用户名: 密码: 验证码:
黄曲霉毒素替代物绿色免疫分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄曲霉毒素(Aflatoxin)是一类真菌毒素,主要由黄曲霉(Aspergilus flavus)、寄生曲霉(Aspergilus parasiticus)和集峰曲霉(Aspergillus nomius)产生,广泛污染花生、玉米、大豆、大米、高粱等大宗农作物。黄曲霉毒素是目前发现的致癌能力最强的真菌毒素,严重危害人畜健康,世界各国对食品、农产品中黄曲霉毒素的含量都有严格限定,一些发达国家借此对我国出口农产品设置贸易壁垒,致使我国出口农产品常因黄曲霉毒素超标发生贸易问题,造成巨大的经济损失。由于产毒真菌在各级食物链中广泛分布,在一定环境条件下便会侵染作物并产生黄曲霉毒素,因此,黄曲霉毒素与农兽药不同,无法通过药源管理实现有效控制。因此,为了保障消费者安全,减少贸易壁垒给我国带来的经济损失,保障社会可持续发展,实现让消费者吃上放心食品的中国梦,需要强大的检测技术作为支撑,防止有毒有害食品流入市场,走入餐桌。
     目前,黄曲霉毒素的检测方法有很多,包括薄层层析法、免疫亲和柱净化-荧光光度法、高效液相色谱法等。免疫分析法是众多检测方法的一个重要的补充,它具有检测灵敏度高、选择性好、样品前处理简便、成本低等优势。黄曲霉毒素是小分子化合物,需要采用竞争免疫分析模式进行检测,即通过包被抗原与待测化合物共同竞争结合抗体,以待测化合物浓度为横坐标,相应的B/B0值为纵坐标建立标准曲线,从而对样品中的分析物进行定量。在黄曲霉毒素的免疫分析中,包被抗原为偶联有大分子蛋白(如牛血清白蛋白)的黄曲霉毒素,抗原的合成过程需要大量黄曲霉毒素标准物,在方法的建立与应用中,同样需要使用黄曲霉毒素标准物建立标准曲线,不仅价格昂贵,而且直接威胁操作人员身体健康,如果对检测后含有剧毒黄曲霉毒素标准物的废液处理不当,极易造成实验室及环境的严重二次污染问题。
     本研究针对以上问题,研制出了两类黄曲霉毒素替代抗原,一种黄曲霉毒素替代标准物,并以此为基础,研究建立了粮油产品黄曲霉毒素绿色免疫分析技术,为粮油等种植业大宗农产品中黄曲霉毒素污染的监测提供了灵敏、快速、简便、成本低、环保的新方法。本论文研究的主要内容和创新点如下:
     1.研制出黄曲霉毒素噬菌体八肽替代抗原,将噬菌体肽用作黄曲霉毒素替代抗原建立免疫分析技术,开辟了黄曲霉毒素绿色免疫检测的新途径。
     研究构建了噬菌体展示随机八肽库,以抗黄曲霉毒素单克隆抗体1C11为基础,筛选出五种噬菌体肽可用作黄曲霉毒素替代抗原,通过对包被抗体浓度、噬菌体肽浓度、pH值、盐离子浓度、甲醇浓度等理化参数的优化,分别构建基于五种噬菌体肽的免疫竞争曲线,其中CM4用作黄曲霉毒素替代抗原建立的ELISA法灵敏度最高,检测黄曲霉毒素B1的IC50值为0.290ng/mL;研究了花生、玉米、大米三种代表粮油产品的基质效应对该检测方法的影响,不同样品基质对ELISA标准曲线和最大OD值均有一定程度的影响,经过多次试验,发现在样品稀释液中添加一定浓度的牛血清白蛋白(BSA)(2%-4%)可以使得基质效应减少到可接受范围;对花生、玉米、大米三种空白样品添加不同浓度的AFB1和混合黄曲霉毒素,样品检测回收率均在60-120%之间,标准偏差在10%以内;分别采用传统ELISA与基于噬菌体肽替代抗原的ELISA检测天然污染黄曲霉毒素的样品,检测结果具有很好的相关性(R2=0.931)。与国内外相关噬菌体肽替代抗原相比发现,本研究中建立的基于噬菌体肽替代抗原的ELISA法检测灵敏度最高,且对黄曲霉毒素B1、B2、G1、G2的通用性最强。
     2.首次研制出纳米抗体用作黄曲霉毒素替代抗原,研究建立了基于纳米抗体替代抗原的免疫分析技术,为黄曲霉毒素等剧毒污染物绿色免疫分析研究提供了新的技术平台。
     以抗黄曲霉毒素单克隆抗体1C11作为免疫原免疫羊驼,提取外周血RNA,采用重链抗体铰链区特异性引物,克隆获得两类不同亚型的重链抗体IgG2a及IgG3的重链可变区片段(VHH),大小在400-600bp之间。再将扩增得到的VHH片段连接到噬菌粒载体pComb3X上,电转化大肠杆菌ER2738,通过M13KO7辅助噬菌体拯救获得库容量为1.1109pfu的纳米抗体库。经过三轮生物亲和淘选,从中获得三种能够与抗体1C11可变区特异性结合的噬菌体展示纳米抗体,通过对包被抗体浓度、噬菌体浓度、pH值、盐离子浓度、甲醇浓度等参数的优化,建立了基于三种噬菌体展示纳米抗体用作替代竞争抗原的ELISA法,其中基于phage2-5的ELISA法具有最高的检测灵敏度,对四种黄曲霉毒素(AFB1、AFB2、AFG1、AFG2)检测的IC50值分别为0.054ng/mL、0.140ng/mL、0.077ng/mL、0.373ng/mL;对三种纳米抗体进行表达纯化,直接用作包被抗原,对包被浓度、抗体1C11浓度、反应体系pH值、盐离子浓度、甲醇浓度等各条件进行优化,建立了基于纳米抗体的竞争抑制曲线,其中VHH2-5作为包被抗原建立的ELISA法检测灵敏度最高,对黄曲霉毒素B1的IC50值为0.160ng/mL,反应对四种黄曲霉毒素(AFB1、AFB2、AFG1、AFG2)的交叉反应率分别是100%、54.4%、90.4%和37.7%;以花生、大米、玉米三种空白样品作为基质进行AFB1和黄曲霉毒素总量的添加回收实验,AFB1的样品添加回收率均在70-120%之间;分别采用基于纳米抗体的ELISA法与常规ELISA法对天然污染黄曲霉毒素的样品进行检测,两种方法检测结果一致,表明本研究建立的基于纳米抗体能够很好的应用于黄曲霉毒素的污染监测中。
     3.首次将纳米抗体用作黄曲霉毒素替代标准物,研究建立了基于纳米抗体替代标准物的快速检测技术,开辟了黄曲霉毒素绿色免疫检测的新途径。
