test program [R]. NASA92-11121.1992.
    [99]M.Zailer. Hydrogen coaxial injector atomization test program[Z].1992.
    [100]Michelle M.Zaller, Mark D.Klem. Coaxial injector spray characterization usingwater/air as simulants[R]. NASA Report105322.1991.
    [101]M.M.Micci M.Glogowski. Shear coaxial injector spray characterization near theLOx post tip [C].AIAA,1995.
    [102]Seung-Han Kim, Yeoung-Min Han, Seonghyeon Seo. Effect of LOX Post Recesson the Combustion Characteristics for Bi-Swirl Coaxial Injector[41st JointPropulsion Conference,2005.
    [103]Yoshio Nunome, Hiroshi Sakamoto, Hiroshi Tamura. An experimental study ofsuper-pulsating flow on a shear coaxial injector with a recessed inner post [C].43thJoint Propulsion Conference&Exhibit2007.
    [104]Strakey P A, Talley D G, Tseng L K. The effects of LOX post biasing on SSMEinjector wall compatibility[R]. Air Force Research Laboratory ReportAFRL-PR-ED-TP-FY99-0169A.1999.
    [105]Roger D.Woodward, Sibtosh Pal, Shahram Farhangi. LOX/GH2shear coaxialinjector atomization studies:Effect of recess and non-concentricity[C].45th AIAAAerospace Sciences Meeting and Exhibit,2007.
    [106]M.J.Foust, M.Deshpande, R.J.Santoro. Experimental and analyticalcharacterization of a shear coaxial combusting GO2/GH2flowfield[C]. AIAA:1-12.
    [107]T.Kaltz, M.Milicic, M.Glogowski. Shear coaxial injector spraycharacterization[C].29th Joint Propulsion Conference and Exhibit,1993.
    [108]Ohn Tsohas, James V. Canino, Stephen D. Heister. Large eddy simulation of ashear coaxial LOX-H2jet at supercritical pressure[C].Joint Propulsion Conference,2007.
    [109]Matthieu Masquelet, Suresh Menon. Large eddy simulation of flame-turbulenceinteraction in a GH2-GO2shear coaxial injector.[C].44th Joint PropulsionConference,2008.
    [110]Cohn R K, Strakey P A, Bates R W. Swirl Coaxial Injector Development[AIAAAerospace Science Conference,,2003.
    [111]Gray C. Cheng, Rory R. Davis, Curtis W. Johnson. Development ofGOX/Kerosene Swirl Coaxial Injector Technology[J].39th Joint PropulsionConference,2003.
    [112]T. John Tharakan K. Ramamurthi. Experimental Study of Liquid Sheets Formed inCoaxial Swirl Injectors[J]. Journal of Propulsion and Power,1995,11(6):1103-1109.
    [113]V. Kulkarni, D. Sivakumar, C. Oommen. Liquid Sheet Breakup in Gas-CenteredSwirl Coaxial Atomizers[J]. Journal of Fluids Engineering,2010,132
    [114]Lord Rayleigh. On the instability of jets[J].Proc.London Math.Soc.,1878.
    [115]Weber C. Disintegration of liquid jets [J]. Z.Angew.Math.Mech.,1931,11(2):136-159.
    [116]Keller Jb, Rubinow Si, Tu Yo. Spatial instability of a jet.[Phys Fluids1973,Vol.16(12):2052-2055.
    [117]G. I. Taylor. The Dynamics of Thin Sheets of Fluid. II Waves on FluidSheets[Type]. Proc. R. Soc,1959,
    [118]G. I. Taylor. The Dynamics of Thin Sheets of Fluid. III Disintegration of FluidSheets[Type]. Proc. R. Soc,1959,
    [119]W.Ohnesorge. Formation of drops by nozzles and the breakup of liquid jets[J].Z.Angew.Math.Mech.,1936,16:355-358.
    [120]R.D.Reitz. Atomization and other breakup tegimes of a liquid jet [D]. PrincetonUniverstity,1978.
    [121]G.M.Faeth. Structure and atomization properties of dense turbulent sprays[C].23thSymposium (International) on Combustion/The Combustion Institute1990.
    [122]G.M.Faeth, L.-P.Hsiang, P.-K.Wu. Structure and breakup properties of sprays[Int.J.Multiphase Flow,1995, Vol.21,Suppl.:99-127.
