用户名: 密码: 验证码:
内角流动理论及其在板式表面张力贮箱设计中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天器在轨加注技术能够为在轨运行的航天器补充推进剂,延长其在轨寿命,增强其机动能力,是具有重要战略意义的前沿科学技术。板式表面张力贮箱具有推进剂管理效率高、结构可靠、可重复使用等特性,被认为是目前对航天器特别是各类卫星实施在轨加注时的首选贮箱形式,也是航天器在轨加注必须突破的关键技术之一。内角流动理论作为板式表面张力贮箱设计的基础理论,可以根据板式表面张力贮箱设计需求进行拓展,具有重要的研究价值。
     论文围绕航天器在轨加注这一任务背景,对微重力环境下板式表面张力贮箱内的推进剂内角流动过程以及基于内角流动理论的板式表面张力贮箱设计进行了深入研究。在结构较为复杂的板式表面张力贮箱内,不对称内角模型和弯曲路径内角模型是非常典型的结构,并且液体在这两种内角模型的流动性质具有可叠加性。因此,可将简单的内角模型进行拓展,建立不对称内角模型以及弯曲路径内角模型并进行研究。论文的主要研究工作总结如下:
     (1)根据板式表面张力贮箱及推进剂管理装置(Propellant Management Device,PMD)内普遍存在的结构,建立了不对称内角模型,并引入虚拟内角的概念,利用理论分析和数值计算的方法分析了液体在不对称内角的流动过程。基于所建立的数学模型,可以对液体在不对称内角的流动过程进行精确的计算和预测。
     (2)利用落塔的微重力实验环境,对几个不对称内角模型进行了液面定位过程实验,分析了微重力环境下液体在不对称内角的流动性质,并把实验结果和理论结果进行对比,验证了所提出的内角流动模型的正确性。
     (3)根据球形或椭球形板式表面张力贮箱的设计需求,建立了弯曲路径内角模型。通过对液体在弯曲路径内角的流动方程进行深入分析及流动过程仿真,得出以下结论:a)弯曲路径内角的流动性质和一维内角流动相似;b)初始液面截面积相等时,在弯曲路径内角流动中液体的流动速度要比一维内角流动快;c)初始液面截面的截面积越大内角流动的速度越快。
     (4)根据不对称内角流动以及弯曲路径内角流动的研究结果,结合两种模型的性质,对板式表面张力贮箱内的推进剂定位过程与加注过程进行计算,分析导流板的布局、数量以及结构等因素对推进剂流动的影响,并对板式表面张力贮箱及PMD结构进行了设计和优化,得出了能够使PMD效率最高的优化构型。在此基础上,综合考虑推进剂加注过程稳定性、推进剂填充率等因素设计了一款可用于航天器在轨加注的小型板式表面张力贮箱。
     (5)针对所设计的板式表面张力贮箱,建立了板式表面张力贮箱内推进剂的流动仿真模型,采用数值仿真的方法对板式表面张力贮箱内的推进剂定位过程和加注过程进行了模拟,验证了板式表面张力贮箱及PMD的推进剂管理性能。
     本文结合内部结构较为复杂的板式表面张力贮箱设计需求,较好地拓展了内角流动理论,并完成了板式表面张力贮箱的设计、优化与性能验证。论文的研究成果既丰富了我国的贮箱设计理论,又能够为航天器在轨加注技术的发展提供较好的参考,具有重要的理论意义和工程价值。
On orbit refueling(OOR) can resupply propellant to end-of-life spacecraft, andmake it keep operation on the orbit,so it is one of the most sophisticated technologywhich has vital strategic meaning. The vane-type surface tension tank has efficentpropellant mannagement capability, high structural reliability and can be repetitivelyused, so it is prefered in the OOR of spacecraft especially satallite. Therefore it is one ofthe most important key technologies of OOR. The interior corner flow is thefundamental theory of vane-type surface tension tank, and can develop by the need ofvane-type surface tension tank design, so it has significant value to be researched.
     Based on the need of OOR, this thesis has made in-depth research about thepropellant interior corner flow in the vane-type surface tension tank and the design ofvane-type surface tension tank. In the vane-type surface tension tank, the model ofasymmetric interior corner flow and interior corner flow in curved path are typical, andthe property of capillary flow in the two models can coexist, therefore, the simple modelof interior corner can be expanded to set up the model of asymmetric interior cornerflow and interior corner flow in curved path. The main works in this thesis include:
     (1) The asymmetric interior corner model which is derived from vane-typesurface tension tank and propellant management device (PMD) is set up, and then byintroducing the dummy corner, the liquid flow in the asymmetric corner is analyzedwith theoretical research and numerical solution. By these works, the capillary flow inthe asymmetric interior corner can be analyzed and predicted.