     将纳米抗体VHH2-5用作黄曲霉毒素替代标准物,以纳米抗体VHH2-5的浓度作为横坐标,以ELISA检测的B/B0值作为纵坐标,建立标准曲线,在相同的B/B0下,替代标准物浓度与AFB1浓度呈良好的线性(R2=0.998),以VHH2-5浓度为横坐标,AFB1浓度为纵坐标,建立线性相关曲线。采用两步法计算样品中黄曲霉毒素含量,首先根据显色值计算替代标准物浓度,然后通过VHH2-5与AFB1的线性相关方程,转换为黄曲霉毒素含量。以花生、玉米和大米作为代表样品,分别构建三种基质的转换方程,测定AFB1的添加回收率,结果均在70-110%;组间和组内标准偏差分别在0.7-6.2%和8.3-18.7%之间。选取了20份天然污染黄曲霉毒素的样品,采用替代标准物ELISA法进行检测,与高效液相色谱法检测结果进行比对,相关系数R2值为0.988,对比结果高度一致;此外,对纳米抗体VHH2-5进行耐热性能测定,并与实验室制备的黄曲霉毒素M1抗独特型多克隆抗体进行比较,结果表明纳米抗体比传统抗体具有更好的温度稳定性。因此,本研究研制的纳米抗体替代标准物能够很好的应用于实际样品中黄曲霉毒素污染的检测,并且具有良好的稳定性。
The aflatoxins are mycotoxins produced mainly by the fungal species Aspergillus flavus,Aspergillus parasiticus and Aspergillus nomius, which occur on a wide range of agriculturalcommodities and food matrices, such as peanuts, corns, soybeans, rice and sorghum, etc. Aflatoxin is upto now one of the most potent carcinogens, which is harmful to human and livestock. Every country inthe world has set up strict regulations towards aflatoxins in food and agro-products. Some developedcountries set up trade barrier on aflatoxins which cause serious economic loss to our export ofagro-products due to exceeding concentration of aflatoixns. Mycotoxin-producing fungi can occur inany food chain and will produce aflatoxins under some circumstances. As a result, the occurrence ofaflatoxin is unavoidable and difficult to be elimited by regulation. In order to protect the health ofcustomers, eliminate the economic loss, guarantee the sustainable development of society and realizethe Chinese Dream of ‘eat safe’, powerful detection techniques are required to avoid harmful foodentering into the market and onto the table.
     There are a variety of analytical methods for aflatoxins, including the original thin-layerchromatographic (TLC) method, immunoaffinity column purification coupled with fluorescencedetection, high performance liquid chromatography (HPLC), etc. Immunoassays are importantsupplement to those methods, which have advantages such as high sensitivity, selectivity, rapid samplepreparation, and cost effective, etc. Aflatoxins are small moleculars, so it is necessary to use anaflatoxin-protein conjugate as coating antigen, competing combination to antibody with free aflatoxins,so called competitive immunoassay. In the case of aflatoxins, the coating antigen is always synthesizedby conjugating protein, such as bovine serum albumin to aflatoxin molecular. Huge amount of aflatoxinstandard is needed during synthesis, as well as in the development of an immunoassay, which is notonly quite expensive, but also causes potential hazardous to analysts and the environment.
