用户名: 密码: 验证码:
Cu-Cr-Zr系合金微观组织演变规律及合金元素交互作用机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cu-Cr-Zr系合金是一种典型的时效强化型合金,由于其具有高强度、良好的导电、导热等性能,广泛的应用于航空航天、电子电气、交通运输、新能源等领域。研究表明,在Cu-Cr合金中添加微量的Zr后,由于Cr与Zr之间存在交互作用,会使合金在时效过程中析出更加细小的Cr相和富Zr相,提高合金的强度。虽然目前关于Cu-Cr-Zr合金组织与性能的研究较多,对合金时效析出行为的研究也有一些结论。但是,时效过程中Cr与Zr交互作用机制尚不十分清楚。本文以上述背景为立题依据,采用结合试验结果-数据分析-理论研究的方法对Cu-Cr-Zr合金中Cr与Zr的交互作用机制进行了系统的研究。通过测定一系列Cu-Cr、Cu-Zr和Cu-Cr-Zr合金的抗拉强度和电导率,采用函数拟合和双因素试验的方差分析方法探明了Cu-Cr-Zr合金中Cr与Zr的交互作用方式。通过对Cu-Cr. Cu-Zr及Cu-Cr-Zr合金时效过程中析出相演变规律的研究,确定Cu-Cr-Zr合金中Cr与Zr交互作用的微观机制。
     通过对不同Cr、Zr含量的Cu-Cr, Cu-Zr和Cu-Cr-Zr合金的抗拉强度和电导率进行函数拟合和双因素试验方差分析,得到Cu-Cr和Cu-Zr合金在450-C时效,由每0.1at.%的Cr、Zr原子引起的强度增量分别为:16.27MPa和48.09MPa,相应的表达式为σcr=233.0+162.7Xcr和σZr=233.0+480.9Yzr;而每0.1at.%的Cr Zr原子引起合金电导率的降低值分别为:0.81%IACS和7.15%IACS,相应的表达式为λCr=100-8.1Xcr和λZr=100-71.5Yzr。由于Cu-Cr-Zr合金中Cr与Zr之间存在正向交互作用,使得Cu-Cr-Zr合金在450℃时效时,合金的极限强度、最大电导率分别大于对应相同Cr、 Zr含量引起的强度增值与纯铜强度的叠加和Cr、Zr引起的电导率降低量与纯铜电导率的叠加,且前后两者强度的差值约为5-25MPa,电导率的差值约为0.5-3%IACS.同时,还获得一种Cu-XCrCr-YzrZr (Xcr≤0.87at.%, YZr≤0.12at.%)合金经450℃时效处理后极限强度和最大电导率的估算表达式分别为σ=233.0+162.7Xcr+480.9YZr+64.9XcrYZr1/3MPa, λ100-8.1Xcr-71.5Yzr+8.94XcrYzrl/3%IACS,
     利用金相显微镜(OM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等分析手段研究了Cu-Cr-Zr系合金的铸态组织及均匀化过程中组织演变规律和物理、机械性能变化,发现Cu-Cr合金的铸态组织主要由网状的Cr枝晶和基体组成;Cu-Zr合金的铸态组织主要由共晶组织和基体组成,其中共晶组织是由基体和层片状的Cu5Zr相组成;而Cu-Cr-Zr合金的铸态组织是Cu-Cr和Cu-Zr两种合金铸态组织的叠加,并没有发现Cr2Zr相。在Cu-Cr-Zr合金的均匀化退火过程中,存在两个相变过程,即共晶组织的溶解和Cr相的析出。随着均匀化退火温度的升高和时间的延长,共晶组织逐渐溶解,Cr相的析出体积分数逐渐减小,合金的维氏硬度呈先降低后增加,最后趋于稳定的趋势:而合金的电导率则呈相反的规律,先增加而后下降。通过实验得出合理的均匀化退火制度为900℃×12h。
     研究了Cu-Zr合金的时效析出行为和强化机制。研究结果表明,固溶态Cu-Zr合金在450℃、500℃时效的维氏硬度与时效时间的关系曲线均呈单峰型,而合金电导率与时效时间的关系曲线呈先增大后趋于稳定的趋势。Cu-Zr合金在450℃时效的析出序列为:过饱和固溶体→Zr的原子团簇→与基体半共格的Cu5Zr相。面心立方结构的Cu5Zr相与基体的取向关系为[112]cu||[011]Cu5Zr,(111)cu||(111)Cu5Zr。通过沿不同晶带轴对析出相形貌的观察,得出Cu5Zr相的真实形貌为具有一定厚度的圆盘状析出物,且沿基体的{111}cu面析出。利用Orowan强化机制估算的屈服强度值167.4MPa与试验结果169.1MPa相近。
     研究了Cu-Cr和Cu-Cr-Zr合金的时效析出行为及析出相与基体的取向关系。研究结果表明,固溶态Cu-Cr和Cu-Cr-Zr合金在450℃、500℃时效的抗拉强度与时效时间的关系曲线均呈单峰型。固溶态Cu-Cr和Cu-Cr-Zr合金450℃、500℃时效的电导率与时效时间的关系曲线均呈先剧增,后缓慢增加趋于稳定的趋势。Cu-Cr和Cu-Cr-Zr合金450℃的时效过程中Cr相的析出系列为:过饱和固溶体→G.P区→f.c.c Cr相→有序化→b.c.c Cr相。富Zr相的析出过程为过饱和固溶体→Zr原子团簇→亚稳定CuCrZr相→Cu5Zr相。Cu-Cr和Cu-Cr-Zr合金时效过程中Cr相与基体取向关系的变化过程为:立方-立方(cube-on-cube)关系→Nishiyama-Wasserman(N-W)关系→Kurdjumov-Sachs (K-S)关系。
     通过微观组织分析研究和验证了Cr与Zr之间的相互作用机制。结果表明,在Cu-Cr-Zr合金中,Zr元素能加速Cr元素的偏聚和促进析出相的析出以及有序化过程,缩短合金到达峰时效的时间,并且能有效的减小PFZ的宽度,抑制Cr相的长大,增加时效后期析出相的稳定性,提高合金的综合性能。本文研究发现,在低合金化Cu-Cr-Zr合金中Cr元素能与Cu、Zr元素形成亚稳定CuCrZr相,随后会在时效过程中分解成面心立方结构的Cu5Zr相和体心立方结构的Cr相,延迟Cu5Zr相的形成并抑制其长大。
Age-hardened Cu-Cr-Zr system alloys have excellent mechanical properties, high thermal and electrical conductivity, which can be widely used in the field of aviation and navigation, electric power and transportation. The resluts show that the addition of Zr to Cu-Cr alloy can refine the Cr and Zr-rich phase and increase the tensile strength in the aging process, due to the interaction between Cr and Zr elements. Although the microstructure and properties of Cu-Cr-Zr system alloys have been investigated and some conclusions on aging behavior of alloys have been obtained, there are