用户名: 密码: 验证码:
复合加载下NiTi合金力学特性和相变波的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NiTi形状记忆合金是一种典型的相变材料,相变可引起材料强烈的非线性,对其力学响应和应力波形造成重大影响。本文主要对复合加载下NiTi合金的准静态和动态相变特性进行了实验研究,并对NiTi合金薄壁管中的复合应力相变波的传播规律进行了理论分析和实验研究。
     利用MTS实验装置,对NiTi合金在不同加载路径(拉、压、扭以及复合加载)和不同温度(28-150℃)下的准静态相变行为进行了较系统的实验研究,结果表明材料呈现明显的伪弹性效应和拉压不对称性。随着温度的升高,相变起始应力逐渐增大,伪弹性效应和拉压不对称性逐渐减弱。当温度达到一定阂值时,拉压不对称性消失,材料基本呈现弹塑性状态。通过实验曲线确定了NiTi合金的相变临界参数,在σ-τ应力空间中对三种常用的宏观相变临界准则进行了讨论,比较了它们各自的适用性。最后对NiTi合金实心圆轴试样在纯扭转实验过程中的剪应力和剪应变的计算方法做了初步探讨,并对复合加载下的实验数据进行了修正。
     采用一种基于Hopkinson压杆的压剪复合加载实验装置,对NiTi合金在压剪复合加载下的准静态和动态力学行为进行了研究。对NiTi合金材料进行了不同倾斜角度的准静态压剪实验,验证了该实验方法的可行性。对NiTi合金进行了不同倾斜角度、不同速度下的压剪冲击加载实验,并给出了动态不同应变率下NiTi合金的相变临界点在σ-τ应力空间的分布。采用一个合适的动态相变临界准则,对实验得到的相变临界点进行了预测,发现NiTi合金材料存在应变率效应。在390-860s-1纵向应变率范围内,NiTi合金材料的相变临界点的应力随应变率增加明显。通过高分辨率相机和高速摄影分别跟踪拍摄了准静态和动态实验过程,根据不同时刻实验照片的对比,发现实验中试样和斜端面垫块之间不存在相对滑动,说明实验结果是的可靠的。
     采用考虑静水压力与偏应力共同作用的相变临界准则,构建了增量形式的相变本构关系,建立了薄壁圆管中复合应力相变波的控制方程。通过特征线理论求解出了相变快波和相变慢波,并在σ-τ应力平面上给出了相应的复合应力路径图。由于静水压力的影响,相变区可分为三个区域,其中τ轴和初始及后继相变临界椭圆顶点所围成的区域是传统弹塑性材料所没有的,加载最终状态在该区域或通过该区域的应力路径的相变复合波形可能有新的变化。以NiTi合金薄壁圆管为例,对两种典型的应力路径进行了分析,给出了相应的复合应力相变波信号。若只考虑相变临界准则中的应力项,则与Drucker-Prager屈服准则形式一致,因此可将得到的相变材料中的结果可以推广应用于符合该模型的其他材料,比如岩土材料。
     在分离式Hopkinson压杆的基础上,设计并建立了分离式压扭Hopkinson杆实验装置,实现了薄壁长管的压扭复合加载。对不锈钢薄壁管进行了压扭复合加载实验,得到了典型的塑性快波和塑性慢波信号,并采用粘塑性模型对信号做了定量分析,验证了该实验方法的可行性。采用NiTi合金薄壁管的材料参数,对预扭纵向冲击加载下NiTi管中的复合加载路径和相变复合波信号进行了分析和预测,为设计NiTi管的压扭实验提供了支持。对NiTi管分别进行了相变临界面内和相变临界面外的预扭压缩复合加载实验,并在应力空间中对复合加载路径进行了分析和计算,计算结果和实验结果吻合较好,但管中纵向信号的应变平台和相变慢波的区分不够清楚。由于实验所用NiTi管存在相变临界应力较高,破坏应变较低等问题,同时还具有拉压不对称性,若要获得理想的复合应力相变波信号,还需改进实验装置为拉扭复合加载或通过热处理降低NiTi合金管的相变临界应力。
NiTi shape memory alloy is a typical phase transition material, phase transition can greatly affect the mechanical response and wave propagation properties of material and structure. In this paper, the quasi-static and dynamic phase transition behaviors of pseudoelastic NiTi alloy under combined stress are investigated, and the theoretical and experimental research of combined phase transition waves in thin-walled NiTi tubes are proposed.
     Phase transition behavior of NiTi shape memory alloy was studied systematically through quasi-static experiments under different loading paths (uniaxial compression and tension, pure torsion and proportional tension/compression-torsion) and different temperatures range from28℃to150℃. Experimental results show apparent pseudoelastic effect and tension-compression asymmetry. The initial phase transition stress increased with the rise of temperature; meanwhile the pseudoelastic effect and tension-compression asymmetry were gradually weakened. NiTi alloy show elastic-plastic behavior when the temperature reached a certain threshold, and the tension-compression asymmetry disappeared. Based on the data of critical phase transition points measured from the experiments, three phase transition criterions were discussed on σ-τ stress plane, and their applicability were compared respectively. Finally preliminarily discussed the calculated method of shear stress and shear strain during the torsion of NiTi circular bar, and revised the experiment data of combined loading.
     The quasi-static and dynamic phase transition behaviors of pseudoelastic NiTi alloy under compression-shear loading were studied through a new combined compression-shear technique based on split Hopkinson pressure bar. The data processing methods were studied and verified by quasi-static experiment of NiTi alloy. A series of experiments of NiTi alloy were performed at different impact velocities and different loading angles, and the dynamic equivalent pressure curves were given. The initial phase transition points and the phase transition surfaces predicted by a dynamic phase transition criterion were given. The results show that the material was sensitive to the strain rate, and the stress of initial phase transition increased with the strain rate during390-860s-1. By a high resolution camera and high-speed photography following the quasi-static and dynamic experimental process respectively, there was no relative slip between the specimen and the beveled ends from the comparison of the photographs of the experiment, which confirmed the validity of the experiment method.
     The incremental constitutive relation and governing equations with combined stresses for phase transition wave propagation in a thin-walled tube were established based on the phase transition criterion considering both the hydrostatic pressure and the deviatoric stress. It was found that the centers of the initial and subsequent phase transition ellipses were shifted along the σ-axis in the σ-τ plane due to the tension-compression asymmetry induced by the hydrostatic pressure. The wave solution offered the "fast" and "slow" phase transition waves under combined longitudinal and torsional stresses in the phase transition region. The results show some new stress paths and wave structures in a thin-walled tube with phase transition, differing from those of conventional elastic-plastic materials.
