用户名: 密码: 验证码:
基于离子印迹硅胶方法的土壤镉生物有效性模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的迅速发展,土壤重金属污染问题日益凸现,对生态环境、食品安全、人体健康、农业可持续发展造成严重危害,引起了广泛的社会关注。目前多以重金属总量作为土壤重金属污染评价基准,评价结果往往有背于实际情况,众多的研究成果表明,仅以土壤中重金属总量并不能很好地预测评估土壤重金属的生物有效性及其环境效应,更大程度上由其形态分布决定。形态不同,其产生的环境效应和生物效应也不同。众所周知,游离态的重金属与重金属的毒害作用有直接关系,目前能够直接提取土壤中游离态的重金属浓度的方法比较少见。因此,本文利用二乙烯三胺基丙基三甲氧基硅烷、3-硫氰基丙基三乙氧基硅烷具有对Cd2+有专性吸附作用的特性,以正硅酸乙酯为前驱体,应用印迹溶胶-凝胶法,制备了2种对镉离子有选择性吸附的功能化离子印迹硅胶材料,通过对其合成条件及方式进行分析,对其物理以及化学特性进行研究,表明离子印迹硅胶可以以试剂盒为载体对镉进行生物有效性预测。并与化学提取法、离子选择电极法等相比较,通过盆栽试验,考查不同影响因素下离子印迹硅胶测量土壤中重金属镉离子生物有效性的准确性,建立离子印迹硅胶测量技术评估土壤中重金属生物有效性的方法,主要结论如下:
     (1)按照印迹溶胶凝胶法,以镉离子为模板离子,以含有配位基团胺基和硫氰基的2种硅烷作为功能单体,通过配位作用结合形成螯合化合物,去除重金属离子获得了与金属离子相对应的具有三维孔穴结构的胺基功能化和硫氰基功能化印迹硅胶,形成的三维孔穴对重金属离子具有特异选择性;通过IR、SEM、TGA-DTA和N2吸附试验研究了2种功能化印迹硅胶的结构和性能。IR和TGA-DTA结果表明,功能化基团成功接枝到硅胶表面;SEM和N2吸附结果表明,所得到的功能化印迹硅胶表面粗糙,BET增大,通过印迹技术在硅胶表面确实形成了印迹空穴。利用静态吸附试验结果表明,硫氰基功能化和胺基功能化镉离子印迹硅胶材料的饱和吸附容量分别为72.8和77.2mg·g-1;2种印迹硅胶材料的pH值适用范围为4-8;2种印迹硅胶材料对镉离子20min就能达到吸附平衡;2种印迹硅胶材料对镉离子均有较好的选择性吸附能力;2种印迹硅胶材料对镉离子均有较好的再生能力,可以多次循环使用。吸附机理研究表明,硫氰基功能化镉离子印迹硅胶材料对Cd2+离子的吸附模型更符合Redlieh-Peterson吸附模型,胺基功能化镉离子印迹硅胶材料对Cd2+离子的吸附模型更符合Langmuir吸附模型;吸附动力学研究表明,准二级动力学方程对2种镉离子印迹硅胶材吸附Cd2+离子的动力拟合最佳;吸附热力学研究表明,2种镉离子印迹硅胶材的△G°均为负值,说明Cd2+离子的吸附的过程是自发过程,△H°均为正值,Cd2+的吸附过程是吸热的,升高温度有助于吸附的进行,△S°均为正值,显示该过程为熵增过程,混乱度是增加的。
     (2)以不同孔径的PES膜作为扩散膜,以试剂盒为载体分别以硫氰基功能化和胺基功能化镉离子印迹硅胶作为结合膜,经筛选,Cd2+离子在0.22μm的PES膜中扩散系数比在0.45μm的PES膜中扩散系数小一个数量级,0.22μm的PES膜可以起到控制Cd2+离子扩散的作用,故采用0.22μm的PES膜作为离子印迹硅胶试剂盒的扩散膜;当印迹硅胶与预凝胶溶液的固液比为4g/40mL时,结合膜凝胶对Cd2+离子吸附量达到最佳。
     (3)在0.01mol·L-1NaNO3溶液中,胺基离子印迹硅胶试剂盒能够准确的提取水溶液中游离镉离子的浓度;而硫氰基离子印迹硅胶试剂盒的提取值则偏低;在含有不同量EDTA的Cd2+溶液中,胺基离子印迹硅胶试剂盒仍然可以准确的定量提取水溶液中游离镉离子的浓度,其提取值与溶液中游离镉离子的理论值之间没有显著性的差异;而硫氰基离子印迹硅胶试剂盒所得到的提取值明显小于理论值,上述结果进一步表明,胺基离子印迹硅胶试剂盒可以准确的提取溶液中游离Cd2+离子的浓度,硫氰基离子印迹硅胶试剂盒的提取值偏低,不能用于定量提取溶液中游离Cd2+离子的浓度;当溶液的pH值在5-8、离子强度在0.005-0.1m01·L-1之间变化时,pH值和离子强度将不会影响胺基离子印迹硅胶试剂盒对溶液中游离Cd2+离子的准确提取;比较了胺基离子印迹硅胶试剂盒和Cd-ISE对在不同水样中游离Cd2+离子的测量,结果表明,胺基离子印迹硅胶试剂盒和Cd-ISE对游离Cd2+离子的测量是等效的,而胺基离子印迹硅胶试剂盒的检出浓度低于Cd-ISE,其灵敏度高于Cd-ISE.