still some ambiguities about precipitation sequence of Cr precipitates and crystallographic structure of Zr-rich precipitates. Besides, the interaction mechanism between Cr and Zr elements is not clear. Thus, in the study, the interaction mechanism between Cr and Zr elements is studied by combining the experimental result, data analysis and theoretical research methods. The tensile strength and electrical conductivity of a series of Cu-Cr, Cu-Zr and Cu-Cr-Zr alloy are tested and the interaction of Cr and Zr is verified according to two-way analysis of variance. In addition, the mechanism of the interaction between Cr and Zr is analyzed by investigated the aging sequence of Cr and Zr-rich phase of Cu-Cr, Cu-Zr and Cu-Cr-Zr alloy.
     The tensile strength and electrical conductivity of a series of Cu-Cr, Cu-Zr and Cu-Cr-Zr alloy were analyzed by mathematical statistics and two-way analysis of variance. The results show that the added strength caused by addition of0.1at.%Cr and Zr is respectively16.27MPa and48.09MPa, corresponding equation ocr=233.0+162.7XCr and ozr=233.0+480.9Yzr, and decreased electrical conductivity caused by addition of0.1at.%Cr and Zr is respectively0.81%IACS and7.15%IACS, corresponding equation λcr=100-8.1Xcr and λzr-100-71.5Yzr. Additionally, since there is a positive interaction between Cr and Zr in the Cu-Cr-Zr alloy, the ultimate strength of Cu-Cr-Zr alloy is greater than superposition of strength increment caused by corresponding Cr and Zr and strength of pure copper, the electrical conductivity of Cu-Cr-Zr alloy has same change trend as the strength. The difference between before and later in ultimate strength and electrical conductivity are respectively5-25MPa and0.5-3%IACS. Meanwhile, the ultimate strength and electrical conductivity of a Cu-Xcr Cr-Yzr Zr can be respectively estimated by the equation of o=233.0+162.7Xcr+480.9YZr+64.9XCrYzr1/3MPa and λ=100-8.1Xcr-71.5Yzr+8.94XCrYzr1/3%IACS.
     The microstructure evolution and physical properties change of Cu-Cr-Zr system alloys were investigated in the homogenization process by OM, SEM and TEM, and the as-cast microstructure of Cu-Cr-Zr system alloys were studied as well. The results show that the as-cast microstructure of Cu-Cr alloy is mainly composed of Cu and a network Cr dendrite. The as-cast microstructure of Cu-Zr alloy is mainly comprised of Cu and eutectic structure which is made of Cu and CusZr phase with a fine lamellar structure. While the as-cast microstructure of Cu-Cr-Zr is comprehensive of as-cast Cu-Cr and Cu-Zr alloy, no Cr2Zr phase could be found. Dissolution of Zr-rich phases and precipitation of Cr phases are simultaneously found in the alloy during the homogenization. With the increasing of homogenization temperature and time, the volume fraction of the eutectic structure and Cr phase decrease gradually. The hardness of the alloy exhibite first a gradual decrease, then a rapid increase and finally an almost saturated value. While the electrical conductivity of the alloy showes a contrary tendency. The proper homogenizing process is900℃x12h.