     The split combined compression torsion Hopkinson bar was designed and built based on SHPB, and experiment technique of pre-torqued tubes under longitudinal impact was achieved. The combined stress wave of strainless steel tube was measured, and the quick wave and slow wave of the strain signal was quantitative analysed by elastic-viscoplastic models, which show the experiment technique was feasible. The combined stress and strain signals of pre-torqued tube under impact were calculated by the material parameters of NiTi. The final stress rate in and out the initial phase transition surface were achieved during the combined loading of NiTi tube, and the property of combined phase transition was analysed. The separate of quick phase transition waves and slow phase transition waves was not clear at present experiment, but has a good agreement with the theoretical model. As the NiTi tube have several problems such as:the initial phase transition stress is too high, the crack strain is low, and the tension-compression asymmetry. To obtain desired signals of combined phase transition waves, it must be improved the compression-torsion loading into tension-torsion loading or decreased the initial phase transition stress through heat treatment.
引文
1. 赵连城,蔡伟,郑玉峰,合金的形状记忆效应与超弹性[M],国防工业出版社,2002.
    2. 唐志平,冲击相变[M],科学出版社,2008.
    3. Chang L.C., Read T. A., Plastic deformation and diffusionless phase changes in metals-the gold cadmium bate phase. Trans. AIME,1951,189:47-52.
    4. F. Osmond, Bull. Soc. D'Rncour. L'Ind. Nat.,1895,10:480.
    5. 徐祖耀,江伯鸿等,形状记忆材料[M],上海交通大学出版社,2000,2.
    6. 张春才,苏佳灿,形状记忆材料[M],第二军医大学出版社,2003,29-30.
    7. Buehler W J, Gilfrich J V, Wiley R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J. Appl. Phys.,1963,34:1475-1477.
    8. 王心美,岳珠峰等,NiTi合金的超弹性力学特性及其应用[M],科学出版社,2009,1-2.
    9. J. M. Jackson, H. J. Wagner, R. J. Wasilewski, Nasa-SP 510,1972.
    10. G. R. Purdy and J. G. Parr, Trans. Metall. Soc. AIME,1961,221,636.
    11. K. Otsuka, T. Sawamura, K. Shimizu, Physica Status Solid,1971,5,457.
    12. R. F. Hehemann, G. D. Sandrock, Scripta Metall.,1971,5,801.
    13. G. M. Michal, R. Sinclari, Acta Crystallography,1981,37, B1803.
    14. Y. Kudoh, M. Tokonami, S. Miyazaki, K. Otsuka, Acta Metall.,1985,33,2049.
    15. Plietsch R, Ehrlich K. Strength differential effect in pseudoelastic NiTi shape memory alloys. Acta mater.,1997,45(6):2417-2424.
    16. Orgeas L, Favier D. Stress-induced martensitic transformation of a NiTi alloy in isothermal shear, tension and compression. Acta mater.,1998,46(15):5579-5591.
    17. Gall K, Sehitoglu H, Chumlyakov Y, Kireeva I, Maier H. Trans. ASME JEMT,1999,121: 19-27.
    18. Gall K, Sehitoglu H, Chumlyakov Y, Kireeva I, Maier H. Trans. ASME JEMT,1999,121: 28-37.
    19. Gall K, Sehitoglu H, Chumlyakov Y I, Kireeva I V. Tension-compression asymmetry of the stress-strain response in aged single crystal and polycrystalline NiTi. Acta mater.,1999,47(4): 1203-1217.
    20. Huseyin Sehitoglu, Robert Anderson, Ibrahim Karaman, Ken Gall, Yuriy Chumlyakov. Cyclic deformation behavior of single crystal NiTi. Materials Science and Engineering,2001, A314:67-74.
    21. Gall K, Sehitoglu H. The role of texture in tension-compression asymmetry in polycrystalline NiTi. International Journal of Plasticity,1999,15:69-92.
    22. Gall K, Sehitoglu H, Anderson R, Karaman I, Chumlyakov Y I, Kireeva I V. On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon. Materials Science and Engineering,2001, A317:85-92.
    23. Auricchio, F., Taylor, R.L.,1997. Shape-memory alloys:modelling and numerical simulations of the finite-strain superelastic behavior. Computer Methods in Applied Mechanics and Engineering 143 (1-2),175-194
    24. Qidwai M A, Lagoudas D C. On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material. International Journal of Plasticity,2000, 16:1309-1343.
    25.郭扬波,唐志平,徐松林,一种考虑静水压力和偏应力共同作用的相变临界准则。固体力学学报,2004,25(4):417-422.
    26.杨杰,吴月华,形状记忆合金及其应用[M],中国科学技术大学出版社,1993,230-255.
    27. Funakubo, H., Shape Memory Alloys, Gordon and Breach Science Publishers,1987.
    28. Gandhi, M. V. and Thompson, B. S.(1992), Smart Materials and Structures, Chapman & Hall. Busch J D. Proc. of SMST'94,1994,259.
    29. R. G. de Langer, C. A. Verbraak, J. A. Zijderveld, U. S. Patant,3,450,372.
    30.崔迪,李宏男,宋钢兵,形状记忆合金在土木工程中的研究与应用进展[J],防灾减灾工程学报,2005,25,86-94.
    31. Qiang Pan and Chongdu Cho, The investigation of a shape memory alloy micro-damper for MEMS applications, Sensors (Basel). Sep 2007; 7(9):1887-1900.
    32. ClarkP, Alkenl, KellyJetal. Experimental and Analytical Studies of Shape Memory Alloy Dampers for Structural Control. Proceedings of SPIE,1995,2445:241-251.
    33. Higashino M, Aizawa A, Clark P. W. Experimental and analytical studies of structural control system using shape memory alloy. Proeeedings of the 2nd International Workshop on Structural Control,1996,221-232.
    34.倪立峰,李秋胜,李爱群等,新型形状记忆合金阻尼器的试验研究.地震工程与工程振动,2002,22(3):145-148.
    35.倪立峰,李爱群,左晓宝.形状记忆合金拉压型超弹性阻尼器的试验研究.地震工程与工程振动,2003,23(5):205-208.
    36.韩玉林,李爱群,林萍华等,基于形状记忆合金耗能器的框架振动控制实验研究,东南大学学报,2000,30(4):16-20.
    37. Han Y.L., Li Q.S. and Li A.Q. Structure vibration control by shape memory alloy damper, Earthq. Eng. Struct. Dyn.,2003,32:483-494.
    38. Ocel J., Leon R., DesRoehes R. et. al. High Damping Steel Beam-Column Connections Using Shape Memory Alloys. Proeeedings from the 7th U.S. National Conference in Earthquake Engineering, Boston, MA,2002.
    39. Ocel J., DesRoehes R. Leon R., et. al. Steel Beam-Column Connections Using Shape Memory Alloys. Journal of Structural Engineering,2004,130(5):732-740.
    40. DesRoehes R. Delemont M. Seismic retrofit of simply supported bridges using shape memory alloys, Engineering Structures,2002,24:325-332.
    41. McCormle J., DesRoehes, R. and Fugazza D. Seismic Assessment of Concentrically Braced Steel Frames with Shape Memory Alloy Braces. Journal of Structure Engineering,2007, 133(6):862-870.