     (4)将胺基离子印迹硅胶试剂盒应用于提取土壤中游离Cd2+离子,结果表明,在5个含有不同水平Cd2+离子的土壤中,胺基离子印迹硅胶试剂盒和Cd-ISE对游离Cd2+离子的测量是等效的;当土壤含水量在80-150%范围内时,胺基离子印迹硅胶试剂盒提取土壤游离态Cd2+的准确性不受影响;胺基离子印迹硅胶试剂盒提取游离态Cd2+受到土壤pH值强烈的影响,所提取游离态Cd2+的浓度随着土壤pH值降低而升高;与土壤溶液和MgCl2提取法相比较,离子印迹硅胶提取的游离态镉含量与黑麦草吸收金属含量的相关性明显优于其它的形态分析方法。结果表明,胺基离子印迹硅胶试剂盒能够成为一种提取土壤中游离态Cd2+的新方法,其预测土壤中镉生物有效性可行并且有效。
     综上,离子印迹硅胶能够成为一种定量提取土壤中游离态Cd2+离子的新工具,为评估重金属的环境与健康风险提供有力的技术支持。
With the rapid development of the national economy, heavy metal pollution problems have become increasing apparently, have caused serious harm for the ecological environment, food safety, human health and sustainable development of agriculture, and have obtained widespread concern in the community. At present, the total concentrations of heavy metals usually are used as the evaluation criteria of heavy metal pollution in soils, however, the evaluation results are often incompatible with the actual situation. Many of the research results show that the bioavailability of heavy metals and its environmental effect can not be predicted by the total concentrations of heavy metals in soil, to a greater extent determined by the speciation distribution of heavy metals. The different speciation of heavy metals can produce the different environmental and biological effects. As we all know, free state of heavy metals have a direct relationship with its toxic effects, however, the methods which can directly measure free state of heavy metals in soil are relatively low. In this paper, cadmium as a representative of toxic heavy metals, a new diffusive gradients in thin films (imprinted functionalized silica gel) device were developed to measure free state of Cd(II) in soil by the diffusion layer and binding agent. Performance of imprinted functionalized silica gel device was studied. The effects of pH and ionic strength on the validation of imprinted functionalized silica gel device were also studied. Comparison of imprinted functionalized silica gel device and ion-selective electrodes for the measurement of free Cd(II) was assessed. The concentrations of free Cd(II) in different samples by imprinted functionalized silica gel device were measured. The objective of the paper will provide a simple and reliable tool for measurement of free Cd2+in soils, and a potential technical support for the assessing the environmental and health risks of heavy metals. Conclusions are as follows:
     1. A simple procedure was developed to synthesize Cd(II)-imprinted thiocyanato-functionalized silica gel (SCN/IIP) and Cd(Ⅱ)-imprinted amino-functionalized silica gel (N3/IIP) sorbents by combining a surface molecular imprinting technique with a sol-gel process. The maximum static adsorption capacities of SCN/IIP and N3/IIP were72.8T77.2mg·g-1, respectively. Two sorbents offered a fast kinetics for the adsorption of Cd(Ⅱ) for20min, had a substantial binding capacity in the range of pH4-8, could be used repeatedly, and were found to adsorb selectively Cd2+in the presence of Co(Ⅱ), Ni(Ⅱ), Zn(Ⅱ), Pb(Ⅱ) and Cu(Ⅱ) interferences in the same medium. The equilibrium data of SCN/IIP fitted perfectly with Redlieh-Peterson isotherm model. The equilibrium data of N3/IIP fitted perfectly with Langmuir isotherm model. Kinetic studies of SCN/IIP and N3/IIP indicated that the adsorption for Cd(II) by two sorbents followed a pseudo-second-order model. Various thermodynamic parameters such as△G0,△H0and△S0were evaluated. Negative values of△G0of SCN/IIP and N3/IIP indicated that the adsorption process was spontaneous. The positive standard enthalpy change of two sorbents suggested that the adsorption of Cd(II) by sorbents was endothermic. The positive values of△S0exhibited that the randomness increased with the adsorption of Cd(Ⅱ) on two sorbents.
     2. The diffusion coefficients of Cd(II) ions through PES membranes with different pore diameters (0.22and0.45μm) were8.5×10-6和2.6×10-5cm2s-1, respectively. The PES membrane with0.22μm of pore diameter was suitable as the diffusion layer.