     In our research, two types of aflatoxin substitute antigen and one surrogate standard were obtained.Green immunoassays based on surrogate antigen or standard were developed in this research, whichprovide a sensitive, fast, simple, cost effective and environmental friendly method to regulate aflatoxinsin agro-products. The main contents and innovations are as follow:
     1. Phage-displayed peptides that mimic aflatoxin antigen were developed in this research. Greenimmunoassay towards aflatoxin was constructed based on those mimotopes, which provide technicalsupport to green analysis of aflatoxin.
     A random-8-peptide phage-displayed library was constructed and used as a source of peptides thatmimic aflatoxins. Five mimotope peptides were obtained by panning-elution from the library. Afteroptimization of the concentration of coating antibody and phage, pH value, ion strength, and methanolconcentration, etc, competitive ELISAs were constructed based on five phage-displayed peptides.ELISA based on phage CM4has the highest sensitivity with IC50value of0.290ng/mL. Matrix effect was studied by using peanut, corn and rice as representative samples. By adding2-4%BSA in extractdilution buffer, matrix effect was successfully eliminated to an acceptable range. Further validationindicated relatively good recovery (60-120%) with RSD less than10%. Natural contaminated sampleswere analyzed for aflatoxin concentration by both conventional ELISA and phage ELISA. The resultsshowed good correlation (R2=0.931). It can be concluded that the mimotope preparation is an effectivesubstitute for the aflatoxin based coating antigen in ELISA and can be used in real sample analysis.
     2. This is the first application of nanobody technique in the development of antigen mimotope,which provides a new technical platform for green analysis of aflatoxin.
     An alpaca was immunized by anti-aflatoxin monoclonal antibody1C11. Total RNA was extractedfrom alpaca’s blood and VHH genes (400-600bp) were cloned by PCR using two pairs of hingespecified primers. The phage displayed VHH library was constructed by ligating amplified VHH geneswith plasmid pComb3X and electrotransformated to E. coli ER2738. The achieved library has a size of1.1109pfu. After3rounds of biopanning, three anti-idiotype nanobodies were selected. Phage ELISAwas developed after a series of optimization of coating antibody concentration, phage workingconcentration, pH value, ionic strength and methanol concentration, etc. ELISA based on phage2-5hasthe best sensitivity with IC50value of0.054ng/mL,0.140ng/mL,0.077ng/mL and0.373ng/mLtowards AFB1, AFB2, AFG1and AFG2, respectively. Three anti-idiotype nanobodies were expressed,purified and used directly as substitute coating antigen. After optimization of coating concentration,antibody concentration, pH value, ionic strength and methanol concentration, VHH ELISAs weredeveloped with three nanobodies. The best immunoassay developed with VHH2-5shows an IC50of0.160ng/mL towards aflatoxin B1and cross-reactivity toward aflatoxin B2, G1and G2of54.4%,90.4%,and37.7%, respectively. Good recoveries (70-120%) of aflatoxin B1were achieved from peanuts, riceand corn. A good correlation was found between the data obtained from the conventional ELISA andELISA based on a VHH coating antigen for the analysis of aflatoxins in peanuts and feedstuff. Theseresults indicated that the developed ELISA could well meet the specific detection of AFB1in realsamples.
     3. This is the first research using nanobody as aflatoxin surrogate standard, which exploits a newway to develop immunoreagent.
     Nanobody VHH2-5was applied as surrogate standard in competitive ELISA towards aflatoxin. Byusing the concentration of VHH2-5as x axis, the value of B/B0as y axis, a standard curve wasdeveloped. The concentration of VHH2-5showed excellent linear relationship with aflatoxinconcentration at the same inhibition value (R2=0.998). The concentration of aflatoxin was calculated bya two-step calculation: the concentration of VHH2-5was first achieved by a four-parameter logisticregression from the detected OD450value, and then converted to aflatoxin concentration by a linearequation. The average recoveries of AFB1from spiked peanut, rice and corn samples were in the rangeof70-110%. The inter-and intra-laboratory reproducibility was in the range of0.7-6.2%and8.3-18.7%, respectively. The assay was compared to a high-performance liquid chromatographic (HPLC) methodfor determination of20naturally contaminated peanut samples, displaying a good correlation(R2=0.988). We also tested the thermostability of VHH2-5, by comparison with anti-idiotypepolyclonal antibody towards aflatoxin M1developed in our laboratory, VHH2-5showed better stabilityunder high temperature. In conclusion, VHH2-5could be used as surrogate standard and applied in thecontamination monitoring of aflatoxins in real samples.