    42. Indirli M, Castellano M G, Clemente P, Martelli A. Demo-application of shape memory alloy devices:the rehabilitation of the S. Giorgio Church Bell-Tower [J]. Proceedings of SPIE, 2001,4330:262-272.
    43. Adachi Y, Unjoh S. Development of shape memory alloy damper for intelligent bridge systems. Part of the SPIE Conference on Smart Systems for Bridges, Structures, and Highways. Newport Beach, California, SPIE, (3671):31-42,1999.
    44. Lagoudas D C, Bo Z, Qidwai M A. A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites [J]. Mechanics of Advanced Materials and Structures,1996,3(2):153-179.
    45. Lagoudas D C, Khan M M, Mayes J J, Henderson B K. Pseudo-elastic SMA spring element for passive vibration isolation:Part Ⅱ-simulations and experimental correlations [J], J of Intelligent Material Systems and Structures,2004,15 (6):443-470.
    46.张科,郑航,汪玉,唐志平.一种采用TiNi合金柱壳的抗冲击装置设计.振动与冲击,2011,30(5),32-36.
    47. Khan M M, Lagoudas D C. Modeling of shape memory alloy pseudoelastic spring elements using Preisach model for passive vibration isolation. Proeeedings of SPIE, Smart Structures and Materials:Modeling, Signal Processing, and Control, San Diego, California, USA, 2002,4693:336-347.
    48. Mayes J J, Lagoudas D C, Henderson B K. An experimental investigation of shape memory alloy springs for passive vibration isolation. AIAA Space-Conference and Exposition, Albuquerque, NM,2001,4569.
    49. Li B Y, Rong L J, Li Y Y, Gjunter V E. A recent development in producing porous Ni-Ti shape memory alloys. Intermetallics,2000,8:881-884.
    50. Li B Y, Rong L J, Li Y Y, Gjunter V E. Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high-temperature synthesis:Reaction mechanism and anisotropy in pore structure. Acta mater.,2000,48:3895-3904.
    51. Li B Y, Rong L J, Li Y Y. Stress-strain behavior of porous Ni-Ti shape memory intermetallics synthesized from powder sintering. Intermetallics,2000,8:643-646.
    52. Chu C L, Chung C Y, Lin P H, Wang S D. Fabrication of porous NiTi shape memory alloy for hard tissue implants by combustion synthesis. Materials Science and Engineering,2004, A366:114-119.
    53. Qidwai M A, Entchev P B, Lagoudas D C, Degiorgi V G. Modeling of the thermomechanical behavior of porous shape memory alloys. International Journal of Solids and Structures,2001, 38:8653-8671.
    54. Entchev P B, Lagoudas D C. Modeling porous shape memory alloys using micromechanical averaging techniques. Mechanics of Materials,2002,34:1-24.
    55. Entchev P B, Lagoudas D C. Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part Ⅱ:porous SMA response. Mechanics of Materials,2004,36:893-913.N
    56. DesRoches R, Delemont M, Seismic retrofit of simply supported bridges using shape memory alloys [J], Engineering Structures,2002,24:325-332.
    57. Birman V. Review of mechanics of shape memory alloy structures. Appl. Mech. Rev.,1997, 50(11):629-645.
    58. Kazuhiro Otsuka, Xiaobing Ren. Recent developments in the research of shape memory alloys. Intermetallics,1999,7:511-528.
    59. Jaronie Mohd Jani, Martin Leary, Aleksandar Subic, Mark A. Gibson. A Review of Shape Memory Alloy Research, Applications and Opportunities, Materials& Design, Volume 56, April 2014, Pages 1078-1113.
    60. Miyazaki S.,Otsuka K., Suzuki Y., Transformation pseudoelasticity and deformation behavior in a Ti-50.6 at%Ni alloy, Scripta Metallurgica,1981,15(3):287-292.
    61. Shaw J A, Kyriakides S. Thermomechanical aspects of NiTi. J. Mech. Phys. Solids,1995, 43(8):1243-1281.
    62. Liu Y, Xie Z, Van Humbeeck J, Delaey L. Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys. Acta mater.,1998,46(12):4325-4338.
    63. Erbstoeszer B, Armstrong B, Taya M, Inoue K. Stabilization of the shape memory effect in NiTi:an experimental investigation. Scripta mater.,2000,42:1145-1150.
    64. Entemeyer D, Patoor E, Eberhardt A, Berveiller M. Strain rate sensitivity in superelasticity.. International Journal of Plasticity,2000,16:1269-1288.
    65. Morgan N B, Friend C M. Factorial design analysis of phase transformation stability in thermally cycled NiTi alloys. Materials Science and Engineering,1999, A273-275:664-667.
    66. Miller D A, Lagoudas D C. Influence of cold work and heat treatment on the shape memory effect and plastic strain development of NiTi. Materials Science and Engineering,2001, A308: 161-175.
    67. Geraldine S. Tan, Tri Suseno, Yinong Liu. Mechanical hysteresis in the pseudoelasticity of Ti-50.2at%Ni. Materials Science Forum,2002,394-395:249-252.
    68. Somen Ch., Z(a|")hres H, Kastner J, Wassermann E F, Kakeshita T. Influence of thermal annealing on the martensitic transitions in Ni-Ti shape memory alloys. Materials Science and Engineering,1999, A273-275:310-314.
    69. Adler, Yu, Pelton, Zadno, Duerig, Baressi, On the tensile and torsional properties of pseudoelastic NiTi, Scripta Metallurgica et Materialia,1990, Vol.24, pp.943-947.
    70. Y. Mori, E. Matsumoto, Measurement of shear stress-strain curve of a Ti-Ni shape memory alloy from torsion tests of wire, 日本 AEMf学会誌,2006, Vol.14, No.3,289-303.
    71. Yuping Zhu, Guansuo Dui, A macro-constitutive model of poly crystalline NiTi SMAs including tensile-compressive asymmetry and torsion pseudoelastic behaviors,2010,48, 2099-2106.
    72. R. Mirzaeifar, R. DesRoches, A. Yavari, Exact solutions for pure torsion of shape memory alloy circular bars, Mechanics of Materials,2010,42,797-806.
    73. R. Mirzaeifar, R. DesRoches, A. Yavari, K. Gall, Coupled thermo-mechanical analysis of shape memory alloy circular bars in pure torsion, International Journal of Non-linear Mechanics,2012,47,118-128.
    74. A. Rao, A. R. Srinivasa, A two species thermodynamic Preisach model for the torsional response of shape memory wires and springs under superelastic conditions, International Journal of Solids and Structures,2013,50,887-898.
    75. Sittner P., Hara Y., Tokuda M., SMA hysteresis under combined tension and torsion, Proceedings of the International Symposium on Shape Memory Alloy Materials,1994, Beijing, International Academic Publishers,541-545.
    76. Sittner P., Tokuda M., Thermoelastic martensite transformation under combined stress-simulation and experiment, Proceedings of the 15th Riso International Symposium on Materials Science,1994, Denmark,537-544.
