用户名: 密码: 验证码:
采空区瓦斯与煤自燃复合灾害防治机理与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤矿开采深度的增加,瓦斯涌出量增大,瓦斯灾害日趋严重;同时地应力增加,煤岩破碎量增大,地温升高,煤自燃灾害也越发凸显。两种灾害共生的复合型灾害已成为煤矿重特大事故的普遍模式。因此,研究采空区瓦斯与煤自燃复合灾害的防治机理及技术具有十分重要的意义。
     瓦斯与煤自燃复合灾害特点的普遍共识是相互影响、相互制约,但现场实施时,要二者兼顾,易顾此失彼。因此,须依据瓦斯与煤自燃两种灾害的特点以及各种灾害的防治方法,研究耦合影响的关键因素,确定防治机理与方法。由于瓦斯和煤自燃灾害防治方法的多样性,相关研究仅针对某个实例进行分析研究,没有建立适合瓦斯与煤自燃复合灾害的预测、预报以及治理的综合防治技术。
     本文从两种灾害的特性和防治方法着手,认为采空区瓦斯与煤自燃复合灾害的防治焦点在于控制采空区煤自燃,杜绝瓦斯爆炸的引火源,但防治重点是瓦斯。以自燃带分布为耦合影响关键因素,在防治瓦斯的基础上研究与防治煤自燃的相互作用和相互影响。瓦斯方面,依据开采条件和瓦斯涌出量预测,合理确定风量、通风形式和推进速度,优选抽采方法,高效治理瓦斯;煤自燃方面,通过实验确定煤自燃特性,在防治瓦斯的基础上从控氧和控时间两个方面制定防火方法。并由此确立了以预测、预报为主的复合灾害防治方法。
     复合灾害预测方面,依据现场实测建立CFD模型,进行数值模拟预测研究,从通风、抽采和防火三个方面分别模拟分析了不同风量和通风形式,各种大流量抽采方法,如尾抽、高抽巷、地面钻井、高位钻孔和埋管抽采,以及惰化防火对采空区自燃“三带”分布的影响,从而确定防治自燃发火的最低推进速度,并依此优化通风与瓦斯抽采方法,完善防火措施。
     复合灾害预报方面,通过实验获取指标气体和临界温度作为分析判定煤体自燃程度的依据,由束管监测的氧浓度分布对数值模拟模型参数进行修正。
     基于复合灾害防治方法,试验研究了高瓦斯易自燃煤层惰化防火、高瓦斯强抽采工作面防火和高瓦斯易自燃工作面超大火区均压灭火,验证了复合灾害防治效果,建立了适合瓦斯与煤自燃复合灾害的预测、预报和治理的综合防治技术。
Along with the increasing mining depth and gas emission, gas disaster is becoming increasingly serious day by day; concurrently, geostress, coal crushing amount and earth temperature increases, coal spontaneous combustion is also increasingly prominent. The integrated disaster has become a common pattern in severe and great casualties of coal mine accidents. Therefore, it will be of great significance to study the control mechanism and technology for integrated disaster of goaf gas and coal spontaneous combustion.
     For the characteristic of integrated disaster of gob gas and coal spontaneous combustion, there is a consensus that these two kinds of disasters are interact and mutual restrict, so it is important to care about the both when implement through the scene, although it is liable to neglect one or the other. Therefore, it should be according to the characteristics of gob gas and coal spontaneous combustion and control method of various disasters, study the critical factors of coupling effect and confirm the control mechanism and method. Due to the control method of gas and coal spontaneous combustion is methodological, the correlational research is for a certain of living example only, it does not establish an integrated control technique with prediction, forecast and control method for gas and coal spontaneous combustion.
     This study sets about from the characteristics and control method of these two kinds of disasters, it believes that prevention and control method should be focus on controlling goaf coal spontaneous combustion and the ignition source of gas explosion. However, the key point is gas, the distribution of self ignition zone regarded as the key factor of coupling effect, to study and prevention the interact and mutual restrict of coal spontaneous combustion on the basis of prevention and control gas. About gas, according to mining conditions and gas emission, the air volume, ventilated style and advance speed is determined rationally, and a preferred extracting method is selected for efficient gas control. About coal spontaneous combustion, its specialty is confirmed by experiment, the fire protection method is determined through control oxygen or time on the basis of prevention and control gas, and thus a prediction and forecast-based prevention and control method of integrated disaster is established.
     For the prediction of integrated disaster, CFD model according to field measurement is developed for prediction study of numerical modeling. From the aspect of ventilation, drainage and fire protection, different air volume, ventilated style and many heavy flow extraction methods, such as the tail drainage, high drainage roadway, surface wells and buried pipe extraction are analyzed, the effect of inerting fire protection for the distribution of self ignition zones is analyzed as well. Thus the minimum advance speed of protecting slef ignition is determined to optimize the ventilation and gas extraction method, so as to perfect the fire protection method.