引文
1.楚霞,沈国励,压电免疫传感器.化学传感器,1996,16:1–8
    2.丁小霞,中国产后花生黄曲霉毒素污染与风险评估方法研究[博士学位论文].北京:中国农业科学院,2011
    3.鄂茂怀,光学免疫传感器的表面等离子体共振研究.纺织高校基础科学学报,1996,9:314–317
    4.范建华,成国祥,抗体噬菌体展示技术研究进展.同济大学学报医学版,2005,25:530–532
    5.管笛,李培武,张奇,张文,丁小霞,黄曲霉毒素B1标准替代物的制备及其在花生样品检测中的应用.中国油料作物学报,2011,33:503–506
    6.何庆华,刘仁荣,许杨,利用噬菌体肽库淘选玉米赤霉烯酮的模拟表位.食品科学,2007,28:241–243
    7.黄思敏,许杨,噬菌体随机肽库淘选桔霉素模拟表位的研究.食品科学,2006.27:67–70
    8.霍群,蔡豪斌,电化学免疫传感器.临床检验杂志,2003,21:181–182
    9.李书国,陈辉,李雪梅,任媛媛,粮油食品中黄曲霉毒素检测方法综述.粮油食品科技,2009,17:62–65
    10.刘仁荣,徐玲,何庆华,基于赭曲霉毒素A模拟表位的无毒素ELISA方法.食品与生物技术学报,2010,26:47–51
    11.马良,黄曲霉毒素B1高灵敏度检测技术研究[博士学位论文].北京:中国农业科学院,2007
    12.孙宪连,花生黄曲霉毒素B1单链抗体的研制及其检测[硕士学位论文].福州:福建农林大学,2006
    13.温志立,免疫传感器的发展概述.生物医学工程学杂志,2001,18:642–646
    14.肖智,李培武,张奇,张文,丁小霞,高特异性黄曲霉毒素B1单克隆抗体的制备及特性研究.中国油料作物学报,2011,33:66–70
    15.熊啸,熊勇华,涂祖新,黄曲霉毒素M1模拟表位的筛选和鉴定.食品科学,2007,28:339–341
    16.尹仁福,丁壮,噬菌体展示技术及其应用研究进展.第六届理事会第二次会议暨教学专业委员会2006年会议论文集,2006:98–101
    17.张道宏,黄曲霉毒素杂交瘤细胞株的选育及免疫层析检测技术研究[博士学位论文].北京:中国农业科学院,2011
    18.张晓,刘媛,刘贤进,程罗根,噬菌体展示技术在农药等小分子检测中的应用.江苏农业学报,2008,24:89–92
    19. Alvarez-Rueda N., Behar G., Ferre V., Pugniere M., Roquet R., Gastinel L., Jacquot C.,Aubry J., Baty D.,Barbet J., Birkle S., Generation of llama single-domain antibodies againstmethotrexate, a prototypical hapten. Molecular Immunology2007,44:1680–1690
    20. Anderson G.P.,Goldman E.R., TNT detection using llama antibodies and a two-stepcompetitive fluid array immunoassay. Journal of Immunological Methods2008,339:47–54
    21. Arbabi Ghahroudi M.,Desmyter A., Wyns L., Hamers R., Muyldermans S., Selection andidentification of single domain antibody fragments from camel heavy-chain antibodies. FEBSletters1997,414:521–526
    22. Arbabi-ghahroudi M., Tanha J.,MacKenzie C.R., Prokaryotic expression of antibodies.Cancer and Metastasis Reviews2005,24:501–519
    23. Barbas C.F., Amberg W., Simoncsits A., Jones T. M., Lerner R. A., Selection of humananti-hapten antibodies from semisynthetic libraries. Gene1993,137:57–62
    24. Becker, M.I., Aguayo J. E., Jamett A., Juica R., Yudelevich A., Foradori A., De Ioannes A. E.,An alternative ELISA for T4determination based on idiotype anti-idiotype interaction and alatex method for anti-idiotype monoclonal antibody selection. Journal of immunologicalmethods1996.,192:73–85