     3. Two imprinted functionalized silica gel devices using SCN/IIP and N3/IIP as the binding agents and PES membrane with0.22μm of pore diameter as the diffusive layer, namely, PES-SCN/IIP-imprinted functionalized silica gel and PES-Nj/IIP-imprinted functionalized silica gel, had been systemically investigated. The ratios of Ci/Cbulk for free Cd(II) in NaNO3solution of0.01mol·L-1by PES-SCN/-imprinted functionalized silica gel and PES-N3/-imprinted functionalized silica gel were0.9869±0.0492and0.6246±0.0678, respectively. PES-SCN/-imprinted functionalized silica gel and PES-N3/-imprinted functionalized silica gel were deployed in synthetic solution with the different molar ratios of Cd(II)ions/EDTA of4:4,4:3,4:2and4:1. The ratios of Ci/Cbuik for free Cd(II) by PES-SCN/-imprinted functionalized silica gel were0,14.95±1.21,28.91±1.73and42.84±1.92%, respectively. There was a noted difference between theoretical and experimental values. The ratio of Ci/Cbuik for free Cd(II) by PES-N3/-imprinted functionalized silica gel were0,24.63±1.42,49.25±1.96and75.49±2.48%, respectively and were very close to the theoretical percentages of free metals in the solutions. The PES-N3/-imprinted functionalized silica gel for can accurately determine free Cd(II) in synthetic solution, while the measured value by PES-SCN/-imprinted functionalized silica gel was low. The PES-N3/-imprinted functionalized silica gel had a substantial binding capacity at pH5-8and concentrations of competitive Na+up to0.1mol·L-1. The measurements of PES-N3/-imprinted functionalized silica gel and Cd(II) ion selective electrode for free Cd(II) in river water were equivalent.
     4. The PES-N3/-imprinted functionalized silica gel for can accurately determine free Cd(II) in soil. The measurements of free Cd(II) by PES-N3/-imprinted functionalized silica gel was feasible. Compared with chemical extraction method, PES-N3/-imprinted functionalized silica gel device can be used as a new tool for measurement of free Cd(II).The extraction of Imprinted functionalized silica gel for free Cd(II) is superior to other methods of morphological analysis. The results showed that the Imprinted functionalized silica gel can become a kind of new method of extracting ree Cd(II) in soil.
     In summary, imprinted functionalized silica gel can used as a new tool for the quantitative measurement and sampling of free Cd(II) in soil and can provide strong technical support for assessing the environmental and health risks of heavy metals.
引文
[1]陈宏,范洪涛,崔小莉,等.2011.薄膜扩散梯度技术在环境监测中的应用进展[J].理化检验(化学分册),47(3):365-370.
    [2]陈珊,许宜平,王子健.2002.有机污染物生物有效性的评价方法[J].环境化学,30(1):158-164.
    [3]陈志良,仇荣亮.2002.重金属污染土壤修复技术[J].环境保护,29(6):21-23.
    [4]单孝全,王仲文.2001.形态分析与生物可给性分析试验室[J].20(6):103-108.
    [5]董佳,孙挺,范洪涛,等,2011.一种新型动力学被动采样技术一化学捕收器[J].化学通报,74:936-941.
    [6]窦磊,周永章,高全洲,等.2007.土壤环境中重金属生物有效性评价方法及其环境学意义[J].土壤通报,38(3):576-583.
    [7]段俊新,李曦,陈维良,等.2011.金属离子印迹聚合物的研究进展[J].粘接,22(11):80-84.
    [8]范洪涛,孙挺,隋殿鹏,等.环境监测中两种原位被动采样技术一薄膜扩散平衡技术和薄膜扩散梯度技术[J].化学通报,2009a,72(5):421-426.
    [9]范洪涛,孙挺,董佳,等.离子印迹聚合物及其在分析化学中的应用[J].化学通报,2009b,72(1):10-14.
    [10]范洪涛,隋殿鹏,陈宏,等.2010.原位被动采样技术的研究进展[J].化学进展,22(8):1672-1678.
    [11]范洪涛,李晶,李展超,等.2012.水热辅助表面接枝印迹法制备Cd(Ⅱ)离子印迹硅胶及其性能研究[J].功能材料,43(15):2060-2064.
    [12]范英宏,林春野,何孟常,等.2007.利用DGT高分辨率研究沉积物孔隙水中重金属的浓度和释放通量[J].环境科学,28(12):2750-2757.
    [13]高怀友,赵玉杰,师荣光,等.2005.区域土壤环境质量评价基准研究[J].农业环境科学学报,24(Z1):342-345.
    [14]高敏苓,戴树桂.2006.土壤中有机污染物生物可利用性研究进展[J].华中农业大学学报,25(3):334-340.
    [15]郭秀春,周文辉.2012.分子印迹技术研究进展[J].化学研究,23(5):103-110.
    [16]胡霞林,刘景富,卢士燕,等.2009.环境污染物的自由溶解态浓度与生物有效性[J].化学进展,21(2-3):514-523.
    [17]环境保护部.2011.重金属污染综合防治”十二五”规划[S].
    [18]黄先飞,秦樊鑫,胡继伟.2008.重金属污染与化学形态研究进展微量元素与健康研究[J].25(1):48-51.
    [19]姜利兵,张建强.2007.土壤重金属污染的形态分析及生物有效性探讨[J].云南农业大学学报,22(1):122-126.
    [20]姜忠义.2004.分子印迹聚合物的设计与制备[J].高分子材料科学与工程,20(3):25-28.
    [21]孔文杰,鲁洪娟,倪吾钟.2005.土壤重金属生物有效性的评价方法[J].广东微量元素科学,12(2):1-6.
    [22]雷鸣,廖柏寒,秦普丰.2007.土壤重金属化学形态的生物可利用性评价[J].生态环境,16(5):1551-1556.
    [23]李东艳,Francois M.,任玉芬,等.2004.重金属污染土壤萃取方法选择及参数优化[J].地学前缘,12(Suppl):189-192.