    [123]Hilbing Jh, Heister Sd, Spangler Ca. A boundary-element method for atomizationof a finite liquid jet[J]. Atomization and Sprays1995,5:621-638.
    [124]杜青,王青,郭津.加热条件下液体燃料射流破碎机理的研究[J].内燃机学报,2005,23(5):423-429.
    [125]杜青,郭津,包铁成.实际射流参数对加热条件下液体燃料射流不稳定性的影响[J].燃烧科学与技术,2005,11(5):421-426.
    [126]杜青,刘宁,杨延相.受激液体燃料射流表面波规律初探[J].内燃机学报,2001,19(6):511-516.
    [127]Du Qing, Liu Ning, Wang Qing. Study on the effects of gas swirls on instability ofan annular viscous liquid jet [J]. Transactions of CSICE,2007,25(2):130-136.
    [128]Du Qing, Guo Jin, Meng Yan-Ling. The instability analysis of gas rotations on thebreakup of an annular liquid jet [J]. TAnsactions of CSICE,2007,25(3):217-222.
    [129]严春吉,殷佩海,解茂昭.液体射流在旋转气流中的雾化机理研究[J].内燃机学报,2004,22(5):425-432.
    [130]严春吉,解茂昭,殷佩海.粘性气体中粘性液体射流分裂与雾化机理研究[J].空气动力学学报,2004,22(4):422-426.
    [131]严春吉,解茂昭.液体射流扰动控制方程边界条件及稳定性分析[J].工程数学学报,2008,25(3):563-566.
    [132]Chaudhary K.C, Rededopp L.G. The nonlinear capillary instability of liquidjet,Part.2Experiments on the jet behaviors before droplet formation [J]. J.FluidMech,1980,96
    [133]Chaudhary K.C, Rededopp L.G. The nonlinear capillary instability of a jet,Part1,Theory[J]. J.Fluid Mech,1980,96
    [134]Shokoohi F, Elrod H G. Numerical investigation of the disintefration of liquidjets[J]. J.Computational Physics,1987,71
    [135]Bogy. Use of one-dimensional cosserat theory to study instability in a viscousliquid jet[J]. Phys. Fluids,1978,21:190-197.
    [136]Bechtel Se, Forest Mg, Lin Kj. Closure to all orders in1D models for slenderviscoelastic jets: an integrated theory for axisymmetric, Torsionless Flow.[C].Stability Appl. Anal. Continuous Media,1992.
    [137]Eggers J, Dupont Tf. Drop formation in a one-dimensional approximation of theNavier-Stokes equations[J]. Journal of Fluid Mech.,1994,262:205-221.
    [138]Garc a Fj, Castellanos A. One-dimensional models for slender axisymmetricviscous liquid jets[J]. Phys Fluids,1994,6(8):2676-2689.
    [139]Ashgriz N, Mashayek F. Temporal analysis of capillary jet breakup[J]. J. FluidMech,1995,291:163-190.
    [140]Mansour Nn, Lundgren Ts. Satellite formation in capillary jet breakup[J]. PhysFluids,1990,2:1141-1144.
    [141]Hilbing Jh, Heister Sd. Droplet size control in liquid jet breakup [J]. Phys Fluids,1996,8:1574-1581.
    [142]Hilbing Jh, Heister Sd. Nonlinear simulation of a high speed viscous liquid jet.[J].Atomization and Sprays,1997,8:155-178.
    [143]Schulkes Rmsm. Dynamics of liquid jets revisited[J]. J Fluid Mech,1993,250:635-650.
    [144]Eggers. Nonlinear dynamics and breakup of free-surface flows[J]. J. Rev. Mod.Phys,1997,69(3):865-929.
    [145]Fraser R P. Liquid fuel atomization [C].Sixth Symposium on Combustion,1957.
    [146]Norman Dombrowski, David Hasson. The flow characteristics of swirl spraypressure nozzles with low viscosity liquids[J]. AICHE Journal1969,15(4):604-611.
    [147]York J L, Stubbs H F, Tek M R. The mechanism of disintegration of liquidsheets[J]. Transactions of ASME,1953,75:1279-1286.
    [148]Squire H B. Investigation of the instability of a moving liquid film [J].Br.J.Appl.Phys,1953,4:167-169.
    [149]Hagerty W W, Shea J F. A study of the stability of plane fluid sheets[J].J.Appl.Mech.,1955,22(4):509-514.
    [150]Dombrowski N, Johns W R. The aerodynamic instability and disintegration ofviscous liquid sheets[J]. Chem. Eng. Sci.,1963,18:203-214.