     The aging behavior and strengthening mechanism of Cu-Zr alloy were investigated. The results showed that hardness-time curve of Cu-Zr alloy exhibites a single peak aged at450℃and500℃, while electrical conductivity-time curve showes a rapid increase first and trendes a stable value finally. The precipitation sequence of Cu-Zr alloy aged at450℃is supersaturated solid solution→Zr atomic cluster→semi-coherent CusZr phase. The orientation relationship with [112]Cu‖[011]Cu5Zr,(111)Cu‖(111)Cu5Zr existes between CusZr phase and matrix. Furthermore, the morphology of CusZr phase is identified as a kind of disk-precipitate with a certain thickness, whose habit plane is parallel to the{111}cu plane of the matrix. The yield strength aged at450℃for8h is calculated to be167.4MPa according to the Orowan strengthening, which is quite consistent with the experimental data (169.1MPa).
     The aging behavior of the Cu-Cr system alloys and the orientation relationship between Cr phase and matrix were studied. The results showed that the tensile strength-time curve of Cu-Cr system alloy exhibite a peak aged at450℃and500℃. For Cu-Cr alloy, the peak strength effect occurres after aging at450℃for8h. The addition of Zr to Cu-Cr alloy can shorten the time to the peak and increased the tensile strength in the aging process. The electrical conductivity of Cu-Cr system alloys exhibite first a gradual increase, then a rapid increase and finally an almost saturated value. The addition of Zr ato Cu-Cr alloy showe the same change rule of electrical conductivity as the Cu-Cr alloy. The precipitation sequence of Cr phase in the Cu-Cr and Cu-Cr-Zr alloys is supersaturated solid solution→G.P zones→f.c.c Cr phase→order f.c.c Cr phase→b.c.c Cr phase. The precipitation process of Zr-rich phase in the Cu-Cr-Zr alloy is supersaturated solid solution→Zr atomic cluster→metastable CuCrZr phase→CusZr phase. In the evolution of decomposition, the change process of the orientation relationship between Cr phase and matrix is cube-on-cube→Nishiyama-Wasserman→Kurdjumov-Sachs.
     The interaction mechanism between Cr and Zr on the aging process of Cr precipitates was investigated in detail in the Cu-Cr-Zr alloy. The results show that the addition of Zr to Cu-Cr alloy could accelerate the segregation of Cr elements and enhance the precipitation of Cr phase and the ordering process in the early aging stage. The Zr addition also shortens time to reach the peak, restrained the growth of Cr precipitates and decreases the width of precipitate free zone (PFZ) to increase the stability of Cr phases and the comprehensive properties of the alloy effectively. While the Cr, Zr and Cu elements forme a metastable CuCrZr phase, decomposed into Cu5Zr phase and Cr phase in the aging process, which postpones the formation of CusZr and restrained the growth of this phase.
引文
[1]李智成,薛剑锋,朱中平.电子元器件新型有色金属材料的生产和应用[M].南京:江苏科技技术出版社,1991:210-230.
    [2]Hidemichi F., Tatsuo S., Akihiko K. Effect of the addition of a small amount of phosphorous on precipitation in Cu-1%Fe alloy[J]. Nippon Kinzoku gakkaoshi, 1996,59(5):505-511.
    [3]铃木竹四,桑原万平,神原直男.Cu-Ni-Si系铜合金热处理的特性[J].伸铜技术研究会志,1999,38:291-297.
    [4]林正男.高强度高导电性引线框架用铜合金[J].伸铜技术研究会志,1988,27:45-48.
    [5]山根寿已.高强度高传导性铜合金设计基础[J].伸铜技术研究会志,1990,29:13-17.
    [6]刘平,顾海澄,曹兴国.铜基集成电路引线框架材料发展概况[J].材料开发与应用,1998,13(3):37-38.
    [7]Xie M., Liu J. L., Lu X. Y. Investigation on the Cu-Cr-Re alloys by rapid solidification[J]. Material Science and Engineering A,2001,304-306:529-533.
    [8]Metals Handbook. Alloy Phase Diagrams[M]. ASM Handbook,1990,3(10): 112-140.
    [9]赵冬梅,董企铭,刘平.探索高强高导铜合金最佳成分的尝试[J].功能材料,2001,15(5):18-20.