    [24]李江遐,张军,曹海生,朱江.2014.模拟酸雨与Cd复合污染对黑麦草镉积累及土壤镉形态的影响[J].安徽农业大学学报,41(1):1-5.
    [25]李瑞瑞,范忠雷,赵利宽.2011.铜离子印迹聚合物的研究进展[J].化工新型材料,39(8):38-43.
    [26]李勇,朱亮,王超.2003.黑麦草对土壤中Cd不同赋存形态的吸收规律[J].农业环境科学学报,22(3):353-356.
    [27]梁金虎,罗林,唐英.2009.分子印迹技术的原理与研究进展[J].重庆文理学院学报(自然科学版),28(5):38-43.
    [28]刘广深,许中坚,周根娣,刘维屏.2004.模拟酸雨作用下红壤镉释放的研究[J].中国环境科学,24(4):419-423.
    [29]刘俊华,张天红,薛澄泽.1994.黑麦幼苗法对污泥中元素生物有效性的研究[J].陕西环境,1(1):1-4.
    [30]刘闪闪,金建波,韩玉,等.2011.聚醚砜和磺化聚醚砜膜结构及性能研究[J].水处理技术,37(7):17-20.
    [31]刘玉荣,党志,尚爱安,等.2002.几种萃取剂对土壤中重金属生物有效部分的萃取效 果[J].土壤与环境,11(3):245-247.
    [32]刘玉荣,党志,尚爱安.2003.污染土壤中重金属生物有效性的植物指示法研究[J].环境污染与防治,25(4):215-217.
    [33]鲁如坤.2000.土壤农业化学分析方法[M].北京:中国农业科技出版社:12-24.
    [34]吕运开,严秀平.2005.分子印迹溶胶-凝胶材料的制备及应用[J].分析化学,33(2):254-260.
    [35]罗军,王晓蓉,张昊,等.2011.梯度扩散薄膜技术(DGT)的理论及其在环境中的应用Ⅰ:工作原理、特性与在土壤中的应用[J].农业环境科学学报,30(2):205-213.
    [36]马旭红,吴云海,杨凤.2006.土壤重金属污染的探讨[J].环境科学与管理,31(5):52-54.
    [37]毛玉红,高军锋.2008.土壤重金属污染的耐性——植物效应研究进展[J].环境科学导刊,27(4):4-6.
    [38]牟怀燕,高云玲,付坤,等.2011.离子印迹聚合物研究进展[J].化工进展,30(11):2467-2480.
    [39]裴广玲,成国祥.2002.金属离子印迹聚合物微球的制备研究进展[J].热固性树脂,17(4):26-28.
    [40]任晓云,肖传勇,董玉梅,等.2009.土壤重金属元素有效态与活性相关分析研究[J].山东林业科技,(4):42-44.
    [41]宋静.1998.土壤重金属修复技术[J].污染农业环境保护,17(6):271-273.
    [42]宋宁宁,王芳丽,唐世荣,等.2012a.基于梯度薄膜扩散技术的广西环江流域桑田土壤中铅的生物有效性研究[J].农业环境科学学报,31(7):1317-1323.
    [43]宋宁宁,王芳丽,沈跃,等.2012b.梯度薄膜扩散技术(DGT)与传统化学方法评估黑麦草吸收Cd的对比[J].环境化学,31(12):1960-1967.
    [44]宋宁宁,王芳丽,赵玉杰,等.2012c.基于梯度薄膜扩散技术评估黑麦草吸收Cd的研究[J].中国环境科学,32(10):1826-1831.
    [45]隋殿鹏,孙挺,范洪涛,等.2007.薄膜扩散梯度技术---一种原位富集采样技术[J].化学通报,70(12):954-960.
    [46]隋殿鹏,李晶,张岗,等.2013.新型薄膜扩散梯度装置定量测量水环境中重金属形态[J].高等学校化学学报,34(5):1132-1138.
    [47]孙俊芬,王庆瑞.2001.关于聚醚砜膜的研究进展[J].合成技术及应用,16(1):19-21.
    [48]谭天伟.2010.分子印迹技术及应用[M].北京:化学工业出版社.
    [49]陶澍,骆永明,曹军,等.2006.水生与陆生生态系统中微量金属的形态与生物有效性[M].北京:科学出版社.
    [50]王芳丽,宋宁宁,王瑞刚,等.2012a.土壤-甘蔗作物系统中镉的生物有效性研究[J].农业环境科学学报,31(5):904-912.
    [51]王芳丽,宋宁宁,赵玉杰,等.2012b.聚丙烯酸钠为结合膜的梯度扩散薄膜技术预测甘蔗田土壤中镉的生物有效性[J].环境科学,33(10):3562-3568.
    [52]王辉,王亮,都韶婷.2008.土壤重金属元素生物有效性分析方法的研究进展[J].广东微量元素科学,15(5):8-15.
    [53]王静,王鑫,吴宇峰,等.2011.农田土壤重金属污染及污染修复技术研究进展[J].环境与安全,3(3):85-88.
    [54]王向健.2004.重金属污染土壤修复技术现状与展望[J].环境保护科学,30(4):78-81.
    [55]王瑜,周权锁,葛滢.2007.自由态Cd离子浓度测定装置的改进[J].分析试验室,26(Z):324-327.