     (2) Some asymmetric interior corner models are used to test in the drop tower toanalyze the capillary rise of liquid in the asymmetric interior corner in microgravitycondition. The data of test result are compared with analytical solutions to verify thetheory of interior corner flow.
     (3) Proposed the model of interior corner flow in curved path which is derivedfrom vane-type surface tension tank. By making a great deal of numerical simulationabout capillary flow in the curved path corner, as well as the analysis of governingequations, we conclude that: a)the property of interior corner flow in curved path issimilar to one dimensional inteorior corner flow; b)the flow rate in curved path corner ishigher than one dimensional inteorior corner flow; c)the flowrate of capillary flow isproportional to the sectional area of z=0location in the meniscus.
     (4) The propellant orientation and filling in the vane-type surface tension tank isanalyzed with the model of asymmetric interior corner flow and interior corner flow incurved path, and calculated the capillary flow of propellant under different numbers andsizes of vane. The layout and structure of PMD is analyzed with the theory of interiorcorner flow, then the vane-type surface tension tank and PMD is designed and optimized. By these works the structure of PMD which has best efficiency can be found.By instruction of the theory of interior corner flow, with considering the stability ofinflow and propellant filling ratio, a small vane-type surface tension tank is designed inthis thesis.
     (5) The simulation model of capillary flow in the vane-type surface tension tankwhich is designed before is set up, and the process of propellant orientation and fillingare calculated by numerical simulations. By these works, the capability of vane-typesurface tension tank and PMD is verified.
     The thesis expanded the theory of interior corner flow based in the need ofvane-type surface tension tank desigh, then completed the design, optimizaiton andverification of vane-type surface tension tank. The works in this paper not onlyexpanded the theory of surface tension tank design, but also provide good reference tothe research of OOR; therefore it is meaningful for the application of the new conceptand principles.
引文
[1]魏延明,潘海林.空间机动服务平台在轨补给技术研究[J].空间控制技术与应用.2008,34(2):18-22.
    [2] J. W. Griffin. Background and Programmatic Approach for the Development ofOrbital Fluid Resupply Tankers[C]. AIAA86-1601.1986.
    [3] D. J. Chato. Technologies for refueling spacecraft on-orbit[C]. AIAA2000-5017.Long Beach, CA,2000.
    [4] S. Dominick, S. Driscoll. Fluid acquisition and resupply experiment (FARE l) flightresults[C]. AIAA93-2424.1993.
    [5] S. Dominick, J. Tegart. Orbital test results of a vaned liquid acquisition device[C].AIAA94-3027.1994.
    [6] D. J. Chato, T. A. Martin. Vented Tank Resupply Experiment: Flight Test Results[J].JOURNAL OF SPACECRAFT AND ROCKETS.2006,43(5).
    [7] D. J. Chato, T. A. Martin. Vented Tank Resupply Experiment—Flight[C].AIAA-97-2815.1997.
    [8] S. H. Collicott, M. M. Weislogel. Modeling of the operation of the VTRE propellantmanagement device[C].38th AIAA/ASME/SAE/ASEE Joint PropulsionConference&Exhibit. Indianapolis, Indiana2002.
    [9] N. F. Dipprey, S. J. Rotenberger. Orbital express propellant resupply servicing[C].AIAA2003-4898.2003.
    [10] R. S. Aadland, J. Monheiser, E. A. Driscoll, et al. Development Status of theNEXT Propellant Management System[C]. AIAA2004-3974.2004.
    [11] R. L. Hibbard. Satellite On Orbit Refueling-A Cost Effectiveness Analysis[D].Monterey: Naval postgraduate school,1997.
    [12] M. R. Johnson. On-Orbit Spacecraft Re-Fluiding[D]. University of Colorado,1998.
    [13] A. Long, D. Hastings. A Unique Opportunity for the Development of On-OrbitSatellite Servicing[C]. AIAA2004-6051. San Diego, California,2004.
    [14] M. L. Mcconnell. An Approach for Optimizing the On-Orbit ServicingArchitecture for a Given Client Satellite Constellation [D]. Air Force Institute ofTechnology,2005.