    [10]赵冬梅,董企铭,刘平.高强高导铜合金合金化机理[J].中国有色金属学报,2001,S2(11):21-24.
    [11]Fernee H., Nairn J., Atrens A. Precipitation hardening of Cu-Fe-Cr alloys[J]. Journal of Materials Science,2001,36:2721-2741.
    [12]Motohisa M. Performance of KFC-SH and KLF194-SHT copper alloys in High-strength and High-conductivity for lead frame [J]. Journal of the Japan Copper and Brass Research Association,1990,29:224-233.
    [13]Hiroshi Y. Cu-Fe-Ni-Mg alloy used in electronic material[J]. Journal of the Japan Copper and Brass Research Association,1984,23:109-115.
    [14]Rensei F. Development of copper in alloy lead frame [J]. Journal of the Japan Copper and Brass Research Association,1997,36:25-32.
    [15]Motohisa M. High-strength and high-conductivity alloy KLF210[J]. Journal ot the Japan Copper and Brass Research Association,1988,27:93-98.
    [16]赵冬梅,董企铭,刘平.高强高导合金成分设计[J].功能材料,2001,6:609-611.
    [17]赵冬梅,董企铭,刘平.铜合金引线框架材料的发展[J].材料导报,2001,15(5):25-27.
    [18]郑雁军,姚家鑫,李国俊.高强度高导电铜合金的研究现状及发展[J].材料导报,1997,11(5):52-55.
    [19]申玉田,崔春翔,孟凡武.高强度高导电率Cu-Al2O3复合材料的制备[J].金属学报,1999,62(8):888-892.
    [20]Yang H. W., Fan Z F. Study on morphology of chromium in Chilled Cu-0.14%-1.0%Cr alloys[J]. Acta Metallurgica Sinica (English Letters),2004,17(5): 655-660.
    [21]Bloom T. A. Rapid solidification of High-Conductivity Copper Alloys[D]. Chicago: Illinois Institute of Technology,1989.
    [22]中国金属学会编译组.物理冶金进展评论[M].北京,冶金工业出版社,1985:23-27.
    [23]Luo C. P., Dahmen V., Westmacott W. K. H. Morphology and crystallography of Cr precipitated in a Cu-0.33 wt% Cr alloy[J]. Acta. Metallurguica et Materialia,1994, 47(14):3855-3868.
    [24]孙立勇.WC对弥散强化铜C/WC组织与性能影响的研究[J].稀有金属,2003,27(1),108-111.
    [25]张毅,周延春Ti3SiC2弥散强化Cu:一种新型的弥散强化铜合金[J].金属学报,2000,6:662-666.
    [26]郭明星,汪明朴,李周,等.机械合金化制备不同粒子弥散强化铜合金的研究[J].稀有金属,2004,28(50):926-931.
    [27]李忠良,张新明.IC引线框架用高强高导CuCrZr合金时效特性研究[J].有色金属加工,2005,34(4):1-3.
    [28]Correia J. B., Davies H. A., Sellars C. M. Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys [J]. Acta materialia,1997,45(1):170-177.
    [29]冯端.金属物理学(第一卷)[M].北京,科学出版社,1987:221-230.
    [30]Gao H. Y., Wang J., Shu D. Effect of Ag on the aging characteristics of Cu-Fe in-situ composites [J]. Scripta Material,2006, (54):154-160.
    [31]孙世清.高强高导铜基复合材料[J].河北科技大学学报,2000,21(1):20-24.
    [32]田保红,赵冬梅,刘平,等.铜合金功能材料[M].北京:北京科学出版社,2004:34-45.
    [33]李华清,谢水生,米绪军.Cu-Cr-Zr合金线材织构的研究[J].稀有金属,2006,30(5):600-602.
    [34]Tahtinen S., Pyykkonen M., Karjalainen-Roikonen P. Effect of neutron irradiation on fraction toughness behavior of copper alloys[J]. Journal of Nuclear Materials, 1998,258-263:1010-1014.
    [35]田荣璋,王祝堂.铜合金及其加工手册[M].长沙:中南大学出版社,2002:312-330.
    [36]刘勇,刘平,董企铭,等.变形量对接触线用Cu-Cr-Zr-Y合金时效特性的影响[J].中国有色金属学报,2006,16(3):417-421.
    [37]杨欢,张延安Cu-Cr合金的制造与研究[J].中国有色金属学报,1998,8(2):234-237.
    [38]Chakrabarti D. J., Laughlin D. E. The Cr-Cu system[J]. Bulletin of Alloy Phase Digram,1984,5(1):59-68.
    [39]苏娟华.大规模集成电路用高强高导引线框架合金研究[D].西安:西北工业大学,2006.
    [40]Komen Y., Rezek J. Precipitation at coherency loss in Cu-0.35wt % Cr[J]. Metallurgical Transaction A,1975,6(3):549-551.