    [56]夏利亚,来俊卿.2011.土壤重金属污染及防治对策[J].能源环境保护,25(4):54-56.
    [57]肖志群,翁朝红,王志勇.2007.水体重金属污染的生物有效性评价研究进展[J].福建农业学报,22(4):442-447.
    [58]许荣达,吴瑜端.1985.天然水体水相中各金属形态的分离技术及其应用[J].环境化学,4(3):1-8.
    [59]谢声洛.1985.离子选择电极分析技术[M].北京:化学工业出版社.
    [60]易丽,朱咏煊,洪业汤,等.2004.土壤中游离重金属离子的测定一唐南膜平衡法[J].地球与环境,32(2):87-91.
    [61]俞佳,戴万宏.2008.土壤重金属污染及其修复研究[J].环境科技,21(Z2):79-81.
    [62]郁建桥,温丽,王霞,等.2008.京沪高速公路两侧土壤重金属污染状况的研究[J].生命科学仪器,6(8):58-60.
    [63]张红振,骆永明,翁丽萍,等.2010.道南膜技术测定自由态重金属离子研究[J].环境污染与防治,32(12):75-80.
    [64]张红振,翁丽萍,骆永明,等.2012.道南膜技术测定Ca(N03)2溶液体系中汞的化学形态[J].环境科学学报,32(8):1842-1849.
    [65]张辉,马东升.2001.城市生活垃圾向土壤释放重金属研究[J].环境化学,20(1):43-47.
    [66]张杰,张勇.2001SPMD技术的应用与研究进展[J].海洋环境科学,20(4):67-74.
    [67]张晋,张妍,吴星.2006.天然水中重金属化学形态研究进展[J].现代生物医学进展,6(5):38-40.
    [68]章骅,何品晶,吕凡,等.2011.重金属在环境中的化学形态分析研究进展[J].环境化学,30(1):130-137.
    [69]赵磊,崔岩山,杜心,等.2005.利用道南膜技术(DMT)研究土壤中重金属自由离子浓度[J].环境科学学报,25(11):1565-1569.
    [70]赵美微,塔莉,李萍.2007.土壤重金属污染及其预防、修复研究[J].环境科学与管理,32(6):70-72.
    [71]郑喜砷,鲁安怀,高翔.2002.土壤中重金属污染现状与防治方法[J].土壤与环境,11(1):79-84.
    [72]周文敏,傅德黔,孙宗光.1990.水中优先控制污染物黑名单[J].中国环境监测,6(4):3-5.
    [73]周永章,高全洲,彭先芝,等.2007.土壤环境中重金属生物有效性评价方法及其环境学意义[J].土壤通报,38(3):576-583.
    [74]朱建华,李欣,强亮生.2006.铜(Ⅱ)离子印迹聚合物的制备及性能[J].高等学校化学学报,27(10):1853-1855.
    [75]宗良纲,周俊,罗敏,张丽娜.2005.模拟酸雨对茶园土壤中铅的溶出及形态转化的影响[J].土壤通报,36(5):695-699.
    [76]左彦东.2011.牡丹江市土壤重金属污染状况调查及评价[J].环境科学与管理,36(1):51-53.
    [77]Ashkenani H., Taher M. A.2012. Determination of cadmium(II) using carbon paste electrode modified with a Cd-ion imprinted polymer[J]. Microchim. Acta,178:53-60.
    [78]Bennett W. W., Teasdale P. R., Panther J. G., et al.2010. New diffusive gradients in a thin film technique for measuring inorganic arsenic and selenium(IV) using a titanium dioxide based adsorbent [J]. Anal. Chem.,82:7401-7407.
    [79]Bennett W. W., Teasdale P. R., Panther J. G, et al.2011. Speciation of dissolved inorganic arsenic by diffusive gradients in thin films:selective binding of As III by 3-mercaptopropyl-functionalized silica gel [J]. Anal. Chem.,83:8293-8299.
    [80]Biggar J. W., Cheung M. W.1973. Adsorption of picloram (4-amino-3,5,6-trichloropicolinic acid) on panoche, ephrata, and palouse soils-thermodynamic approach to adsorption mechanism[J]. Soil Sci. Soc. Am. J.,37:863-868.
    [81]Buhani, Narsito, Nuryono, et al.2010. Production of metal ion imprinted polymer from mercapto-silica through sol-gel process as selective adsorbent of cadmium[J]. Desalination,251:83-89.
    [82]Calvet R.1989. Adsorption of organic-chemicals in soils[J]. Environ. Health Persp.,83:145-177.
    [83]Chang L Y, Davison W, Zhang H, et al.1998. Performance characteristics for the measurement of Cs and Sr by diffusive gradients in thin films (DGT) [J]. Anal. Chim. Acta,368:243-253.
    [84]Chen A, Zeng G, Chen G, et al.2012. Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2,4-dichlorophenol[J]. Chem. Eng. J., 191:85-94.
    [85]Chen H., Liu Y., Jiang Y., et al.2012. Application of large molecular weight poly (4-styrenesulfonate) as a binding phase of the diffusive gradients in thin films technique[J]. Desalin. Water Treatm.,50:125-131.