    25. Blount, W.P., Tukey X disease. Turkeys1961:52–61.
    26. Cardozo, S., Gonzalez-Techera A., Last J. A., Hammock B. D., Kramer K.,Gonzalez-Sapienza G. G., Analyte peptidomimetics selected from phage display peptidelibraries: a systematic strategy for the development of environmental immunoassays.Environmental Science&Technology2005.,39:4234–4241
    27. Carlson, M.A., Bargeron C.B., Benson R.C., Fraser A. B., Philips T. E., An automated,handheld biosensor for aflatoxin. Science2000.,14:841–848
    28. Chu F.S., Ueno I., Production of antibody against aflatoxin B1. Applied and EnvironmentalMicrobiology1977a,33:1125–1128
    29. Chu F.S., Ueno I., Production of antibody against aflatoxin B1. Applied EnvironmentalMicrobiology1977b,33:1125–1128
    30. Cwirla S.E., Peters E.A., Barrett R.W., Dower W.J., Peptides on phage: a vast library ofpeptides for identifying ligands. Proceedings of the National Academy of Sciences of theUnited States of America1990,87:6378–6382
    31. Devlin J.J., Panganiban L.C., Devlin P.E., Random peptide libraries: a source of specificprotein binding molecules. Science1990,249:404–406
    32. Doyle P.J., Arbabi-Ghahroudi M., Gaudette N., Furzer G., Savard M. E., Gleddie S. McleanM.D., Mackenzie C.R., Hall, J.C., Cloning, expression, and characterization of asingle-domain antibody fragment with affinity for15-acetyl-deoxynivalenol. MolecularImmunology2008,45:3703–3713
    33. Eaton D.L., Gallagher E.P., Mechanisms of aflatoxin carcinogenesis. Annual review ofpharmacology and toxicology1994,34:135–172
    34. Engvall E., Perlmann P., Enzyme-linked immunosorbent assay (ELISA) quantitative assay ofimmunoglobulin G. Immunochemistry1971,8:871
    35. Frenken L.G.J., Van Der Linden R.H.J., Hermans P.W.J.J.,Bos J.W., Ruuls R.C., De Geus B.,Verrips C. T., Isolation of antigen specific Llama VHH antibody fragments and their highlevel secretion by Saccharomyces cerevisiae. Journal of Biotechnology2000,78:11–21
    36. Ghassabeh G.H., Muyldermans S., Saerens D., Nanobodies, Current Trends in MonoclonalAntibody Development and Manufacturing. New York, NY: Springer New York,2010, pp.29–48
    37. Goto T., Wicklow D.T., Ito Y., Aflatoxin and cyclopiazonic acid production by asclerotium-producing Aspergillus tamarii strain. Applied and environmental microbiology1996.,62:4036–4038
    38. Greenberg A.S., Avila D., Hughes S., Mckinney E.C., Flajnik M.F., A new antigen receptorgene family that undergoes rearrangement and extensive somatic diversification in sharks.Nature1995,374,:169–173
    39. Groopman J.D., Trudel L.J., Donahue P.R., Marshak-Rothstein A., Wogan G.N.,High-affinity monoclonal antibodies for aflatoxins and their application to solid-phaseimmunoassays. Proceedings of the National Academy of Sciences1984,81:7728–7731
    40. Guan D., Li P., Cui Y., Zhang Q., Zhang W., A competitive immunoassay with a surrogatecalibrator curve for aflatoxin M1in milk. Analytica Chimica Acta2011,703:64–69
    41. Guan D., Li P., Zhang Q., Zhang W., Zhang D., Jiang J., An ultra-sensitive monoclonalantibody-based competitive enzyme immunoassay for aflatoxin M1in milk and infant milkproducts. Food Chemistry2011,125:1359–1364
    42. Hamers-Casterman C., Atarhouch T., Muyldermans S., Robinson G., Hamers C., Songa E. B.,Bendahman N., Hamers R., Naturally occurring antibodies devoid of light chains. Nature1993,363:446–448
    43. He Z., He Q., Xu Y., Li Y., Liu X., Chen B., Lei D., Sun C., Ochratoxin A mimotope fromsecond-generation peptide library and its application in immunoassay. Analytical chemistry2013,85:10304–10311
    44. Holzapfel C.W., Steyn P.S., Purchase I.F.H., Isolation and structure of aflatoxins M1and M2.Tetrahedron Letters1966,7:2799–2803
    45. Van Houwelingen A., Se Saeger S., Rusanova T., Waalwijk C., Beekwelder J., Generation ofrecombinant alpaca VHH antibody fragments for the detection of the mycotoxin ochratoxin A.World Mycotoxin Journal2008,1:407–417
    46. Hsu K.H., Chu F.S., Anti-idiotype and anti-anti-idiotype antibodies generated from polyclonalantibodies against aflatoxin B1. Food AgriculturalImmunology1995,7:139–151
    47. Huse W.D., Sastry L., Iverson S.A., Kang A.S., Alting-Mees M., Burton D.R., Benkovic S.J.,Lerner R.A., Generation of a large combinatorial library of the immunoglobulin repertoire inphage lambda. Science1989,246:1275
    48. International Agency for Research on Cancer,1993. IARC monographs on the evaluation ofcarcinogenic risks to humans., Lyon: IARC.
    49. Ismaili, A., Jalali-Javaran M., Rasaee M.J., Rahbarizadeh F., Forouzandeh-Moghadam M.,Memari H.R., Production and characterization of anti-(mucin MUC1) single-domain antibodyin tobacco (Nicotiana tabacum cultivar Xanthi). Biotechnology and applied biochemistry2007,47:11–19
    50. Jerne, N K, Towards a network theory of the immune system. Ann Immunol (Paris)1974.,125C:373–389
    51. Jerne, N. K., Ko G., Ablynx Makes Nanobodies from Llama Bodies. Chemistry&Biology2006,13:1243–1244
    52. Jin, X., Jin X., Chen L., Jiang J., Shen G., Yu R., Piezoelectric immunosensor with goldnanoparticles enhanced competitive immunoreaction technique for quantification of aflatoxinB1. Biosensors and Bioelectronics2009,24:2580–2585
    53. Joosten, V., Roelofs M.S., Den Dries N., Goosen T., Verips C.T.,Den Hondel C.A., LokmanB.C., Production of bifunctional proteins by Aspergillus awamori: Llama variable heavy chainantibody fragment (VHH)R9coupled to Arthromyces ramosus peroxidase (ARP). Journal ofBiotechnology2005,120:347–359.