    [41]Morris M. A., Morris D. G. Microstructure and mechanical properties of rapidly solidified Cu-Cr alloy[J]. Acta Metallurgica 1987,35(10):2511-2522.
    [42]Stobrawa J., Ciura L., Rdzawski Z. Rapidly solidly strips of Cu-Cr alloys[J]. Scripta Material,1996,34(11):1759-1768.
    [43]Zhang D. L., Mihara K., Takaura E., et al. Effect of the amount of cold working and aging on the ductility of a Cu-15%Cr-0.2%Ti in-situ composition[J]. Mater ial Science and Engineering A,1999,26(1):99-105.
    [44]Fujii T., Nakazawa H., Kato M., et al. Crystallography and Morphology of Nanosized Cr Precipitates in a Cu-0.2%Cr alloy [J]. Acta materialia.2000,48: 1033-1045.
    [45]Knights R. W., Wilkes P. Precipitation of chromium in copper and copper-nickel base alloys[J]. Metallurgica Transaction,1973,4(10):2839-2393.
    [46]刘平,康布熙.快速凝固Cu-Cr合金时效析出的共格强化效应[J].金属学报,1999,35:561-564.
    [47]Jin Y., Adachi K., Takeuchi T., et al. Cu precipitation in Cr ribbon of Cu-15 wt% Cr in situ composite[J]. Applied. Physics. Letters.1996,69(10):1391-1392.
    [48]Jin Y., Adachi K., Takeuchi T., et al. Correlation between the electrical conductivity and aging treatment for a Cu-15 wt% Cr alloy composite formed in-suit[J]. Material Letters,1997,32:307-311.
    [49]Jin Y, Adachi K., Takeuchi T., et al. Microstructure evolution of a heavily cold-rolled Cu-Cr in suit metal matrix composite[J]. Materials Science and Engineering,1996, A212:149-156.
    [50]Jin Y., Adachi K., Takeuchi T., et al. Aging characteristics of Cu-Cr in situ composite[J]. Journal of Materials Science,1998,33,1333-1341.
    [51]Tang N. Y, Taplin D. M. R., Dunlop G. L. Precipitation and aging in high-conductivity Cu-Cr alloys with additions of zirconium and magnesium[J]. Material Science Technology,1985,1(4):270-275.
    [52]姜峰,陈小波,陈蒙,等.高强高导Cu-Cr-Zr系合金纳米析出相及其作用机理的研究进展[J].材料导报,2009,23(1):72-76.
    [53]Wang N., Li C. R., Du Z. M., et al. The thermodynamic re-assessment of the Cu-Zr system[J]. Calphad,2006,10:461-469.
    [54]Zeng K. J. Phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram[J]. Scripta Metallurgica Material,1995, (30):2009-2014.
    [55]Suzuki H. G., Mihara K., Takeuchi T. Effect of Zr on Aging characteristics and strength of Cu-Cr in-stiu composite[J]. Journal of the Japan Institute of Metals, 1998,62(3):238-245.
    [56]董志力,唐祥云,崛茂德Cu-Zr和Cu-Zr-Si合金的时效特性及冷变形时效析出的影响[J].金属学报,1989,25:A462-465.
    [57]Zhou S. H., Napolitano R. E. Phase stability for the Cu-Zr system:First-principles, experiments and solution-based modeling[J]. Acta Materialia,2010,58:2186-2196.
    [58]Katsunori Y, Young C. S., Toshiaki Y, et al. Thermodynamic investigation of the Cu-Zr system[J]. Journal of Alloys and Compounds,2008,452:73-79.
    [59]Ghosh G. First-principle calculation of structural energetics of Cu-TM (TM=Ti, Zr, Hf) intermetallics[J]. Acta Materialia,2007,55:3347-3374.
    [60]Zeng K. J., Mamalainen., Lukas H. L. A New Thermodynamic Description of the Cu-Zr system[J]. Journal of Phase Equilibria,1994,15(6):577-586.
    [61]Gierlotka W., Zhang K. C., Chang Y. P. Thermodynamic description of the binary Cu-Zr system[J]. Journal of Alloys and Compounds,2011,509:8313-8318.
    [62]Batra I. S. Microstructure and properties of a Cu-Cr-Zr alloy[J]. Journal of Nuclear Materials,2001,299:91-100.
    [63]刘平,康布熙,曹兴国.快速凝固Cu-Zr合金的析出特性及其对性能的影响[J].功能材料,1999,30:624-626.
    [64]Tenwick M. J., Davies H. A. Enhanced strength in high conductivity copper alloys[J]. Materials Science and Engineering,1998,98(2):543-546.
    [65]苏娟华,刘平,董企铭Cu-Cr-Zr合金时效强化机理[J].材料热处理学报,2005,26(6):62-65.