    77. Tokuda M., Sittner P., Experimental study on performance in Cu-based shape memory alloy under multi-axial loading conditions, Materials Science Research International,1995, 1(4):260-265.
    78. F. Nishimura, N. Watanabe, T. Watanabe, K. Tanaka, Transformation conditions in an Fe-based shape memory alloy under tensile-torsional loads:martensite start surface and austenite start/finish planes, Materials Science and Engineering,1999, A(264),232-244.
    79. K. Tanaka, D. Ohnami, T. Watanabe, J. Kosegawa, Micromechanical simulations of thermomechanical behavior in shape memory alloys:transformation conditions and thermomechanical by hystereses, Mechanics of Materials,2002,34,279-298.
    80. Lexcellent C, Vivet A, Bouvet C, Calloch S, Blanc P. Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys. Journal of the Mechanics and Physics of Solids,2002, 50:2717-2735.
    81. Lexcellent C, Blanc P. Phase transformation yield surface determination for some shape memory alloys. Acta Materialia,2004,52:2317-2324.
    82. Bouvet, C., Calloch, S., Taillard, K., Lexcellent, C., Effect of multi-axial loading on pseudoelastic behavior of shape memory alloys. In International Conference of Heterogeneous Materials Mechanics (ICCHMM),24-29 June 2003, China.
    83. B. Raniecki, K. Tanaka, A. Ziolkowski. Testing and modeling of NiTi SMA at complex stress state. Materials Science Research International, Special technical publications,2 (2001), pp. 327-334.
    84. Lim T. J., McDowell D. L. Mechanical behavior of an NiTi shape memory alloy under axial-torsional proportional and nonproportional loading. Journal of Engineering Materials and Technology,1999,121(1):9-18.
    85. Helm D., Haupt P. Thermomechanical behavior of shape memory alloys. Proceedings of SPIE,2001,4333:302-313.
    86. Ziolkowski A., Raniecki B., Miyazaki S. Stress induced martensitic transformation kinetics of polycrystalline NiTi shape memory alloy. Materials Science and Engineering A,2004, 378(1-2):86-91.
    87. C. Grabe, O. T. Bruhns, Path dependence and multiaxial behavior of a polycrystalline NiTi alloy within the pseudoelastic and pseudoelastic temperature regimes, International Journal of Plasticity,2009,25,513-545.
    88. X. M. Wang, Y. F. Wang, Z. Z. Lu, et. al, An Experimental study of the superelastic behavior in NiTi shape memory alloys under biaxial proportional and non-proportional cyclic loadings, Mechanics of Materials,2010,42,365-373.
    89. McNaney J. M., Imbeni V., Jung Y., et al. An experimental study of superelastic effect in a shape memory Nitinol alloy under biaxial loading. Mechanics of Materials,2003,35(10): 969-986.
    90. Qingping Sun, Zhiqi Li, Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion-from localization to homogeneous deformation, International Journal of Solids and Structures,2002,39,3797-3809.
    91. Feng P., Sun Q. P., In situ profilometry for non-uniform strain field measurement of NiTi shape memory alloy microtubing under complex stress states. Smart Materials and Structures, 2007,16(1):S179-186.
    92. Y. F. Wang, Z. F. Yue, J. Wang, Experimental and numerical study of the superelastic behaviour on NiTi thin-walled tube under biaxial loading, Computational Materials Science, 2007,40,246-254.
    93.施绍裘,陈江瑛,董新龙,王礼立,Belyaev S P, Volkov A E, Morozov N F, Razov A I.钛镍形状记忆合金冲击变形后形状记忆效应的研究.爆炸与冲击,2001,21(3):168-172.
    94.郭扬波,唐志平,戴翔宇.TiNi合金的压缩形状记忆行为研究.爆炸与冲击,2003,23(增刊):103-104.
    95. Chen W W, Wu Q P, Kang J H, Winfree N A. Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001-750s-1. International Journal of Solids and Structures,2001,38:8989-8998.
    96.朱珏,张明华,董新龙,王礼立.TiNi合金率相关的动态超弹性行为.爆炸与冲击,2003,23(增刊):81-82.
    97. S. Belyaev, A. Petrov, A. Razov, A. Volkov, Mechanical properties of titanium nickelide at high strain rate loading, Materials Science and Engineering A 378 (2004) 122-124.
    98. Sia Nemat-Nasser, Jeom-Yong Choi, Wei-Guo Guo, Jon B. Isaacs, Very high strain-rate response of a NiTi shape-memory alloy, Mechanics of Materials 37 (2005) 287-298.
    99. Sia Nemat-Nasser, Jeom-Yong Choi, et.al, High strain rate, small strain rate response of a NiTi shape memory alloy, Journal of Engineering Materials and Technology, 2005,127:144-156.
    100. Sia Nemat-Nasser, Wei-Guo Guo, Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures, Mechanics of Materials 38 (2006) 463-474.
    101. Grabe C., Brushns O. T., On the viscous and strain rate dependent behavior of polycrystalline NiTi, International Journal of Solids and Structures,2008,45,1876-1895.
    102. W.G. Guo, J. Su, Y. Su, S.Y. Chu, On phase transition velocities of NiTi shape memory alloys, Journal of Alloys and Compounds 501 (2010) 70-76.
    103. Liu Y., Xie Z., Van Humbeeckk J., Delaey L., Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys, Acta Materialia,1998, 46(12):4325-4338.
    104. Liu Y., Li Y. L., Van Humbeeckk J., High strain rate deformation of martensitic NiTi shape memory alloy, Scripta Materialia,1999,41(1):89-95.
    105. R. R. Adharapurapu, F. Jiang, K. S. Vecchio, et. al, Response of NiTi shape memory alloy at high strain rate:A systematic investigation of temperature effects on tension-compression asymmetry, Acat Materialia,2006,54,4609-4620.
    106. R. R. Adharapurapua, Fengchun Jiang, J. F. Bingertc, K. S. Vecchio, Influence of cold work and texture on the high-strain-rate response of Nitinol, Materials Science and Engineering A (2010)527:5255-5267.
    107.邓世春,TiNi合金的伪弹性行为的理论、实验及数值模拟研究,中国科学技术大学博士学位论文,2009.
    108.佟景伟,高丛峰,李鸿琦等,温度对高应变率扭-拉复合加载下形状记忆合金本构关系影响的研究,固体力学学报,2001,22(1):71-74.
    109. Leo P H, Shield T W, Bruno O P. Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires. Acta metall. mater.,1993,41(8):2477-2485.
    110. Shaw J A, Kyriakides S. Thermomechanical aspects of NiTi. J. Mech. Phys. Solids,1995, 43(8):1243-1281.
    111. Shaw J A. Material instabilities in a nickel-titanium shape memory alloy. PhD. dissertation, 1997, The University of Texas at Austin.
    112. Shaw J A, Kyriakides S. On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta mater.,1997,45(2):683-700.
    113. Shaw J A, Kyriakides S. Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension. International Journal of Plasticity,1998,13(10):837-871.