    54. Kensler, T.W., Roebuck V.D., Wogan G.N., Groopman J.D., Aflatoxin: a50-year odyssey ofmechanistic and translational toxicology. Toxicological Sciences2011,120: S28–S48
    55. Khole V., Hegde U., Monoclonal anti-idiotypic antibody to progesterone with internal imageproperties. Reprod Fertil Dev.1992,4:223–230
    56. Kim H.J., McCoy M., Gee S.J., Gonzalez-Sapienza G.G., Hammock B.D., NoncompetitivePhage Anti-Immunocomplex Real-Time Polymerase Chain Reaction for Sensitive Detectionof Small Molecules. Analytical Chemistry2011,83:5779–5786
    57. Kim H.J., McCoy M.R., Majkova Z., Dechant J.E., Gee S.J., Rabares-da Rosa S., Gonzalez-Sapienza G.G., Hammock B.D., Isolation of alpaca anti-hapten heavy chain single domainantibodies for development of sensitive immunoassay. Analytical Chemistry2012,84:1165–1171
    58. Kim, H.J., Gonzalez-Techera A., Gonzalez-Sapienza G.G., Ahn K.C., Gee S.J., HammockB.D., Phage-borne peptidomimetics accelerate the development of polyclonal antibody-basedheterologous immunoassays for the detection of pesticide metabolites. Environmental ScienceTechnology2008,42:2047–2053
    59. Kohler H., Muller S., Bona C., Internal antigen and immune network. In Proceedings of theSociety for Experimental Biology and Medicine. Society for Experimental Biology andMedicine (New York, NY)1985,178:189–195
    60. Kolosova, A.Y., Shim W.B., Yang Z., Eremin S.A., Chung D.H., Direct competitive ELISAbased on a monoclonal antibody for detection of aflatoxin B1. Stabilization of ELISA kitcomponents and application to grain samples. Analytical and bioanalytical chemistry2006,384:286–294
    61. Langone J. J., Van Vunakis H., Aflatoxin B1specific antibodies and their use inradioimmunoassay. Journal of the National Cancer Institute1976,56:591
    62. Lauer B., Ottleben I., Jacobsen H., Reinard T., Production of a single-chain variable fragmentantibody against fumonisin B1. Journal of agricultural and food chemistry2005,53:899–904
    63. Lauwereys M., Ghahroudi M.A., Desmyter A., Kinne J., Holzer W., De Genst E., Wyns L.,Muyldermans S., Potent enzyme inhibitors derived from dromedary heavy-chain antibodies.The EMBO journal1998,17:3512–3520
    64. Lawellin D.W., Grant D.W., Joyce B.K., Enzyme-linked immunosorbent analysis foraflatoxin B1. Applied and environmental microbiology1977,34:94–96
    65. Lee N.A., Wang S., Allan R.D., Kennedy I.R., A rapid aflatoxin B1ELISA: development andvalidation with reduced matrix effects for peanuts, corn, pistachio, and soybeans. Journal ofagricultural and food chemistry2004a,52:2746–2755
    66. Li P., Zhang Q., Zhang W. Zhang J., Chen X., Jiang J., Xie L., Zhang D., Development of aclass-specific monoclonal antibody-based ELISA for aflatoxins in peanut. Food Chemistry2009,115:313–317
    67. Li S., Chen J., Cao H., Yao D., Liu D., Amperometric biosensor for aflatoxin B1based onaflatoxin-oxidase immobilized on multiwalled carbon nanotubes. Food Control2011,22:43–49
    68. Li X., Li P., Lei J., Zhang Q., Zhang W., Li C., A simple strategy to obtain ultra-sensitivesingle-chain fragment variable antibodies for aflatoxin detection. RSC Advances2013,3:22367–22372
    69. Li, X., Li, P., Zhang, Q., Li R., Zhang W., Zhang Z., Ding X., Tang X., Multi-componentimmunochromatographic assay for simultaneous detection of aflatoxin B1, ochratoxin A andzearalenone in agro-food. Biosensors and Bioelectronics2013,49:426–432
    70. Li Y., Cockburn W., Kilpatrick J.B., Whitelam G.C., High affinity ScFvs from a single rabbitimmunized with multiple haptens. Biochemical and Biophysical Research Communications2000,268:398–404
    71. Van der Linden, R. H. J., Frenken L.G.J., De Geus B., Harmsen M.M., Ruuls R.C., Stok W.,De Ron L., Wilson S., Davis P., Verrips C.T., Comparison of physical chemical properties ofllama VHH antibody fragments and mouse monoclonal antibodies. Biochimica et BiophysicaActa1999,1431:37–46
    72. Liu R., Yu Z., He Q., Xu Y., An immunoassay for ochratoxin A without the mycotoxin. FoodControl2007,18:872–877
    73. Liu R., Xu L., Qiu X., Chen X., Deng S., Lai W., Xu Y., An immunoassay for determiningaflatoxin B1using a recombinant phage as a nontoxic coating conjugate. Journal of FoodSafety2012,32:318–325
    74. Liu, Y., Qin Z., Wu X., Jiang H., Immune-biosensor for aflatoxin B1basedbio-electrocatalytic reaction on micro-comb electrode. Biochemical Engineering Journal2006,32:211–217