    [15]陈杰,林飞,侯丹,等.国外太空燃料站的发展及启示[J].863航天航空技术.2011(2011年第4期):20-29.
    [16]胡文瑞,徐硕昌.微重力流体力学[M].科学出版社,1999.
    [17]胡文瑞.微重力科学概论[M].科学出版社,2010.
    [18]林海,张璞,刘芳,等.空间液滴热毛细迁移微重力实验[J].载人航天.2004(2).
    [19]陈健,范晴云.贮箱内推进剂微重力下晃动的有限元模拟及试验[J].上海航天.2004(3).
    [20]田辉,孙冰,古红霞.失重条件下低温推进剂排放计算[J].北京航空航天大学学报.2004,30(7).
    [21]薛国宇,陈志坚,王德忠.低温表面张力贮箱研究[J].火箭推进.2005,31(3).
    [22]周宏,李俊峰,王天舒.低重环境航天器贮箱内三维液体晃动数值模拟[J].清华大学学报(自然科学版).2005,45(5).
    [23] W. Yuexing, C. Xiaoqian, H. Yiyong. Interior Corner Flow Theory and ItsApplication to the Satellite Propellant Management Device Design[J]. SCIENCECHINA Technological Sciences.2011,54(7):1849-1854.
    [24]李强,黄奕勇.面向在轨服务的类锥杆式对接机构空间对接过程接触碰撞建模方法研究[C].空间操作自主控制专题研讨会.2009.
    [25] L. Jinghao, T. Jianguo, C. Xiaoqian, et al. Simulation and Analysis of PropellantFilling Control in On-orbit Refueling[C]. The3rd International Symposium onSystems and Control in Aeronautics and Astronautics. Haerbin, China,2010.
    [26] L. Jinghao, C. Xiaoqian, H. Yiyong, et al. Study on asymmetric interior cornerflow in microgravity condition[J]. SCIENCE CHINA Technological Sciences.2012,55(8):2332-2337.
    [27]陈小前,袁建平,姚雯.航天器在轨服务技术[M].中国宇航出版社,2009.
    [28]李永,潘海林,魏延明.第二代表面张力贮箱的研究与应用进展[J].宇航学报.2007,28(2).
    [29]J. C. Aydelott, M. J. Carney, J. I. Hochstein. NASA Lewis Research CenterLow-Gravity Fluid Management Technology Program[R]. NASA.AIAA/GNOS-85-002,1985.
    [30]F. Leslie, R. F. Gans, C. Schafer. Fluid Surface Behavior in Low Gravity[R].NASA. NASA Technical Paper2486,1985.
    [31] J. Martin, J. Holt. Magnetically Actuated Propellant Orientation, Controlling Fluidsin a Low-Gravity Environmen[C]. AIAA2000-3440. Huntsville,Alabama,2000.
    [32] B. N. Antar, D. M. Kornfeld. Gas/Liquid Flows During Low-Gravity FluidHandling Procedures[C]. AIAA-96-0502.1996.
    [33] J. R. Rollins, R. K. Grove, D. E. Jeakle. Twenty-three years of surface tensionpropellant management system design, development, manufacture, test, andoperation[C]. AIAA-85-1199.1985.
    [34] J. Tegart. A vane-type propellant management device[C]. AIAA-97-3028.1997.
    [35] D. E. Jaekle. Propellant management device conceptual design andanalysis-vanes[C]. AIAA91-2172. Sacramento1991.
    [36] D. E. Jaekle. Propellant Management Device Conceptual Design andAnalysis-Sponges[C]. AIAA-93-1970. Moterey,CA,1993.
    [37] D. E. Jaekle. Propellant management device conceptual design and analysis-Trapsand troughs[C]. AIAA-95-2531. San Diego,CA,1995.
    [38] W. Tam, I. Ballinger, D. E. Jaekle. Propellant Tank with Surface Tension PMD forTight Center of Mass Propellant Control[C]. AIAA2008-4942. Hartford,2008.
    [39] W. Tam, I. Ballinger, D. E. Jaekle, et al. Surface Tension PMD Tank For On OrbitFluid Transfer[C]. AIAA2008-5105. Hartford,2008.
    [40] W. H. Tam, G. H. Kawahara, D. E. Jeakle, et al. Design and manufacture of apropellant tank assembly[C]. AIAA2000-3444.2000.