    114. Li Z Q and Sun Q P, Superelastic NiTi memory alloy micro-tube under tension-nucleation and propagation of martensite band Key Eng. Mater.2000,177-180 461-6.
    115. Li Z Q, Sun Q P. The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension. International Journal of Plasticity,2002,18:1481-1498.
    116. Feng, P. and Sun, Q. P., Experimental investigation on macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force. Journal of the Mechanics and Physics of Solids,2006,54:1568-1603.
    117. K. L. Ng, Q. P. Sun, Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes, Mechanics of Materials 38 (2006) 41-56.
    118. Berg B, Twist and stretch:combined loading of pseudoelastic NiTi tubing, PROCEEDINGS OF SMST,1997,443-448.
    119. J. C. Escobar and R. J. Clifton, On pressure-shear plate impact for studying the kinetics of stress-induced phase transformations, Materials Science and Engineering, A 170 (1993) 125-142
    120. J.C. Escobar and R.J. Clifton, Pressure-shear impact induced phase transformations in Cu-14.44A1-4.19Ni single crystals, Active Materials and Smart Structures,1995, SPIE Vol. 2427:186-197
    121. J.C. Escobar, R.J. Clifton, S.-Y. Yang, Stress-wave-induced martentitic phase transformations in NiTi, Shock Compression of Condensed Matter,1999, Proceedings of the American Physical Society, pp.267-270, ed. M. D. Furnish et. al.,2000.
    122. Dimitris C. Lagoudas, K. Ravi-Chandar, Khalid Sarh, Peter Popov, Dynamic loading of polycrystalline shape memory alloy rods, Mechanics of Materials 35(2003) 689-716.
    123. J. Niemczura, K. Ravi-Chandar, Dynamics of propagating phase boundaries in NiTi, Journal of the Mechanics and Physics of Solids,2006, Volume 54, Issue 10, pp.2136-2161.
    124.刘永贵,唐志平,崔世堂,TiNi合金冲击相变过程中的温度变化规律实验研究,爆炸与冲击(己录用)
    125. Abeyaratne R, Kim S J, Knowles J K. One-dimensional continuum model for shape memory alloys. Int. J. Solids Struct.,1993,31,2229-2249.
    126. Abeyaratne R, Kim S J, Knowles J K. Continuum modeling of shape memory alloys. Mechanics of Phase Transformations and Shape Memory Alloys, Brinson L C, Moran B (eds), ASME,1994, New York,59-69.
    127. Abeyaratne R, Knowles J K, On the driving traction acting on a surface of strain discontinuity on a continumm,J.Mech.Phys.Solids,1990,38:345-360.
    128. Abeyaratne R, Knowles J K, Kinetic relations and the propagation of phase boundaries in solids, Arch.Rat.Mech. Anal.1991,114:119-154.
    129. Abeyaratne R, Knowles J K. Dynamics of propagating phase boundaries:thermoelastic solids with heat conduction, Arch. Rational Mech.Anal.1994a,126:203-230.
    130. Abeyaratne R, Knowles J K, Dynamics of propagating phase boundaries:Adiabatic theory for thermoelastic solids, Physica D,1994b,79:269-288.
    131. Abeyaratne R, Knowles J K, Evolution of phase transitions:a continuum theory,2006, Cambridge university press.
    132. Chen Y. C., Lagoudas D. C., Impact Induced Phase Transformation in Shape Memory Alloys. Journal of the Mechanics and Physics of Solids,2000,48(2),275-300.
    133. Chen Y. C., Lagoudas D. C., Wave Propagation in shape memory alloy rods under impulsive loads, Proc. R. Soc. A,2005,461,3871-3892.
    134. Berezovski A, Maugin G A,Simulation of thermoelastic wave propagation by means of a composite wave propagation algorithm,J.Comp.Physics,2001,168:249-264.
    135. Berezovski A, Maugin G A, Thermoelasitc wave and front propagation, J. Thermal Stress, 2002,25:719-743.
    136. Berezovski A, Maugin G A, On the thermodynamic conditions at moving phase transition fronts in thermoelastic solids,J.Non-Equilib.Thermodyn.2004,29:37-51.
    137. Berezovski A, Maugin G A, On the velocity of a moving phase boundary in solids, Acat Mech,2005,179:187-196.
    138. Berezovski A, Maugin G A, Stress induced phase transition front propagation in thermoelastic solids, Eur. J. Mech.-A/Solids,2005,24:1-21.
    139. Berezovski A, Maugin G A, Numerical simulation of waves and fronts in inhomogeneous solids, World Scientific Publishing Co. Pte. Ltd.2008.
    140.唐志平,1992,材料的冲击相变,“冲击动力学进展”,王礼立等编,中国科学技术大学出版社,p117-154.
    141.唐志平,1994,冲击相变研究的现状和趋势,高压物理学报,8,14-22。
    142.王文强,唐志平,2000,冲击下宏观相边界的传播,爆炸与冲击,20,25-31。
    143. Dai X Y, Tang Z P, Xu S L, Guo Y B, Wang W Q,2004, Propagation of macroscopic phase boundaries under impact loading, Int J Impact Engineering,30,385-401.
    144.唐志平,戴翔宇,2005,一级可逆相变材料中冲击相边界的传播,“材料和结构的动态响应”,白以龙主编,中国科学技术大学出版社,p18-31。
    145. Guo Y B, Tang Z P, Zhang X H, et al,2005, Phase Transition Taylor Test, WIT Transactions on Engineering Sciences, Vol.49, Impact Loading of Lightweight Structures, M. Alves and N. Jones (Editors), p241-255.
    146.徐薇薇,唐志平,张兴华,2006,有限杆中不可逆相边界的传播规律及其应用,高压物 理学报,20,31-37。
    147. Tang Z P, Dai X Y,2006b, A preparation method of functionally graded materials with phase transition under shock loading, Shock Waves,15,447-452.
    148.戴翔宇,唐志平,2003,冲击相边界传播过程中梯度材料的形成,高压物理学报,17,111-116。
    149.徐薇薇,唐志平,张兴华,相变引起金属靶板异常层裂的应力波分析.高压物理学报,2009,23卷1期,17-23页.
    150.唐志平,戴翔宇,温度对冲击相边界传播的影响,爆炸与冲击,23(增刊)(2003),95-96。
    151.丁启财,固体中的非线性波,中国友谊出版公司,1985,北京。
    152.郭扬波,唐志平,徐松林,一种考虑静水压力和偏应力共同作用的相变临界准则,固体力学学报,2004,25(4),417-422。
    153.唐志平,相变梁、杆的冲击力学特性研究,国家基金(10672158),2007-2009。
    154.唐志平,卢艰春,张兴华,TiNi相变悬臂梁的横向冲击特性实验研究,爆炸与冲击,27(4),289-295,2007.
    155.张兴华,唐志平,李丹,徐薇薇,吴会民,张安跃,横向冲击载荷下伪弹性TiNi合金矩形悬臂梁结构响应的实验研究,实验力学,23(1),43-52,2008.