    [151]Li X, Tankin R S. On the temporal instability of a two-dimensional viscous liquidsheet [J]. J.Fluid Mech,1991,226:425-443.
    [152]Rangel R H, Sirignano W A. The linear and nonlinear shear instability of a fluidsheet [J]. Phys.Fluids,1991, A3(10)
    [153]Stapper B E, Sowa W A, Samuelson G S. An experimental study of the effects ofliquid propertion on the breakup of a two-dimensional liquid sheets[J]. ASMEJournal of Engineering of Gas Turbines and Power,1992,114
    [154]岳明.锥形液膜初始破碎雾化过程和机理研究[D].北京:北京航空航天大学研究生院,2003.
    [155]李冬青.气力式喷嘴雾化过程的实验研究与数值模拟[D].浙江大学机械与能源工程学院,2007.
    [156]J.L.Santolaya, L.A.Aisa, E.Garcia. Experimental study of near field flow structurein hollow cone pressure swirl sprays[J]. Journal of Propulsion and Power,2007,23(2):382-389.
    [157]K. U. Reddy, D. P. Mishra. Studies on Spray Behavior of a Pressure SwirlAtomizer in Transition Regime[J]. Journal of Propulsion and Power,2008,24(1)
    [158]Crighton D G, Gaster M. Stability of slowly divering jet flow [J]. J.Fluid Mech,1976,77:397.
    [159]P. Plaschko. Helical instability of slowly divergent jets[J]. J. Fluid Mech,1972,92:209.
    [160]Xia N, Yin X Y. Stability analysis of slowly divergent swirling flow(I)-theory[J].Applied Math.Mech,1995,16(11):1047.
    [161]Crapper G D, Dombrowski N, Pyot G a D. Kelvin-Helmholtz wave growth incylindric sheets [J]. J.Fluid Mech,1975,168(3):497-502.
    [162]David P.Schmidt, Idriss Nouar, Senecal P K. Pressure-swirl atomization in the nearfield[J].1999,1999-01-0496
    [163]史绍熙,林玉静,杨延相.影响空心旋转液体射流初始阶段运动的无量纲参数的分析[J].工程热物理学报,2000,21(4):505-509.
    [164]王中伟.锥形液膜的Kelvin-Helmholtz扰动波[J].国防科技大学学报,2008,30(3):32-36.
    [165]李继保,岳明,杨茂林.锥形液膜KelvinHelmholtz波不稳定性的实验研究[J].航空动力学报,2007,22(3):337-341.
    [166]Kihm, Kenneth D, Chigier. Effect of shock waves on liquid atomization of atwo-dimensional airblast atomizer[1991,1(1):113-136.
    [167]B. E. Stapper, W. A. Sowa, G. S. Samuelsen. An Experimental Study of the Effectsof Liquid Properties on the Breakup of a Two-Dimensional Liquid Sheet[ASME J.Eng. Gas Turbines Power,1992,114:39-45.
    [168]J. Park, K. Y Huh, X. Li. Experimental Inves-tigations on Cellular Breakup of aPlanar Liquid Sheet From an Air-Blast Nozzle[Phys. Fluids,2004,16:625-632.
    [169]A. Lozano, F. Barreras, G. Hauke. Longitudinal Instabilities in an Air-BlastedLiquid Sheet[Fluid Mech,2001,437:143-173.
    [170]Moon Seoksu, Essam Abo-Serie, Bae Choongsik. Air flow and pressure inside apressure-swirl spray and their effects on spray development[J]. ExperimentalThermal and Fluid Science,2009,33:222-231.
    [171]M. Adzic, I. S. Carvalho, M. V. Heitor. Visualization of the Disintegration of anAnnular Liquid Sheet in a Coaxial Air Blast Injector at Low Atomizing AirVelocities[Optical Diagnostics in Engineering,2001,5:27-38.
    [172]Ji-Hyuk Im, Seongho Cho, Youngbin Yoon. Comparative study of spraycharacteristics of gas-centered and liquid-centered swirl coaxial injectors[J].Journal of Propulsion and Power,2010,26(6):1196-1204.
    [173]P.A.Strakey, D.G.Talley, J.J. Hutt. Mixing characteristics of coaxial injectors athigh gas/liquid momentum ratios[J]. Journal of Propulsion and Power,2001,17(2):402-410.