    [41] W. H. Tam, J. Kuo, D. E. Jaekle. Design and manufacture of an ultra-lightweightpropellant management device[C]. AIAA2002-4137. Indianapolis, Indiana,2002.
    [42] W. H. Tam, J. R. Taylor. Design and manufacture of a propellant tank assembly[C].AIAA97-2813.1997.
    [43] W. H. Tam, W. D. Lay, M. S. Hersh, et al. Design, Development, Qualification,and Manufacture of the Hs601Propellant Tank[C]. AIAA96-2748.1996.
    [44] C. Nicolas. Design and development methodologies of a propellant managementdevice for small satellite tanks[C]. AIAA-98-3814.1998.
    [45] S. H. Collicott. Initial Experiments on Reduced-Weight Propellant ManagementVanes[C]. AIAA-2000-3442.2000.
    [46] S. H. Collicott. Convergence behavior of Surface Evolver applied to a genericpropellant management device[C]. AIAA-99-0846.1999.
    [47] G. P. Purohit, J. W. Smolko, J. R. Ellison. Propellant management deviceperformance during an off-nominal transfer orbit mission[C]. AIAA98-3168.1998.
    [48] B. W. Chandra, S. H. Collicott. Low gravity propellant slosh prediction usingsurface evolver[C]. AIAA-2002-3981. Indianapolis, Indiana,2002.
    [49] S. H. Collicott, M. M. Weislogel. Review of surface evolver validation tests forzero-gravity fluids applications[C]. AIAA-2003-0999. Reno, Nevada,2003.
    [50] S. H. Collicott. Asymmetric propellant positions in symmetric tanks and vanes[C].AIAA-2003-4892. Huntsville, Alabama,2003.
    [51]李永,潘海林,魏延明,等.微重力环境下板式贮箱内推进剂流动的数值模拟[J].控制工程.2006(5).
    [52]李永,赵春章,潘海林,等.蓄液器在板式贮箱中的应用及性能分析[J].宇航学报.2008,29(1):24-28.
    [53] L. Jinghao, C. Xiaoqian, H. Yiyong. The Review of the Interior Corner FlowResearch in Microgravity[C]. International Conference on Advances inComputational Modeling and Simulation. Kunming, China,2011.
    [54] J. F. Zhao, J. C. Xie, H. Lin, et al. Experimental studies on two-phase flow patternsaboard the Mir space station[J]. International Journal of Multiphase Flow.2001,27(11):1931-1944.
    [55]张天平.表面张力贮箱推进剂管理装置设计进展[J].中国空间科学技术.2000,2000年10月(5):36-42.
    [56]M. M. Weislogel. Capillary Flow in Containers of Polygonal Section Theory andExperiment[R]. NASA. NASA/CR—2001-210900,2001.
    [57] G. Mason, N. R. Morrowt. Capillary behavior of a perfectly wetting liquid inirregular triangular tubes[J]. Journal of Colloid and Interface Science.1991,141(1).
    [58] M. M. Weislogel, S. Licther. Capillary flow in an interior corner[J]. J. Fluid Mech.1998,373:349-378.
    [59] P. Concus, R. Finn. On the behavior of a capillary surface in a wedge[J]. AppliedMathematical Sciences.1969,63(2).
    [60]K. A. Brakke. Surface Evolver manual[R]. Susquehanna University.2005.
    [61] K. A. Brakke. The Surface Evolver[J]. exp.math.1992,1:141-165.
    [62] P. Concus, R. Finn. Equilibrium liquid free-surface configurations-Mathematicaltheory and space experiments[C]. AIAA96-2047.1996.
    [63]P. Concus, R. Finn. Equilibrium Fluid Interface Behavior under Low-andZero-Gravity Conditions[R]. N95-14534,1995.
    [64] P. Concus, R. Finn. Dichotomous behavior of capillary surface in zero gravity[J].Microgravity Sci Tec.1990(3):87-92.
    [65] R. Finn. Equilibrium Capillary Surface[M]. New York: Springer-Verlag,1988.
    [66] R. Finn. A subsidiary variational problem and existence criteria for capillarysurface[J]. J. reineangew.Math.1984(353):196-214.
    [67] B. Fischer, R. Finn. Non-existence theorems and measurement of capillary contactangle[J]. zeit. Anal. Anwend.1993(12):405-423.
    [68] M. M. Weislogel. Capillary flow in interior corners-The infinite column[J].PHYSICS OF FLUIDS.2001,13(11).