    [86]Davison W., Zhang H.1994. In situ speciation measurements of trace components in natural waters using thin-film gels [J]. Nature,1994,367:546-548.
    [87]Degryse R, Smolders E., Zhang H., et al.2009. Predicting availability of mineral elements to plants with the DGT technique:a review of experimental data and interpretation by modelling[J]. Environ. Chem.,6:198-218.
    [88]Ding S., Sun Q., Xu D., et al.2012. High-resolution simultaneous measurements of dissolved reactive phosphorusand dissolved sulfide:The first observation of their simultaneous release in sediments[J]. Environ. Sci. Technol.,46:8297-8304.
    [89]Divis P., Leermakers M., Dodekalova H., et al.2005. Mercury depth profiles in river and marine sediments measured by the diffusive gradients in thin films technique with two different specific resins[J]. Anal. Bioanal. Chem.,382:1715-1719.
    [90]Docekalova H., Divis P.2005. Application of diffusive gradient in thin films technique (DGT) to measurement of mercury in aquatic systems [J]. Talanta,65(5):1174-1178.
    [91]Esen C., Andac M., Bereli N., et al.2009. Highly selective ion-imprinted particles for solid-phase extraction of Pb2+ ions, Mater. Sci. Eng. C,29:2464-2470.
    [92]Fan H., Bian Y., Sui D., et al.2009a. Measurement of free copper(Ⅱ) ions in water samples with polyvinyl alcohol as a binding phase in diffusive gradients in thin-films [J]. Anal. Sci.,25:1345-1349.
    [93]Fan H., Sun T., Li W., et al.2009b, Sodium polyacrylate as a binding agent in diffusive gradients in thin-films technique for the measurement of Cu2+ and Cd2+ in waters [J]. Talanta,79:1228-1232.
    [94]Fan H.-T., Sun T., Xu H.-B., et al.2011. Removal of arsenic(V) from aqueous solutions using 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane functionalized silica gel adsorbent[J]. Desalination,278:238-243.
    [95]Fan H.-T., Li J., Li Z.-C., et al.2012. An ion-imprinted amino-functionalized silica gel sorbent prepared by hydrothermal assisted surface imprinting technique for selective removal of cadmium (Ⅱ) from aqueous solution[J]. Appl. Surf. Sci.,258:3815-3822.
    [96]Fan H.-T., Liu J.-X., Sui D.-P., et al.2013. Use of polymer-bound Schiff base as a new liquid binding agent of diffusive gradients in thin-films for the measurement of labile Cu2+, Cd2+ and Pb2+[J]. J. Hazard. Mater.,260:762-769.
    [97]Fotovat A. and Naidu R.1997. Ion exchange resin and MINTEQA2 speciation of Zn and Cu in alkaline sodic and acidic soil extracts [J]. Aust. J. Soil Res.,35:711-726.
    [98]Freundlich H. M. F.1906. Uber die adsorption in losungen[J]. Z. Phys. Chem.,57:385-470.
    [99]Gao B., An F., Zhu Y.2007. Novel surface ionic imprinting materials prepared via couple grafting of polymer and ionic imprinting on surfaces of silica gel particles[J]. Polymer,48:2288-2297.
    [100]Garmo (?). A., Royset O., Steinne E., et al.2003. Performance study of diffusive gradients in thin films for 55 elements[J]. Anal. Chem.,75(14):3573-3580.
    [101]Gawin M., Konefal J., Trzewik B., et al.2010. Preparation of a new Cd(Ⅱ)-imprinted polymer and its application to determination of cadmium(Ⅱ) via flow-injection-flame atomic absorption spectrometry[J]. Talanta,80:1305-1310.
    [102]Ho Y. S., McKay G 1999. Pseudo-second-order model for sorption processes[J]. Process Biochem.,34:451-465.
    [103]Huang Y.-H., Hsueh C.-L., Cheng H.-P., et al.2007. Thermodynamics and kinetics of adsorption of Cu(II) onto waste iron oxide[J]. J. Hazard. Mater.,144:406-411.
    [104]Jiang G. B., Shi J. B., Feng X. B.2006. Mercury pollution in China[J]. Environ. Sci. Technol.,15: 3673-3678.
    [105]Kalis E. J. J., Weng L. P., Temminghoff E. J. M., et al.2007. Measuring free metal ion concentrations in multicomponent solutions using the Donnan membrane technique. Anal. Chem.,79(4): 1555-1563.
    [106]Koster M., Reijnders L., Van Oost N. R., et al.2005. Comparison of the method of diffusive gels in thin films with conventional extraction techniques for evaluating zinc accumulation in plants and isopods[J]. Environ. Pollut.,133:103-116.
    [107]Lagergren S.1898. About the theory of so-called adsorption of soluble substances[J]. Kungliga Svenska Vetensk. Handl.,24:1-39.
    [108]Langmuir I.1918. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. J. Am. Chem. Soc.,40:1361-1403.
    [109]Larner B. L., Seen A. J.2005. Evaluation of paper-based diffusive gradients in thin film samplers for trace metal sampling [J]. Anal. Chim. Acta,539:349-355.
    [110]Li F., Jiang H. Q., Zhang, S. S.2007. An ion-imprinted silica-supported organic-inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol-gel process for selective separation of cadmium(Ⅱ) from aqueous[J]. Talanta,71:1487-1493.