    [174]Ji-Hyuk Im, Youngbin Yoon. The effects of ambient pressure on self-pulsationcharacteristics of a gas/liquid swirl coaxial injector[C].AIAA2008-4850,2008.
    [175]王乃宁等编著.颗粒粒径的光学测量技术及应用[M].北京:原子能出版社,2000.6:18-82.
    [176]A.J.Yule, C. Ah Seng, P.G.Felton. A laser tomographic investigation of liquid fuelsprays[C].18th Symposium on Combustion1981.
    [177]Baudel P, Braud P, Refin C. Electrification of jets of diesel[J]. IAS2004:2717-2721.
    [178]Timothy E.Corcoran, Rony Hitron, William Humphrey. Optical measurement ofnebulizer sprays: a quantitative comparision of diffraction phase dopplerinterferometry, and time of flight techniques[J]. J. Aerosol Sci.,2000,31(1):35-50.
    [179]W.D.Bachalo. Spray diagnostics for the twenty-first century[J]. Atomization andSprays,2000,10(3):439-474.
    [180]C.Dumouchel, P.Yongyingsakthavorn, J.Cousin. Light multiple scatteringvorrection of laser-diffraction spray drop-size distributionmeasurements[International Journal of Multiphase Flow,2009,35:277-287.
    [181]Van De Hulst. Light scattering by small particles[M]. New York: DoverPublications,1981
    [182]W.D.Bachalo. Method for measuring the size and velocity of spheres bydual-beam light-scatter interferometry[J]. Applied Optics,1980,19(3)
    [183]W.D.Bachalo, M.J.Houser. Phase/Doppler spray analyzer for simultaneousmeasurements of drop size and velocity distributions[J]. Optical engineering1983,23(5):583-590.
    [184]Andreas Tratnig, Gunter Brenn, Thomas Strixner. Characterization of sprayformation from emulsions by pressure-swirl atomizers fro spray drying[J].2009,
    [185]A.Belhadef, A.Vallet, M.Amielh. Pressure-swirl atomization: Modeling andexperimental approaches[J]. International Journal of Multiphase Flow,2011(inpress):1-8.
    [186]Dodge L G, Rhodes D J, Reitz R D. Drop-size measurement techniques forsprays:comparison of Malvern laser-diffraction and Aerometrics phase/Doppler[J].Applied Optics,1987,11(26):2144-2154.
    [187]S.V.Sankar, A.Brena De La Rosa, A.Isakovic. Liquid atomization by coaxial rocketinjectors[C].29th Aerospace Science Meeting,1991.
    [188]S.V.Sankar, A.Brena De La Rosa, A.Isakovic. Liquid atomization by coaxial rocketinjectors[29th Aerospace Science Meeting, Jan.7-10,1991.
    [189]P.A.Strakey, D.G.Talley, W.D.Bachalo. Phase doppler measurements in densesprays[C].ILASS-Americas,1998.
    [190]赵玉新.超声速混合层时空结构的实验研究[D].长沙:国防科技大学研究生院,2008.
    [191]Bjarne Paulsen Husted, Per Petersson, Ivar Lund. Comparision of PIV and PDAdroplet velocity measurement techniques on two high pressure water mistnozzles[J]. Fire Safety Journal,2009,44:1030-1045.
    [192]R.D.Keane, R.J.Adrian. Optimization of particle image velocimeters.I.Doublepulsed systems[J]. MeasurementScienceandTechnology,1990,1(11):1202-1215.
    [193]S.Gorman, J.F.Widmann. Investigation of multiphase particle image velocimetryusing MonteCarlo simulations[Atomization and Sprays,2004,14(6):525-543.
    [194]C.Presser, G.Papadopoulos,41(8)(2006)580–604. J.F.Widmann PIV measurementsof water mist transport in a homogeneous turbulent flow past an obstacle[J].Journal of Fire Safety,2006,41(8):580-604.
    [195]C.W.Hirt, B.D.Nichlos. Volume of Fluid (VOF)Method for the Dynamics of FreeBoundary[Journal of Computational Physics,1981,39:201~225.
    [196]Menard T, Beau P A, Tanguy S. Primary breakup modeling, part A: DNS, a tool toexplore primary break up[C]. Proceedings of10th International Conference ofLiquid Atomization and Spray,2006.
    [197]Kim D, Desjardins O, Herrmann M. The primary breakup of a round liquid jet by acoaxial flow of gas[C].Proceedings of20th International Conference of LiquidAtomization and Spray, America,2007.