    75. Madhok T.C., Bjercke R.J., Langone J.J., Sharp B.M., Brain nicotinic receptors isolated by amonospecific antibody against a synthetic α-3subunit receptor peptide compared to amonoclonal anti-idiotypic (to nicotine) antibody. Biochemical and Biophysical ResearchCommunication1992,182:1303–1308
    76. Micheli, L., Grecco R., Vadea M., Moscone D., Palleschi F., An electrochemicalimmunosensor for aflatoxin M1determination in milk using screen-printed electrodes.Biosensors and Bioelectronics2005,21:588–596
    77. Moghaddam A., Lobersli I., Gebhardt K., Vraunagel M., Marvik O.J., Selection andcharacterisation of recombinant single-chain antibodies to the hapten aflatoxin B1from naiverecombinant antibody libraries. Journal of immunological methods2001,254:169–181
    78. Nisonoff, A., Lamoyi E., Implications of the presence of an internal image of the antigen inanti-idiotypic antibodies: possible application to vaccine production. Clinical immunologyand immunopathology1981,21:397–406
    79. Olichon A., Schweizer D., Muyldermans S., De Marco A., Heating as a rapid purificationmethod for recovering correctly-folded thermotolerant VH and VHH domains. BMCBiotechnology2007,7:7
    80. Paniel N., Radoi A., Marty J. L., Development of an electrochemical biosensor for thedetection of aflatoxin M1in milk. Sensors2010,10:9439–9448
    81. Rahbarizadeh F., Rasaee M.J., Forouzandeh-Moghadam M., Allameh A., High expression andpurification of the recombinant camelid anti-MUC1single domain antibodies in Escherichiacoli. Protein Expression and Purification2005,44:32–38
    82. Rajabi-Memari H., Jalali-Javaran M., Rasaee M.J., Rahharizadeh F., Forouzandeh-MoghadamM., Esmaili A., Expression and characterization of a recombinant single-domain monoclonalantibody against MUC1mucin in tobacco plants. Hybridoma2006,25:209–215
    83. Rastogi S., Dwivedi P.D., Khanna S.K., Das M., Detection of aflatoxin M1contamination inmilk and infant milk products from Indian markets by ELISA. Food Control2004,15:287–290
    84. Reddy, S. V., Mayi D.K., Reddy M.U., Thirumala-Devi K., Reddy D.V.R., Aflatoxins B1indifferent grades of chillies (Capsicum annum L.) in India as determined by indirectcompetitive-ELISA. Food Additives&Contaminants2001.,18:553–558
    85. Ridgeway I., Vectors: A survey of molecular cloning vectors and their uses. Stoneham:Butterworfh1988:467–492
    86. Rosa, S.T., Rossotti M., Carleiza C., Carri F., Pritsch O., Ahn K.C., Last J.A., Hammock B.D.,Gonz G., Competitive selection from single domain antibody libraries allows isolation ofhigh-affinity antihapten antibodies that are not favored in the llama immune response.Analytical Chemistry2011,83:7213–7220
    87. Sanmehmetoglu B., Kuplulu O., Haluk Celik T., Detection of aflatoxin M1in cheese samplesby ELISA. Food Control2004,15:45–49
    88. Sapsford K.E., Raitt C.R., Fertig S., Moore M.H., Lassman M.E., Maragos C.M., Shriver-lakeL.C., Indirect competitive immunoassay for detection of aflatoxin B1in corn and nutproducts using the array biosensor. Biosensors and Bioelectronics2006,21:2298–2305
    89. Sargeant K., Sheridan A., Okelly J., Carnaghan R.V.A., Toxicity associated with certainsamples of groundnuts. Nature1961,192:1096–1097
    90. Scott J.K., Smith G.P., Searching for peptide ligands with an epitope library. Science1990,249:386–390
    91. Sheedy C., Yau K.Y.F., Hirama T., Mackenzie C.R., Hall J.C., Selection, characterization,and CDR shuffling of naive Llama single-domain antibodies selected against auxin and theircross-reactivity with auxinic herbicides from four chemical families. Journal of Agriculturaland Food Chemistry2006,54:3668–3678
    92. Shephard G.S., Aflatoxin and food safety: recent African perspectives. Toxin Reviews2003,22:267–286
    93. Shim W.B., Yang Z., Kim J., Kim J., Kang S., Woo F., Chung Y., Eremin S.A., Chung D.,Development of immunochromatography strip-test using nanocolloidal gold-antibody probefor the rapid detection of aflatoxin B1in grain and feed samples. Journal of microbiology andbiotechnology2007,17:1629
    94. Skerra A., Pluckthun A., Assembly of a functional immunoglobulin Fv fragment inEscherishia coli. Science1988,240:1038–1041
    95. Slzaret P., Malaveille C., Montesano R., Frayssinet C., Detection of aflatoxins and relatedmetabolites by radioimmunoassay. Journal of National Cancer Institute1982,69:1375–1381