    [111]Li W., Zhao H., Teasdale P. R., et al.2002a. Synthesis and characterisation of a polyacrylamide-polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd [J]. React. Funct. Polym.,52(1):31-41.
    [112]Li W., Zhao H., Teasdale P. R., et al.2002b. Preparation and characterisation of a poly (acrylamidoglycolicacid-co-acrylamide) hydrogel for selective binding of Cu2+ and application to diffusive gradients in thin films measurements [J]. Polymer,43:4803-4809.
    [113]Li W., Zhao H., Teasdale P. R., et al.2002c. Application of a cellulose phosphate ion exchange membrane as a binding phase in the diffusive gradients in thin films technique for measurement of trace metals [J]. Anal. Chim. Acta,464:331-339.
    [114]Li W., Teasdale P. R., Zhang S., et al.2003. Application of a poly(4-styrenesulfonate) liquid binding layer for measurement of Cu2+ and Cd2+ with the diffusive gradients in thin-films technique[J], Anal. Chem.,75:2578-2583.
    [115]Li W., Zhao H., Teasdale P. R., et al.2005. Trace metal speciation measurements in waters by the liquid binding phase DGT device [J]. Talanta,67:571-578.
    [116]Li W., Zhao J., Li C., et al.2006. Speciation measurements of uranium in alkaline waters using diffusive gradients in thin films technique [J]. Anal. Chim. Acta,575:274-280.
    [117]Li Z.-C, Fan H.-T., Zhang Y., et al.2011. Cd(II)-imprinted polymer sorbents prepared by combination of surface imprinting technique with hydrothermal assisted sol-gel process for selective removal of cadmium(Ⅱ) from aqueous solution, Chem. Eng. J.,171:703-710.
    [118]Low M. J. D.1960. Kinetics of chemisorption of gases on solids[J]. Chem. Rev.,60:267-312.
    [119]Luo X, Zhou D, Wang Y.2006.Free cupric ions in contaminated agricultural soils around a copper mine in eastern Nanjing City, China[J], Journal of Environmental Sciences,18(5):927-931.
    [120]Lu Y.-K., Yan X.-P.2004. An imprinted organic-inorganic hybrid sorbent for selective separation of cadmium from aqueous solution[J]. Anal. Chem.,76:453-457.
    [121]Lucas A., Rate A., Zhang H., et al.2012. Development of the di□usive gradients in thin films technique for the measurement of labile gold in natural waters[J]. Anal. Chem.,84:6994-7000.
    [122]Maiz I., Arambari I., Garcia R., et al.2000. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis [J]. Environ. Pollut.,110:3-9.
    [123]McBride M B.2001.Heavy metals in the environment-cupric ion activity in peat soil as a toxicity indicator for maize [J], Journal of Environment Quality,30(1):78-84.
    [124]McGifford R. W., Seen A. J., Haddad P. R.2010. Direct colorimetric detection of copper(Ⅱ) ions in sampling using diffusive gradients in thin-films[J]. Anal. Chim. Acta,662:44-50.
    [125]Menegario A A., Tonello P. S., Durrant S. F.2010, Use of Saccharomyces cerevisiae immobilized in agarose gel as a binding agent for diffusive gradients in thin films[J]. Anal. Chim. Acta,683:107-112.
    [126]Mohammed R. S., Michael J. H., Keith A. H.2002, Use of the diffusion gradient thin film method to measure trace metals in fresh waters at low ionic strength [J]. Anal. Chim. Acta,456:241-251.
    [127]Murdock C., Kelly M., Chang L.-Y., et al.2001. DGT as an in situ tool for measuring radiocesium in natural waters [J]. Environ. Sci. Technol.,35:4530-4535.
    [128]Nolan A. L., Zhang H., McLaughlin M. J.2005. Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques[J]. J. Environ. Qual.,34:496-507.
    [129]Nordstrom D. K.1996. Trace metal speciation in natural waters:computational vs. analytical[J]. Water, Air Soil Pollut.,90:257-267.
    [130]Panther J. G, Stillwell K. P., Powell K. J., et al.2008. Perfluorosulfonated ionomer-modified diffusive gradients in thin films:Tool for inorganic arsenic speciation analysis [J]. Anal. Chem.,80: 9806-9811.
    [131]Panther J. G., Teasdale P. R., Bennett W. W., et al.2010. Titanium dioxide-based DGT technique for in situ measurement of dissolved reactive phosphorus in fresh and marine waters [J]. Environ. Sci. Technol.,44:9419-9424.
    [132]Pesavento M., Alberti G, Biesuz R.2009. Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters:A review[J]. Anal. Chim. Acta,631:129-141.
    [133]Quirarte-Escalante C. A., Soto V., De La Cruz W., et al.2009. Synthesis of hybrid adsorbents combining sol-gel processing and molecular imprinting applied to lead removal from aqueous streams[J]. Chem. Mater.,21:1439-1450.
    [134]Rachou J, Gagnon C, Sauv6 S.2007.Use of an ion-selective electrode for free copper measurements in low salinity and low ionic strength matrices [J], Environmental Chemistry,4(2):90-97.
    [135]Redlich O. and Peterson D. L.1959. A useful adsorption isotherm[J]. J. Phys. Chem.,63: 1024-1026.