    [198]Desjardins O, Moureau V, Knudsen E. Conservative level set/ghost fluid methodfor simulating primary atomization[C].Proceedings of20th InternationalConference of Liquid Atomization and Spray, America,2006.
    [199]J.U.Brackbill, D.B.Kothe, C.Zemaach. A continuum method for modeling surfacetension[J. Comput. Physics,1992, Vol.100(335~354)
    [200]S.Popinet, Zaleski S. A front-tracking algorithm for accurate representation ofsurface tension [J]. Int.J.Numeri.Methods Fluids,1999,30:775-793.
    [201]Hirt C W, Nichols B D. Volume of Fluid (VOF) Method for the Dynamics of FreeBoundaries[J]. J. Comput. Physics,1981,39:201-225.
    [202]Youngs D L. Time-Dependent Multi-Material Flow with Large FluidDistortion[M]. Academic Press,1982
    [203]O. Ubbink. Numerical Prediction of Two Fluid Systems With Sharp Interfaces[D].London: Imperial College of Science, Technology and Medicine,1997.
    [204]刘儒勋,刘晓平,张磊.运动界面的追踪和重构方法[J].应用数学和力学,2004,25(3)
    [205]Vinay R.Gopala, Berend G.M Van Wachem. Volume of Fluids Methods forImmiscible-fluid and Free-surface Flows [J]. Chemical Engineering Journal,2008,141:204~221.
    [206]岳明,徐行,杨茂林.离心式喷嘴内气液两相流动的数值模拟[J].工程热物理学报,2003,24(5):888-890.
    [207]焦树建.燃气轮机燃烧室[M].北京:机械工业出版社,1990
    [208]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002
    [209]孙纪国,田昌义,程圣清.气液同轴直流式喷嘴喷雾及燃烧试验研究[J].航空动力学报,2000,15(3)
    [210]张路宁.气液正交内混式高压喷嘴的研究[D][D].东北大学研究生院,
    [211]傅维标,卫景彬.燃烧物理学基础[M].北京:机械工业出版社,1981
    [212]Rizk N K, Lefebvre a H. Prediction of velocity coefficient and spray cone anglefor simplex swirl atomizers[C].Proceedings of the3rd International Conference onLiquid Atomization and Spray Systems.,1985.
    [213]Datta A., So Sk. Numerical prediction of air core diameter, coefficient of dischargeand spray cone angle of a swirl spray pressure nozzle[J]. Int J Heat Fluid Flow,2000,21:412-419.
    [214]N.K. Rizk, Lefebvre, A.H. Internal flow characteristics of simplex swirlatomizers[J]. Journal of Propulsion and Power,1985,1(3):193-199.
    [215]黎勤武,张为华,王振国.空间发动机系统关机过程水击现象理论分析[J].推进技术,1998,19(3):27-29.
    [216]张伟,陈锋,马军强.姿/轨控发动机脉冲后效冲量快速算法的研究及应用[J].火箭推进,2012,38(1):51-56.
    [217]陈鸿彦.液体火箭发动机后效冲量的测量方法[J].宇航计测技术,1989,48:37-42.
    [218]王艳梅,胡小平,李舟军.利用关联规则检测液体火箭发动机启动关机过程的故障[J].火箭推进,2006,32(1):19-23.
    [219]刘景华.过氧化氢发动机动态特性研究[D].国防科技大学研究生院,2007.
    [220]Clark C J, Dombrowski N. Aerodynamic instability and disintegration of inviscidliquid sheets[J]. Proc.Roy.Soc.Lond.A,1972,329
    [221]Han Zhiyu, Parrish Scott, Patrick V.Farrell. Modeling atomization processes ofpressure-swirl hollow-cone fuel sprays[J]. Atomization and Sprays,1997,7
    [222]Anne Geraldine Mouis. Atomization process of two-dimensional liquid sheets [D].Pennsylvania: The Graduate School College of Engineering,2003.
    [223]Youngbin Yoon, In-Seuk Jeung. Effects of Ambient Gas Pressure on the Breakupof Sprays in Like-Doublet and Swirl Coaxial Injectors[C].International Symposiumon Energy Conversion Fundamentals,2004.
    [224]范洁川.近代流动显示技术[M].北京:国防工业出版社,2002:146-150.
    [225]魏建勤,傅维标.柴油压力喷射破碎特性试验研究[J].燃烧科学与技术,1999,5(1):27-31.