    156.吴会民,汪玉,唐志平,落锤冲击下伪弹性TiNi合金固支梁的响应特性研究.振动与冲击,28(03),pp40-45,2009.
    157.吴会民,唐志平,低速大质量冲击下伪弹性TiNi合金固支梁响应的数值研究.振动与冲击,28(08),pp6-10,2009.
    158. Xinghua ZHANG and Zhiping TANG, Experimental Study on the Dynamic Behavior of TiNi Cantilever Beams with Rectangular Cross-section under Transversal Impact, Int. J. of Impact Engineering.,2010, Volume 37, Issue 7, Pages 813-827.
    1.王志刚,黄克智.一种描述形状记忆合金拟弹性变形行为的本构模型.力学学报,1991,23(2):201-210.
    2. Abeyaratne R, Knowles J K. A continuum model of a thermoelastic solid capable of undergoing phase transitions. J. Mech. Phys. Solids,1993,41(3):541-571.
    3. Auricchio, F., Taylor, R.L.,1997. Shape-memory alloys:modelling and numerical simulations of the finite-strain superelastic behavior. Computer Methods in Applied Mechanics and Engineering 143 (1-2),175-194
    4. Qidwai M A, Lagoudas D C. On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material. International Journal of Plasticity,2000,16: 1309-1343.
    5.郭扬波,唐志平,徐松林,一种考虑静水压力和偏应力共同作用的相变临界准则。固体力学学报,2004,25(4):417-422.
    6.张兴华,TiNi合金相变悬臂梁的冲击响应研究,中国科学技术大学博士学位论文,2007.12,pp.43-46.
    7.邓世春,TiNi合金伪弹性行为的理论、实验及数值模拟研究,中国科学技术大学博士学位论文,2009.10,pp.42-56.
    8. Helm D., Haupt P. Thermomechanical behavior of shape memory alloys. Proceedings of SPIE, 2001,4333:302-313.
    9. McNaney J. M., Imbeni V., Jung Y., et al. An experimental study of superelastic effect in a shape memory Nitinol alloy under biaxial loading. Mechanics of Materials,2003,35(10): 969-986.
    10. Feng P., Sun Q. P., In situ profilometry for non-uniform strain field measurement of NiTi shape memory alloy microtubing under complex stress states. Smart Materials and Structures, 2007,16(1):S179-186.
    11. Ziolkowski A., Raniecki B., Miyazaki S. Stress induced martensitic transformation kinetics of polycrystalline NiTi shape memory alloy. Materials Science and Engineering A,2004, 378(1-2):86-91.
    12. Lim T. J., McDowell D. L. Mechanical behavior of an NiTi shape memory alloy under axial-torsional proportional and nonproportional loading. Journal of Engineering Materials and Technology,1999,121(1):9-18.
    13. F. Nishimura, N. Watanabe, T. Watanabe, K. Tanaka, Transformation conditions in an Fe-based shape memory alloy under tensile-torsional loads:martensite start surface and austenite start/finish planes, Materials Science and Engineering,1999, A(264),232-244.
    14. K. Tanaka, D. Ohnami, T. Watanabe, J. Kosegawa, Micromechanical simulations of thermomechanical behavior in shape memory alloys:transformation conditions and thermomechanical hystereses, Mechanics of Materials,2002,34,279-298.
    15. Lexcellent C, Vivet A, Bouvet C, Calloch S, Blanc P. Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys. Journal of the Mechanics and Physics of Solids,2002, 50:2717-2735.
    16. Lexcellent C, Blanc P. Phase transformation yield surface determination for some shape memory alloys. Acta Materialia,2004,52:2317-2324.
    17. Bouvet, C., Calloch, S., Taillard, K., Lexcellent, C.., Effect of multi-axial loading on pseudoelastic behavior of shape memory alloys. In International Conference of Heterogeneous Materials Mechanics (ICCHMM),24-29 June 2003, China.
    18. B. Raniecki, K. Tanaka, A. Ziolkowski. Testing and modeling of NiTi SMA at complex stress state. Materials Science Research International, Special technical publications,2 (2001), pp. 327-334
    19.杨杰,吴月华,形状记忆合金及其应用[M],中国科学技术大学出版社,1993,pp.75-76.
    20. Yasuhiro Mori, Eiji Matsumoto. Measurement of shear stress-strain curves of a Ti-Ni shape memory alloy from torsion tests of wires. AEM,2006,14(3):298-303.
    21. R. Mirzaeifar, R. DesRoches, A. Yavari. Exact solutions for pure torsion of shape memory alloy circular bars[J]. Mechanics of Materials,2010,42:797-806.
    1 李林安,佟景伟,李鸿琦,高丛峰,应变率历史对记忆合金在高应变率拉伸下力学行为影响的实验研究,实验力学,1998,13(4),457-462.
    2. Weinong W Chen, QiuPing Wu, Joseph H Kang, Nancy A Winfree, Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001-750 s-1,International Journal of Solids and Structures, Volume 38, Issues 50-51, December 2001,8989-8998.
    3. S. Belyaev, A. Petrov, A. Razov, A. Volkov, Mechanical properties of titanium nickelide at high strain rate loading, Materials Science and Engineering A 378 (2004) 122-124.
    4. Sia Nemat-Nasser, Jeom-Yong Choi, Wei-Guo Guo, Jon B. Isaacs, Very high strain-rate response of a NiTi shape-memory alloy, Mechanics of Materials 37 (2005),287-298.
    5. Sia Nemat-Nasser, Wei-Guo Guo, Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures, Mechanics of Materials 38 (2006) 463-474
    6. W.G. Guo, J. Sua, Y. Su, S.Y. Chu, On phase transition velocities of NiTi shape memory alloys, Journal of Alloys and Compounds 501 (2010) 70-76.
    7. Raghavendra R. Adharapurapu, Fengchun Jiang, Kenneth S. Vecchio, Response of NiTi shape memory alloy at high strain rate:A systematic investigation of temperature effects on tension-compression asymmetry, George T. Gray Ⅲ, Acta Materialia 54 (2006) 4609^620.
    8.佟景伟,高从峰,李鸿琦,王世斌,温度对高应变率扭-拉复合加载下形状记忆合金本构关系影响的研究。固体力学学报,2001,22(1),69-74.
    9. J. C. Escobar and R. J. Clifton, On pressure-shear plate impact for studying the kinetics of stress-induced phase transformations, Materials Science and Engineenng, A 170 (1993) 125-142
    10. J.C. Escobar and R.J. Clifton, Pressure-shear impact induced phase transformations in Cu-14.44A1-4.19Ni single crystals, Active Materials and Smart Structures,1995, SPIE Vol. 2427:186-197
    11. J.C. Escobar, R.J. Clifton, S.-Y. Yang, Stress-wave-induced martentitic phase transformations in NiTi, Shock Compression of Condensed Matter,1999, Proceedings of the American Physical Society, pp.267-270, ed. M. D. Furnish et. al.,2000.