    [66]Huang F. X., Ma J. S. Analysis of phase in a Cu-Cr-Zr alloy[J]. Scripta Material, 2003,48:97-102.
    [67]Correia J. B., Davies H. A., Sellars C. M. Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys[J]. Acta Materialia,1997,45(1):177-190.
    [68]Holzwarth U., Stamm H. The precipitation behavior of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing[J]. Journal of Nuclear Materials,2003,279:31-45.
    [69]Batra I. S., Dey G K., Kulkarni U. D., et al. Precipitation in a Cu-Cr-Zr alloy[J]. Material Science and Engineering.2002, A356:32-36.
    [70]Suzuki H., Kanno M. Initial aging phenomena in copper-chromium alloys[J]. Journal of the Japan institute of Metals,1973,37(1):13-18.
    [71]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2010:230-245.
    [72]袁家伟,张奎,李婷,等Mg-4Zn-1Mn镁合金均匀化热处理及导热率研究[J].材料热处理学报,2012,33(4):27-32.
    [73]艾秀兰,杨军,权高峰.AZ31镁合金铸坯均匀化退火[J].金属热处理,2009,34(12):23-26.
    [74]彭建,樊世波,宋成猛.固溶处理对Mg-2.0%Zn-0.7%Mn合金热变形过程及变形组织的影响[J].热加工工艺,2009,38(14):8-11.
    [75]段红玲.ZM61镁合金均匀化与热变形行为的研究[D].重庆,重庆大学,2008.
    [76]李永军,张奎,李兴刚,等Mg-Y-Nd-Zr合金均匀化处理工艺及微观组织的研究[J].稀有金属,2008,32(6):679-683.
    [77]马志新,张家振,李德福,等.铸态Mg-Gd-Y-Zr镁合金均匀化工艺研究[J].特种铸造及有色合金.2007,27(9):659-662.
    [78]Rishi P., Alan L., Sam F., et al. Microstructure and properties of spray cast Cu-Zr alloys [J]. Material Science and Engineering A,1991, A145:243-253.
    [79]《重有色金属材料加工手册》编写组.重有色金属材料加工手册(第一分册)[M].北京:冶金工业出版社,1979:344-412.
    [80]Holzwarth U. On the recovery of the physical and mechanical properties of a Cu-Cr-Zr alloy subject to heat treatments simulating the thermalcycle of hot isostatic pressing[J]. Journal of Nuclear Materials,2000,79:19-30.
    [81]雷静果.新型高强高导Cu-Ag-Cr合金的组织性能及时时效动力学的研究[D].西安:西安理工大学,2007.
    [82]Appello M., Fenici P. Solution heat treatment of a Cu-Cr-Zr alloy[J]. Materials Science and Engineering A,1988,102(1):69-75.
    [83]彭丽军,熊柏青,解国良,等.时效态C17200合金的组织与性能[J].中国有色金属学报,2013,23(6):1516-1522.
    [84]Bonfield W., Edwards B. C. Precipitation hardening in Cu-1.81wt%Be-0.28wt%Co[J]. Journal of materials science,1974,9:398-408.
    [85]彭丽军,熊柏青,解国良,等.C17200合金时效早期相变行为[J].材料热处理学报,2013,34(8):42-46.
    [86]Ryoichi M., Tsutomu S., Toshiro S., et al. Precipitation processes in a Cu-0.9 mass% Be single crystal [J]. Materials transactions,2006,47(12):2925-2934.
    [87]胡庚祥,蔡殉.材料科学基础[M].上海:上海交通大学出版社,2001:112-130.
    [88]Lou M. Y. W., Grant N. J. Identification of CuSu5Zr phase in Cu-Zr alloys[J]. Metallurgical and Materials Transactions A,1984,15(7):1491-1493.
    [89]Su J. H., Dong Q. M., Liu P., et al. Research on aging precipitation in a Cu-Cr-Zr-Mg alloy[J]. Materials science and engineering A,2005,392(1-2): 422-426.
    [90]余方新,程建奕,沈斌Cu-Cr-Zr-Mg合金早期时效析出贯序[J].中国有色金属学报,2013,23(12):3360-3366.
    [91]Cheng J. Y., Shen B., Yu F. X. Precipitation in a Cu-Cr-Zr-Mg alloy during aging[J]. Materials Characterization,2013,81:68-75.
    [92]董志力,陈南平,藤谷涉,等.Cu基合金析出相的电子显微分析[J].电子显微学报,1990,1:53-57.
    [93]Frn N. The strains produced by precipitation in alloys[J]. Proceedings of the Royal Society A,175(963):519-538.
    [94]Frn N. The influence of elastic strain on the shape of particles segregating in an alloy[J]. Proceedings of the Royal Society A,52(1):86-97.