    [69] M. M. Weislogel, S. H. Collicott. Analysis of Tank PMD Rewetting FollowingThrust Resettling[C].40th AIAA Aerospace Sciences Meeting&Exhibit.2002.
    [70] M. M. Weislogel. Some Analytical Tools for Fluids Management inSpace-Isothermal Capillary Flows along Interior Corners[J]. Adv. Space Res.2003,VOL.32(No.2).
    [71] M. M. Weislogel, C. L. Nardin. Passive Fluids Management in Low-G: PartiallyWetting Systems[C]. AIAA2004-1152. Nevada,2004.
    [72] M. M. Weislogel, C. L. Nardin. Capillary driven flow along interior corners formedby planar walls of varying wettability[J]. Microgravity sci. technol.2005, XVII-3.
    [73] M. M. Weislogel, R. Jenson, D. A. Bolleddula. Capillary Driven Flows in Weakly3-Dimensional Polygonal Containers[C].45th AIAA Aerospace Sciences Meetingand Exhibit. Reno, Nevada2007.
    [74] M. M. Weilogel, Y. Chen, D. Bolleddula. A better nondimensionalization schemefor slender laminar flows: The Laplacian operator scaling method[J]. PHYSICS OFFLUIDS.2008,20(9).
    [75] Y. Chen, S. H. Collicott. Investigation of the wetting behavior of a vane-wall gapin propellant tanks[J]. AIAA JOURNAL.2004,42(2).
    [76] Y. Chen, S. H. Collicottt. A Study of wetting in an asymmetrical vane-wall gap inpropellant tanks[C]. AIAA2003-4893. Huntsville, Alabama,2003.
    [77] Y. Chen, L. S. Melvin, S. Rodriguez, et al. Capillary driven flow in micro scalesurface structures[J]. Microelectron Eng.2009,86.
    [78] Y. Chen, L. S. Melvin, M. M. Weislogel, et al. Design, fabrication, and testing ofmicroporous wicking structure[J]. Microelectron Eng.2008,85.
    [79] Y. Chen, M. M. Weislogel. Analysis of Capillary Flow in Rounded Corners[C].2004ASME Heat Transfer/Fluids Engineering Summer Conference. Charlotte,North Carolina USA2004.
    [80] Y. Chen, M. M. Weislogel. Capillary-driven flows along rounded interiorcorners[J]. J. Fluid Mech.2006, VOL.566.
    [81] Y. Chen, M. M. Weislogel, D. A. Bolleddula. Capillary Flow in CylindricalContainers with Rounded Interior Corners[C].45th AIAA Aerospace SciencesMeeting and Exhibit. Reno Nevada2007.
    [82]D. A. Bolleddula, M. M. Weislogel. Capillary Corner Flows With Partial andNonwetting Fluids[R]. NASA/CR—2009-215672,2009.
    [83] D. A. Bolleddula, Y. Chen, B. Semerjian, et al. Compound Capillary Flows inComplex Containers-Drop Tower Test Results[J]. Microgravity Sci. Technol.2010,22.
    [84] A. DE Lazzer, D. Langbein, M. E. Dreyer, et al. Mean curvature of liquid surfacein containers of arbitrary cross-section[J]. Microgravity Sci Tec.1996,9(3).
    [85] A. DE Lazzer, M. E. Dreyer, H. J. Rath. Particle-Surface Capillary Forces[J].American Chemical Society.1999.
    [86] A. DE Lazzer, D. Langbein. Liquid surface in regular N-pods[J]. J. Fluid Mech.1998, vol.358.
    [87] M. E. Dreyer. Free Surface Flows under Compensated Gravity Conditions[M].2007.
    [88] M. E. Dreyer, U. Rosendahl, H. J. Rath. Experimental investigation on flow ratelimitations in open capillary vanes[C]. AIAA-98-3165.1998.
    [89] U. Rosendahl, A. Grah, M. E. Dreyer. Convective dominated flows in opencapillary channels[J]. Phys. Fluids.2010,22.
    [90] N. Kulev, M. E. Dreyer. Drop Tower Experiments on Non-isothermalReorientation of Cryogenic Liquids[J]. Microgravity Sci. Technol.2010,22(4):463-474.
    [91] R. Jenson, M. M. Weislogel, J. Klatte, et al. Dynamic Fluid Interface Experimentsaboard the International Space Station: Model Benchmarking Dataset[J]. J.Spacecraft Rockets.2010,47(4):670-679.