    12.宁建国,王成,马大宝,爆炸与冲击动力学[M],国防工业出版社,2010,pp.397-443.
    13.王礼立,朱兆祥,应力波基础[M],国防工业出版社,2005,pp.52-60.
    14. Meyer L W, Manwaring S. Critical adiabatic shear strength of low alloyed steel under compressive loading[C]. Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena:Marcel Dekker Inc.1986,657-674.
    15. L.W. Meyer, E. Staskewitsch, A. Burblies, Adiabatic shear failure under biaxial dynamic compression/shear loading, Mechanics of Materials, Volume 17, Issues 2-3,1994, Pages 203-214.
    16. Couque H. A hydrodynamic hat specimen to investigate pressure and strain rate dependence on adiabatic shear band formation[J]. Journal De Physique IV France,2003,110:423-428.
    17. Couque H. Dynamic compression failure of two metal at 0.5 and 1.5 Gpa[C]//Jones N B, C.A., (ed.). the computational ballistics Ⅱ Cordoba, Spain:WIT Press,2005:239-248.
    18. J. Peirs, P. Verleysen, J. Degrieck, F. Coghe, The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6A1-4V, International Journal of Impact Engineering, Volume 37, Issue 6,2010, Pages 703-714.
    19. Rittel D, Lee S, Ravichandran G. A shear-compression specimen for large strain testing[J]. Experimental Mechanics,2002,42(1):58-64.
    20. Rittel D, Ravichandran G, Venkert A. The mechanical response of pure iron at high strain rates under dominant shear[J]. Materials Science and Engineering:A,2006,432(1-2):191-201.
    21. J. D. Campbell, A. R. Dowling, The behavior of materials subjected to dynamic incremental shear lading, Journal of the Mechanics and Physics of Solids,1970,18(1):43-63.
    22.崔云霄,卢芳云,林玉亮等.一种新的高应变率复合压剪实验技术[J].实验力学,2006,21(5):584-589.
    23. Lin Y, Lu F, Zhao P. A new split Hopkinson pressure-shear testing set[C]. DYMAT2009. Brussels:EDP Sciences,2009:583-589.
    24. B. Hou, A. Ono, S. Abdennadher, et al. Impact behavior of honeycombs under combined shear-compression. Part I:Experiments, International Journal of Solids and Structures,2011, 48:687-697
    25. B. Hou, Pattofatto S, Li Y L, et al. Impact behavior of honeycombs under combined shear-compression. Part II:Analysis[J]. International Journal of Solids and Structures,2011, 48:698-705.
    26. Zheng Wen, Xu Songlin, Cai Chao, Hu Shisheng, A Study of Dynamic Combined Compression-shear Loading Technique Based on Hopkinson Pressure Bar, Chinese Journal of Theoretical and Applied Mechanics, Vol.44(1),2012.
    27. Guo, Y. B., Tang, Z. P., and Xu, S. L.,2004, "A critical criterion for phase transformation considering both hydrostatic and deviatoric stress effects," Acta Mechanica Solida Sinica, 25(4), pp.417-422.
    1. Courant, R., and Hilbert, D.:Methods of Mathematical Physics. Interscience Publishers, New York, Vol.11(1962)
    2. Jeffrey, A., and Taniuti, T. Nonlinear Wave Propagation with Application to Physics and Magnetohydrodynamics[M]. Academic Press, New York(1964)
    3. Rakhmatulin, Kh. A. On the propagation of elastic-plastic waves owing to combined loadings[J]. J. Appl. Math, and Mech. (Prikladnaya Matematika I Mekhanika),22, pp. 1079-1088(1958)
    4. Cristescu, N. On the propagation of elastic-plastic waves for combined stresses[J]. J. Appl. Math. And Mech. (Prikladnaya Matematika I Mekhanika),23, pp.1605-1612(1959)
    5. Bleich, H. H., and Nelson, I. Plane waves in an elastic-plastic half-space due to combined surface pressure and shear[J]. Trans. ASME, Journal of Applied Mechanics,33, pp.149(1966)
    6. Clifton, R. J. An analysis of combined longitudinal and torsional plastic waves in a thin-walled tube[A]. Proceedings of the 5th U. S. National Congress of Applied Mechanics, pp.465-480(1966)
    7. Ting, T. C. T., and Nan, N. Plane waves due to combined compressive and shear stresses in a half space[J]. Trans. ASME, Journal of Applied Mechanics,36, pp.189-197(1969)
    8. Ting, T. C. T. A unified theory on elastic-plastic wave propagation of combined stress[A]. Proc. IUTAM Symp, Sawczuk, A., ed. On Foundations of Plasticity, pp.301-316(1972)
    9. Nowacki, W. K. Stress Waves in Non-Elastic Solids[M]. Pergamon Press Ltd., Oxford(1978)
    10. Lipkin, J., Clifton, R. J. An experimental study of combined longitudinal and torsional plastic waves in a thin-walled tube[A].12th International Congress of Applied Mechanics, Stanford University, pp.292-304(1968)
    11. Lipkin, J., Clifton, R. J. Elastic waves of combined stresses due to longitudinal impact of a pretorqued tube, Part 1:Experimental results and Part 2:Comparison of theory with experiment[J]. Journal of Applied Mechanics,37, pp.1107-1120(1970)
    12. Chhabildas, L. C., Swegle, J. W. Dynamic pressure-shear loading of materials using anisotropic crystals[J]. Journal of Applied Physics,51,4799(1980)
    13. Johnson, J. N. Shock propagation produced by planar impact in linearly elastic antisotropic media[J]. Journal of Applied Physics,42, pp.5522(1971)
    14. Abou-Sayed, A. S., and Clifton, R. J. Pressure shear waves in fused silica[J]. J. Appl. Phys., 47, pp.1762(1976)
    15. Gupta, Y. M. Shear measurements in shock-loaded solids[J]. Applied Physics Letters,29, pp. 694(1976)
    16. Gupta. Y. M., Keough, D. D., Walter, D. F., Dao, K. C., Henley, D., Urweider, A. Experimental facility to produce and measure compression and shear waves in impacted solids[J]. Review of Scientific Instruments,51(2), pp.183-210(1980)
    17. Kim, K. S., Clifton, R. J., Kumar, P. A combined normal-and transverse-displacement interferometer with an application to impact of y-cut quartz[J]. Journal of Applied Physics, 48(10), pp.4132-4139(1977)
    18. Duvall, G. E., and Graham, R. A. Phase transitions under shock loading[J]. Rev. Modern Phys., 49, pp.523-579(1977)