    [95]宋维锡.金属学[M].北京:冶金工业出版社.2012:130-140.
    [96]石德珂,朱维斗.材料物理[M].西安:西安交通大学.2006:120-130.
    [97]Chihiro W., Ryoichi M. Mechanical properties of Cu-Cr system alloys with and without Zr and Ag[J]. Journal of Material Science,2008,43:813-819.
    [98]Xie G.L., Wang Q. S., Mi X. J., et al. The precipitation behavior and strengthening of a Cu-2.0wt% Be alloy[J]. Materials Science and Engineering A,2012,558: 326-330.
    [99]Nie J. F. Effects of Precipitate Shape and Orientation on Dispersion Strengthening in Magnesium Alloys [J]. Scripta Materialia,2003,48(8):1009-1015.
    [100]刘平,康布熙,曹兴国,等.快速凝固Cu-Zr合金的析出特性及其对性能的影响[J].功能材料,1999,30(6):624-626.
    [101]Fickett F. R. A review of resistive mechanisms in aluminum[J]. Cryogenics,1971, 11(5):349-367.
    [102]Raeisinia B., Poole W. J. Electrical resistivity measurements:A sensitive tool for studying aluminum alloys[J]. Materials Science Forum,2006,519-521: 1391-1396.
    [103]Guo F. A., Xiang C. J., Yang C. X., et al. Study of rare earth elements on the physical and mechanical properties of a Cu-Fe-P-Cr alloy [J]. Materials Science and Engineering B,2008,147(1):1-6.
    [104]田莳,李秀臣.金属物理性能[M].北京:航空工业出版社,1994:113-123.
    [105]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社,1998:87-84.
    [106][美]A.G.盖伊,J.J.赫仑.物理冶金学原理[M].北京:机械工业出版社,1981:45-55.
    [107]唐仁政.物理冶金基础[M].北京:冶金工业出版社,1997:43-56.
    [108]Davis J. W., Kalinin G M. Material properties and design requirements for copper alloys used in ITER[J]. Journal of Nuclear Materials,1998,258-263:323-328.
    [109]Tu J. P. Effect of aging treatment on the electrical sliding wear behavior of Cu-Cr-Zr alloy[J]. Wear,2002,249:1021-1027.
    [110]齐卫笑,涂江平,杨友志.时效处理对低溶质Cu-Cr-Zr合金力学和电滑动磨损性能的影响[J].摩擦学学报,2001,21(6):405-409.
    [111]苏娟华.大规模集成电路用高强度高导电引线框架铜合金研究[D].西安:西北工业大学,2006.
    [112]Knights R. W,. Wilkes P. Precipitation of chromium in copper and copper-nickel base alloys[J]. Metallurgical Transaction,1973,4:2389-2393.
    [113]Weatherly G. C., Humble P., Borland D. Precipitation in a Cu-0.55 wt% Cr alloy. Acta Metallurgica,1979,27(12):1815-1828.
    [114]Komen Y., Rezek J. Precipitation at coherency loss in Cu-0.35 wt pet Cr[J]. Metallurgica Transacation A,1975,6(3):549-551.
    [115]Rdzawski Z., Stobrawa J. Structure of coherent chromium precipitates in aged copper alloys[J]. Scripta Metallurgical et Materialia,1986,20:341-344.
    [116]Kamijo T., Furukawa T., Watanabe M. Homogeneous nucleation of coherent precipitation in copper-chromium alloys[J]. Acta Metallurgical et Materialia, 1988,36:1763-1769.
    [117]Pearson W.B. A Handbook of Lattice Spacings and Structures of Metals and Alloys[J], Pergamon, Oxford,1964:531-533.
    [118]孟庆昌.透射电子显微学[M].哈尔滨:哈尔滨工业出版社,1998:210-230.
    [119]黄孝英.材料微观结构的电子显微学分析[M].北京:冶金工业出版社,2008:112-130.
    [120]余永宁.材料科学基础[M].北京:高等教育出版社,2006:331-350.
    [121]任硕,陈江华,刘吉梓,等.7150铝合金时效时晶界析出行为的研究[J].电子显微学报,2011,30(4-5,),444-450.
    [122]Munitz A., Cotler C. Aging impact on mechanical properties and microstructure of Al-6063[J]. Journal of material science,2000,35:2529-2538.
    [123]Ogura T. S., Hirosawa S., Sato T. Quantitative characterization of precipitate free zones in Al-Zn-Mg(-Ag) alloys by microchemical analysis and nanoindentation measurement[J]. Science and Technology of Advance Materials,2004,491-496.
    [124]Ogura T. S., Hirosawa S., Hirose A., et al. Effects of Microalloying Tin and combined addition of sliver and tin on the formation of precipitate free zone and mechanical properties in Al-Zn-Mg alloys[J]. Materials Transactions,2011,52(5): 900-905.