    [92] A. Grah, M. E. Dreyer. Dynamic stability analysis for capillary channel flow:One-dimensional and three-dimensional computations and the equivalent steadystate technique[J]. Phys. Fluids.2010(22).
    [93] A. Salim, C. Colin, M. E. Dreyer. Experimental Investigation of a BubblyTwo-Phase Flow in an Open Capillary Channel under Microgravity Conditions[J].Microgravity Sci. Tec.2010,22:87-96.
    [94] D. Haake, J. Klatte, A. Grah, et al. Flow rate limitation of steady convectivedominated open capillary channel flows through a groove[J]. Microgravity Sci. Tec.2010(22):129-138.
    [95] M. Conrath, M. E. Dreyer. Gas breakthrough at a porous screen[J]. Int. J.Multiphase Flow.2012(42):29-41.
    [96] A. Salim, C. Colin, A. Grah, et al. Laminar bubbly flow in an open capillarychannel in microgravity[J]. Int. J. Multiphas. Flow.2010,36:707-719.
    [97] M. Conrath, N. Fries, M. Zhang, et al. Radial Capillary Transport from an InfiniteReservoir[J]. Transport Porous Med.2010(84):109-132.
    [98] N. Fries, M. E. Dreyer. Dimensionless scaling methods for capillary rise[J]. J.Colloid Interf. Sci.2009,338(2):514-518.
    [99] E. Fuhrmann, M. E. Dreyer. Heat Transfer by Thermo-Capillary Convection,Sounding Rocket Compare Experiment Source[J]. Microgravity Sci. Tec.2009,21(Suppl.1):87-93.
    [100] T. Arndt, M. E. Dreyer. Damping Behavior of Sloshing Liquid in LaterallyExcited Cylindrical Propellant Vessels[J]. J. Spacecraft and Rockets.2008,45(5):1085-1088.
    [101] J. Carrera, X. Ruiz, L. Ramirez-Piscina, et al. Generation of a MonodisperseMicrobubble Jet in Microgravity[J]. AIAA Journal.2008,46(8):2010-2019.
    [102]D. Langbein, M. Weislogel. Dynamics of Liquids in Edges and Corners (DYLCO)–IML-2Experiment for the BDPU[R]. NASA. NASA/TM—1998-207916,1998.
    [103] J. Klatte, D. Haake, M. M. Weislogel, et al. A fast numerical procedure for steadycapillary flow in open channels[J]. Acta Mech.2008,201.
    [104] M. Dong, I. Chatzis. The imbibition and flow of a wetting liquid along the comersof a square capillary tube1995[J]. Journal of Colloid and Interface Science.1995(172):278-288.
    [105] B. Legait. Laminar flow of two phases through a capillary tube with variablesquare cross-section[J]. Journal of Colloid and Interface Science.1983,96(1).
    [106] F. Farassat, M. Farris. Mean Curvature of the Influence Surface of Wave EquationWith Sources on a Moving Surface[J]. Journal Mathematical Methods in theApplied Sciences.1999, VOL.22.
    [107] O. E. Jensen, G. P. Chini, J. R. King. Thin-film flows near isolated humps andinterior corners[J]. Journal of Engineering Mathematics.2004,50.
    [108]C. L. Nardin. Capillary Driven Flows along Differentially Wetted InteriorCorners[R]. NASA. NASA/CR—2005-213799,2005.
    [109]F. G. Yost, E. A. Holm. Capillary flow on narrow strips and in V-shapedgrooves[R]. NM87185-5800,1987.
    [110] H. S. Kheshigi. Profile equations for films flow at moderate Reynolds numbers[J].AIChE J.1989,35(10):1719-1727.
    [111] F. J. Mayer, J. F. Mcgrath, J. W. Steele. A class of similarity solutions for thenonlinear thermal conduction problem[J]. J.Phys.A.Math.Gen.1983(16):3393-3400.
    [112]江帆,黄鹏. Fluent高级应用与实例分析[M].清华大学出版社,2008.
    [113]王瑞金,张凯,王刚. Fluent技术基础与应用实例[M].清华大学出版社,2007.
    [114] C. W. Hirt, B. D. Nichols. Volume of fluid (VOF) method for the dynamics offree boundaries [J]. Comput. Phys.1981,39:201-225.
    [115]王正林,刘明.精通MATLAB7[M].电子工业出版社,2006.
    [116]陆君安,尚涛,谢进,等.偏微分方程的MATLAB解法[M].武汉大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700