    19. Chen, Y. C., and Lagoudas, D. C. Impact induced phase transition in shape memory alloys[J]. J. Mech. Phys. Solids,48(2), pp.275-300(2000)
    20. Chen, Y. C., and Lagoudas, D. C. Wave propagation in shape memory alloy rods under impulsive loads[J]. Proc. R.Soc. A,461, pp.3871-3892(2005)
    21. Berezovski, A., and Maugin, G. A. Stress-induced phase-transition front propagation in thermoelastic solids[J]. Eur. J. Mech. A/Solids.,24, pp.1-21(2005)
    22.唐志平.冲击相变[M].科学出版社,北京(2008)
    23.王文强,唐志平.冲击下宏观相边界的传播[J].爆炸与冲击,20,pp.25-31(2000)
    24.徐薇薇,唐志平,张兴华.有限杆中不可逆相边界的传播规律及其应用[J].高压物理学报,20,pp.31-37(2006)
    25. Dai, Xiangyu, Tang, Zhiping, Xu, Songlin, Guo, Yangbo, and Wang, Wenqiang. Propagation of macroscopic phase boundaries under impact loading[J]. International Journal of Impact Engineering,30, pp.385-401(2004)
    26. Tang, Zhiping, and Dai, Xiangyu. A preparation method of functionally graded materials with phase transition under shock loading[J]. Shock Waves,15, pp.447-452(2006)
    27.郭扬波,唐志平,徐松林.一种考虑静水压力和偏应力共同作用的相变临界准则[J].固体力学学报,25(4),pp.417-422(2004)
    28. Ting, T. C. T. Plastic wave propagation in linearly work-hardening materials[J]. Journal of Applied Mechanics,40, pp.1045-1049(1973)
    29. Ting, T. C. T. On the initial slope of elastic-plastic boundaries on combined longitudinal and torsional wave propagation[J]. Journal of Applied Mechanics,36, pp.203-211(1969)
    30. Kan, Q. H., and Kang, G. Z. Constitutive model for uniaxial transformation ratcheting of super-elastic NiTi shape memory alloy at room temperature[J]. International Journal of Plasticity,26, pp.441-465(2010)
    31.张兴华.TiNi相变悬臂梁的冲击响应研究[D].博士学位论文,中国科学技术大学,pp.45(2007)
    32. Lexcellent, C., and Blanc, P. Phase transformation yield surface determination for some shape memory alloys[J]. Acta Materialia,52, pp.2317-2324(2004)
    33. Yuping Zhu, M. Guansuo, Dui A macro-constitutive model of polycrystalline NiTi SMAs including tensile-compressive asymmetry and torsion pseudoelastic behaviors[J]. International Journal of Engineering Science,48(12), pp.2099-2106(2010)
    34. Y. Kudoh, M. Tokonami, S.Miyazaki, K. Otsuka. Crystal structure of the mertensite in Ti-49.2 at.%Ni alloy analyzed by the single crystal X-ray diffraction method[J]. Acta Metall.,33, pp. 2049-2056(1985)
    35. Qidwai, M. A., and Lagoudas, D. C. On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material [J]. International Journal of Plasticity,16, pp. 1309-1343(2000)
    36. Auricchio, F., Taylor, R. L., and Lubliner, J. Shape-memory alloys:macromodelling and numerical simulations of the superelastic behavior[J]. Comput. Methods Appl. Mech. Eng., 146, pp.281-312(1997)
    1. J.C. Escobar and R.J.Clifton. On pressure-shear plate impact for studying the kinetics of stress-induced phase transformations. Materials Science and Engineering:A, Volume 170, Issues 1-2,1 October 1993, Pages 125-142.
    2. J.C. Escobar and R.J.Clifton. Pressure-shear impact-induced phase transformations in Cu-14.44A1-4.19Ni single crystals. Active Materials and Smart Structures, SPIE Vol.2427, 1995, pp.186-197
    3. J.C. Escobar, R.J.Clifton, S.-Y.Yang. Stress-wave-induced martensitic phase transformations in NiTi. Furnish,M.D., Chhabildas, L.C., and Hixson, R.S., (eds), Shock Compression of Condensed Matter, AIP Conference Proceedings #505, American Institute of physics, pp. 267-270(1999).
    4. J. Lipkin, R. J. Clifton, Plastic Waves of Combined Stress Due to Longitudinal Impact of a Pretorqued Tube Part 1:Experimental Results. Journal of Applied Mechanics,1970, 1107-1112.
    5. J. Lipkin, R. J. Clifton, Plastic Waves of Combined Stress Due to Longitudinal Impact of a Pretorqued Tube Part 2:Comparison of Theory with Experiment. Journal of Applied Mechanics,1970,1112-1120.
    6. J. C. C. Hsu, and R. J. Clifton, PLASTIC WAVES IN A RATE SENSITIVE MATERIAL—Ⅰ. WAVES OF UNIAXIAL STRESS. Journal of Mechanics and Physics of Solids,1974, 233-254.
    7. J. C. C. Hsu, and R. J. Clifton, PLASTIC WAVES IN A RATE SENSITIVE MATERIAL—Ⅱ. WAVES OF COMBINED STRESS. Journal of Mechanics and Physics of Solids,1974, 255-266.
    8. J. G(U|")LDENPFENNIG, R. J. CLIFTON, PLASTIC WAVES OF COMBINED STRESS BASED ON SELF-CONSISTENT SLIP MODELS, J. Mech. Phys. Solids,1980, Vol.28, pp. 201-219
    9. H. Fukuoka, T. Masui, Incremental impact loading of plastically prestressed aluminum by combined tension-torsion load, The Japan Society of Mechanical Engineers,1975, Vol.18, No.116, pp.104-113.
    10. H. Fukuoka, T. Hayashi, N. Tanimoto, T. Tanaka, Torsional impact loading of the thin-walled aluminum statically pre-tensioned, The Japan Society of Mechanical Engineers,1977, Vol.20, No.149,pp.1396-1401.
    11.乌时毅,佟景伟,李鸿琦.高应变率扭转SHB试验技术[J].天津大学学报,1994,27(3):277-283.
    12.杨兆海,高丛峰,梁丽杰,高温高应变率扭2拉复合加载下铁基记忆合金的本构关系,吉林大学自然科学学报,2000,No.3,65-67.
    13. Clifton, R. J. An analysis of combined longitudinal and torsional plastic waves in thin-walled tube[A]. Proceedings of the 5th U. S. National Congress of Applied Mechanics, pp:465-480 (1966)
    14. Ting, T. C. T. Plastic wave propagation in linearly work-hardening materials[J]. Journal of Applied Mechanics,40, pp.1045-1049(1973)
    15.李永池,朱林法,胡秀章,袁福平,曹结东,粘塑性薄壁管中复合应力波的传播特性研究,爆炸与冲击,2003,23(1):1-5.
    16.袁福平,复合应力波的传播特性和工程效应研究,中国科学技术大学硕士学位论文,2002,16-36.
    17. N. Tanimoto, An analysis of combined longitudinal and tosional elastic-plastic-viscoplastic waves in a thin-walled tube, Journal of Solid Mechanics and Materials Engineering,2007, 1(9):1112-1127.
    18. A.L. McKelvey, R.O. Ritchie, Fatigue-Crack Growth Behavior in the Superelastic and Shape-Memory Alloy Nitinol, METALLURGICAL AND MATERIALS TRANSACTIONS A, 2001,32A:731-743

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700