    [136]Ruello M. L., Sileno M., Sani D., et al.2008. DGT use in contaminated site characterization:The importance of heavy metal site specific behaviour, Chemosphere,70:1135-1140.
    [137]Scally S., Davison W., Zhang H.2006. Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films[J]. Anal. Chim. Acta,558:222-229.
    [138]Segatelli M. G, Santos V. S., Presotto A. B. T., et al.2010. Cadmium ion-selective sorbent preconcentration method using ion imprinted poly(ethylene glycol dimethacrylate-co-vinylimidazole) [J]. React. Funct. Polym.,70:325-333.
    [139]Shawky H. A.2009. Synthesis of ion-imprinting chitosan/PVA crosslinked membrane for selective removal of Ag(Ⅰ) [J]. J. Appl. Polym. Sci.,114:2608-2615.
    [140]Song J., Zhao F.-J., Luo Y.-M., et al.2004. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils[J]. Environ. Pollut.,128: 307-315.
    [141]Sonmez O., Pierzynski G M.2005. Assessment of zinc phytoavailability by diffusive gradients in thin films[J]. Environ. Toxicol. Chem.,24:934-941.
    [142]Sui D.-P., Fan H.-T., Li J., et al.2013. Application of poly (ethyleneimine) solution as a binding agent in DGT technique for measurement of heavy metals in water[J], Talanta,114:276-282.
    [143]Teasdale P. R., Hayward S., Davison W.1999. In situ, high-resolution measurement of dissolved sulfide using diffusive gradients in thin films with computer-imaging densitometry [J]. Anal. Chem.,71: 2186-2191.
    [144]Temminghoff E. J. M., Plettte A. C. C., Vaneck R, et al.2000. Determination of the chemical speciation of trace metals in aqueous systems by the wageningen donnan membrane technique[J]. Anal. Chim.Acta,417:149-157.
    [145]Tessier A., Campbell P. G C., Bisson M.1979. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal. Chem.,51:844-851.
    [146]Tessier A., Turner D. R.1995. Metal speciation and bioavailability in aquatic systemsfM]. John Wiley & Sons.
    [147]Tian Y., Wang X. R., Luo J., et al.2008. Evaluation of holistic approaches to predicting the concentrations of metals in field-cultivated rice[J]. Environ. Sci. Tech.,42:7649-7654.
    [148]Ullrich S. M.,Tanton T. W., Abdrashitova S. A.2001. Mercury in the aquatic environment:A review of factors affecting methylation[J]. Crit. Rev. Env. Sci. Tec.,31:241-293.
    [149]Uygun M., Feyzioglu E., Ozcahskan E., et al.2013. New generation ion-imprinted nanocarrier for removal of Cr(VI) from wastewater[J]. J. Nanopart. Res.,15:1833.
    [150]Van L. H. P., Town R. M., Buffle J., et al.2005. Dynamic speciation analysis and bioavailability of metals in aquatic systems[J]. Environ. Sci. Technol.,39:8545-8556.
    [151]Vandenhove H., Antunes K., Wannijn J.2007. Method of diffusive gradients in thin films (DGT) compared with other soil testing methods to predict uranium phytoavailability[J], Sci. Total Environ.,373: 542-555.
    [152]Wang Z., Wu G, Wang M., et al.2009. An imprinted organic-inorganic hybrid sorbent for selective separation of copper ion from aqueous solution[J]. J. Mater. Sci.,44:2694-2699.
    [153]Weber W. J. and Morris J. C.1963. Kinetics of adsorption of carbon from solutions[J]. J. Sanit. Eng. Div. Am. Soc. Civ. Eng.,89:31-63.
    [154]Workman S. M., Lindsay W. L.1990. Estimating divalent cadmium activities measured in arid-zone soils using competitive chelation[J]. Soil Sci. Soc. Am. J.,54:987-993.
    [155]Xiang L. C., Pan J. M., Gao J.,2009. An ion-imprinted polymer supported by attapulgite with a chitosan incorporated sol-gel process for selective separation of Ce(Ⅲ) [J]. Chinese Chem. Lett.,20: 985-989.
    [156]Zhan Y., Luo X., Nie S. et al.2011. Selective separation of Cu(Ⅱ) from aqueous solution with a novel Cu(II) surface magnetic ion-imprinted polymer[J]. Ind. Eng. Chem. Res.,50:6355-6361.
    [157]Zhang H., Davison W.1999. Diffusional characteristics of hydrogels used in DGT and DET techniques[J]. Anal. Chim. Acta,398:329-340.
    [158]Zhang H. and Davison W.1995. Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution [J]. Anal. Chem.,67:3391-3400.
    [159]Zhang H., Davison W., Gadi R., et al.1998. In situ measurement of dissolved phosphorus in natural waters using DGT [J]. Anal. Chim. Acta,370:29-38.
    [160]Zhang H., Zhao F.-J., Sun B., et al.2001. A new method to measure effective soil solution concentration predicts copper availability to plants[J]. Environ. Sci. Technol.,35:2602-2607.
    [161]Zhang H. and Davison W.2001. In situ speciation measurements. Using diffusive gradients in thin films (DGT) to determine inorganically and organically complexed metals[J]. Pure Appl. Chem.,73: 9-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700