    [125]烟荣一,马场义雄.PFZ与晶界析出的控制方法[J].轻金属,1985,5:45-48.
    [126]Xia C. D., Zhang W., Kang Z. Y., et al. High strength and high electrical conductivity Cu-Cr system alloys manufactured by hot rolling-quenching process and thermomechanical treatments[J]. Material science and engineering A,2012, 538:295-301.
    [127]Cai B., Adams B. L., Nelson T. W. Relation between precipitate-free zone width and grain boundary type in 7075-T7 Al alloy[J]. Acta Materialia,2007, 1543-1553.
    [128]Abe M., Asano K., Fujiwara A. Influence of the precipitate-free zone width on the tensile properties of an Al-6Zn-1.2Mg alloy[J]. Metallurgical transactions,1973, 4:1502-1510.
    [129]Raghavan M. Microanalysis of precipitate free zones (PFZ) in Al-Zn-Mg and Cu-Ni-Nb alloys[J]. Metallurgical Transactions A,1980, 11(6):993-999.
    [130]Ryum N. Aging and plastic deformation of an Al-Mg-Zn alloy[J]. Acta Metallurgica, 1969,17(7):821-830.
    [131]Vasudevan A. K., Doherty R. D. Grain boundary ductile fracture in precipitation hardened aluminum alloys[J]. Acta Metallurgica,1987,35(6):1193-1219.
    [132]Park J. K., Ardell A. J. Microchemical analysis of precipitate free zone in 7075-A1 in the T6, T7 and RRA tempers [J]. Acta Metallurgica,1991,39:591-598.
    [133]Domont D., Deschamps A., Brechet Y. A model for predicting fracture mode and toughness in 7000 series aluminium alloys[J]. Acta Materialia,2004,52: 2529-2540.
    [134]Morgeneyer T. F., Starink M. J., Wang S. C., et al. Quench sensitivity of toughness in an Al alloy:Direct observation and analysis of failure initiation at the precipitate-free zone[J]. Acta Materialia,2008,56:2872-2884.
    [135]Ogura T, Hirosawa S., Cerezo A., et al. Atom probe tomography of nanoscale microstructures within precipitate free zones in Al-Zn-Mg(-Ag) alloys[J]. Acta Materialia,2010,58(17):5714-5723.
    [136]Embury D. J., Nicholson R. B. The nucleation of precipitate:The system Al-Zn-Mg[J].Acta Metallurgica 1965,13(4):403-417.
    [137]Lorimer G. W,. Nicholson R. B. Further results on the nucleation of precipitate in the Al-Zn-Mg system[J].Acta Metallurgica 1966,14(8):1009-1013.
    [138]Tanner L. E. Diffraction contrast from elastic shear strains due to coherent phases [J]. Philosophical Magazine,1966,14(127):111-130.
    [139]Huh S. H., Kim H. K., Park J. W., et al. Critical cluster size of metallic Cr and Mo nanoclusters[J]. Physical Review B,2000,62:2937-2943.
    [140]Liu P., Kang B. X., Cao X. G. Aging Precipitation and recrystallization of rapidly solidified Cu-Cr-Zr-Mg alloy [J]. Materials Science and Engineering A,1999,265: 262-267.
    [141]Qi W. X. Microstructure and tribological behavior of a peak aged Cu-Cr-Zr alloy[J]. Materials Science and Engineering A,2003,343:89-96.
    [142]Batawi E., Morris D. G., Morris M. A. Effect of small alloying additions on behavior of rapidly solidified Cu-Cr alloys[J]. Materials Science and Technology, 1990,6:892-899.
    [143]慕思国.高强高导Cu-Cr-Zr系合金制备新工艺及理论研究[D].长沙:中南大学,2008.
    [144]Chbihi A., Sauvage X., Blavette D. Atomic scale investigation of Cr precipitation in copper[J]. Acta materialia,2012,60:4575-4585.
    [145]Aguilar C, Martinez V. P., Palacios J. M., et al. A thermodynamic approach to energy storage on mechanical alloying of the Cu-Cr system[J]. Scripta Materialia,2007,7:213-216.
    [146]张蕾Cu-Cr合金沉淀析出机制与理论研究[D].昆明:昆明理工大学,2006.
    [147]Niessen A. K., Boer F. R., Boom R., et al. Model predictions for enthalpy of transition metal alloys (Ⅱ)[J]. Calphad,1983,7(1):51-70.
    [148]王现英,方铭,李青会,等.新型磁存储介质L10有序FePt薄膜研究综述[J].材料导报,2005,19(6):91-94.
    [149]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社,1998:89-92.
    [150]Batawi E., Morris D., Morris M. Effect of small alloying additions on behavior of rapidly solidified Cu-Cr alloys[J]. Materials Science and Technology,1990, 6:892-899.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700