    96. Smith G.P., Filamentous fusion phage: novel expression vectors that display cloned antigenson the virion surface. Science1985,228:1315
    97. Spinelli S., Frenken L.G.J., Hermans P., Verrips T., Brown K., Tegoni M., Cambillau C.,Biologiques M., Aiguier C.J., Camelid heavy-chain variable domains provide efficientcombining sites to haptens. Biochemistry2000,39:1217–1222
    98. Spinks C.A., Wang B., Mills E.N.C., Morgan M.R.A., Production and characterization ofmonoclonal anti-idiotype antibody mimics for the pyrethroid insecticides and the herbicideparaquat. Food Agriculture Immunology1993,5:13–25
    99. Sun X., Zhao X., Tang J., Gu X., Zhou J., Chu F.S., Development of animmunochromatographic assay for detection of aflatoxin B1in foods. Food Control2006,17:256–262
    100.Sun X., Zhao X., Tang J., Zhou J., Chu F.S., Preparation of gold-labeled antibody probe andits use in immunochromatography assay for detection of aflatoxin B1. International journal offood microbiology2005,99:185–194
    101.Sun Z.T.,[Monoclonal antibody against aflatoxin B1and its potential application]. Zhonghuazhong liu za zhi1983,5:401(Chinese journal of oncology)
    102.Thirumala-Cevi K., Miller J.S., Reddy G., Reddy D.V.R., Phage-displayed peptides thatmimic afatoxin B1. Journal of Applied Mricobiology2001,90:330–336
    103.Tillib S. V.,“Camel nanoantibody” is an efficient tool for research, diagnostics and therapy.Molecular Biology2011,45:66–73
    104.Wang J., Liu B., Hsu Y., Yu F., Sensitive competitive direct enzyme-linked immunosorbentassay and gold nanoparticle immunochromatographic strip for detecting aflatoxin M1in milk.Food Control2011,22:964–969
    105.Yau K.Y.R., Groves M.A.T., Li S., Sheedy C., Lee H., Tanha J., MacKenzie C.R., JermutusL., Hall J.C., Selection of hapten-specific single-domain antibodies from a non-immunizedllama ribosome display library. Journal of Immunological Methods2003,281:161–175
    106.Yu F.Y., Chu F. S., Production and characterization of a monoclonal anti-anti-idiotypeantibody against fumonisin B1. Journal of Agriculture and Food Chemistry1999,47:4815–4820
    107.Yuan Q., Pestka J.J., Hespenheide B.M., Kuhn L.A., Linz J.E., Hart L.P., Identification ofmimotope peptides which bind to the mycotoxin deoxynivalenol-specific monoclonalantibody. Applied Environmental Microbiology1999,65:3279–3286
    108.Yuan Q., Clarke J.R., Zhou H., Linz J.E., Pestka J.J., Hart L.P., Molecular cloning, expression,and characterization of a functional single-chain Fv antibody to the mycotoxin zearalenone.Applied and environmental microbiology1997,63:263–269
    109.Zhang D., Li P., Yang, Y., Zhang Q., Zhang W., Xiao Z., Ding X., A high selectiveimmunochromatographic assay for rapid detection of aflatoxin B. Talanta2011,85:736–742
    110.Zhang D., Li P., Zhang Q., Li R., Zhang W., Ding X., Li C., A naked-eye based strategy forsemiquantitative immunochromatographic assay. Analytica Chimica Acta2012,740:74-79
    111.Zhang D., Li P., Liu W., Zhao L., Zhang Q., Zhang W., Ding X., Wang J., Development of adetector-free semiquantitative immunochromatographic assay with major aflatoxins as targetanalytes. Sensors and Actuators B: Chemical2013,185:432–437
    112.Zhang D., Li P., Zhang Q., Zhang W., Huang Y., Ding X., Jiang J., Production ofultrasensitive generic monoclonal antibodies against major aflatoxins using a modifiedtwo-step screening procedure. Analytica Chimica Acta2009,636:63–69
    113.Zhang D., Li P., Zhang Q., Zhang W., Ultrasensitive nanogold probe-basedimmunochromatographic assay for simultaneous detection of total aflatoxins in peanuts.Biosensors and Bioelectronics2011,26:2877–2882
    114.Zhang D.H., Li P., Zhang Q., Yang Y., Zhang W., Guan D., Ding X., Extract-freeimmunochromatographic assay for on-site tests of aflatoxin M1in milk. Analytical Methods2012,4:3307–3313
    115.Zhang J., Li P., Zhang W., Zhang Q., Ding X., Chen X., Production and Characterization ofMonoclonal Antibodies Against Aflatoxin G1. Hybridoma2009,28:67–70
    116.Zijden A. S. M., Koelensmid W.A.A., Boldingh J., Aspergillus flavus and Turkey X disease:isolation in crystalline form of a toxin responsible for Turkey X disease. Nature1962,195:1060–1062
    117.Zijden A. S. M., Blanche Koelensmid W.A.A., Boldingh J., Aspergillus Flavus and turkey Xdisease. Nature1962,195:1060–1062

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700