     For the forecast of integrated disaster, the index gas and stagnation temperature is taken by experiment as the basis of analysis and judge the degree of coal spontaneous combustion, and the parameters of numerical modeling are amended according to the oxygen concentration distribution through the pipes observation.
     Based on the prevention and control method of integrated disaster, the inerting fire protection in easily spontaneous coal seam, the working face of high gas emission and drainage, and fire fighting by equal pressure in easily spontaneous coal seam of high gas are practised. The control effect of integrated disaster is validated, and an integrated control technique with prediction, forecast and control method for gas and coal spontaneous combustion is establised.
引文
[1]中国煤炭产业发展现状与趋势.中国煤炭资源网.2010
    [2]余陶.低透气性煤层穿层钻孔区域预抽瓦斯消突技术研究[D].安徽建筑工业学院,2010.
    [3]袁亮,薛俊华.低透气性煤层群无煤柱煤与瓦斯共采关键技术[J].煤炭科学技术,2013,41(1):5-11.
    [4]事故快报.国家煤矿安全监察局http://www.chinacoal-safety.gov.cn/mkaj/
    [5]周福宝.瓦斯与煤自燃共存研究(Ⅰ):致灾机理[J].煤炭学报,2012.
    [6]周福宝,夏同强,史波波.瓦斯与煤自燃共存研究(Ⅱ):防治新技术[J].煤炭学报,2013,38(3):353-360.
    [7]宋万新,杨胜强,蒋春林,等.含瓦斯风流条件下煤自燃产物CO生成规律的实验研究[J].煤炭学报,2012,37(8):1320-1325.
    [8]Beamish B B. Factors affecting hot spot development in bulk coal and associated gas evolution[J].Australasian Institute of Mining and Metallurgy Publication Series, 2005(2):187-193.
    [9]秦波涛,张雷林,王德明,等.采空区煤自燃引爆瓦斯的机理及控制技术[J].2009.
    [10]李宗翔,吴志军,王振祥.采空区遗煤自燃升温过程的数值模拟及应用[J].安全与环境学报,2004.12,Vol4,No.6.
    [11]李宗翔,许端平,刘立群.采空区自然发火”三带”划分的数值模拟[J].辽宁工程技术大学学报(自然科学版).2002,21(5):545-548.
    [12]李宗翔.高瓦斯易自然采空区瓦斯与自燃耦合研究[D].辽宁工程技术大学,2007.
    [13]李宗翔,王天明,贾进章.矿井巷道中外源气体运移-弥散过程仿真研究[J].中国矿业大学学报,2013,5:005.
    [14]Dziurzynski Waclaw. Underground fire under conditions of methane inflow[J]. Archives of Mining Sciences,1991,36(3):209-225.
    [15]Yuan L, Smith A C. CO and CO2emissions from spontaneous heating of coal under different ventilation rates[J]. International Journal of Coal Geology,2011,88(1):24-30.
    [16]Yuan Liming,Smith Alex C,Brune Jurgen F. Computational fluid dynamics study on the ventilation flow paths in long wall gobs.Proceedings and Monographs in Engineering,Water and Earth Sciences[C].2006:591-598.
    [17]Yuan L, Smith A C. The effect of ventilation on spontaneous heating of coal[J]. Journal of Loss Prevention in the Process Industries,2012,25(1):131-137.
    [18]Boleslav Taraba, Zdenek Michalec. Effect of longwall face advance rate on spontaneous heating process in the gob area-CFD modelling [J].Fuel,2011.
    [19]褚廷湘,刘春生,余明高,等.高位巷道瓦斯抽采诱导浮煤自燃影响效应[J].采矿与安全工程学报,2012.
    [20]余明高,赵志军,褚廷湘,等.瓦斯抽采对采空区浮煤自燃影响及防治措施[J].河南理工大学学报:自然科学版,2011,30(5):505-509.
    [21]邓军,夏海斌,郑忠亚,等.高瓦斯综放工作面采空区自燃危险区域分析[J].煤矿安全,2011,42(2):122-124.
    [22]邓军,张燕妮,徐通模,等.煤自然发火期预测模型研究[J].煤炭学报,2004,29(5):569-571.
    [23]杨胜强,程涛,徐全,等.尾巷风压及风量变化对采空区自然发火影响的理论分析与数值模拟[J],煤炭学报,2011,36(2):308-312.
    [24]卢平,张士环,朱贵旺,等.高瓦斯煤层综放开采瓦斯与煤自燃综合治理研究[J].中国安全科学学报,2004,14(4):68-74.
    [25]王俊峰,邬剑明,靳钟铭.一种预测采空区自燃危险区域的新方法——CFD技术的应用[J].煤炭学报,2009,34(11):1483-1488.
    [26]邵昊.蒋曙光,王兰云,等.尾巷对采空区煤自燃影响的数值模拟研究[J].采矿与安全工程学报,2011,28(1):45-50.
    [27]张玫润,杨胜强,程健维,等.一面四巷高位瓦斯抽采及浮煤自燃耦合研究[J].中国矿业大学学报,2013,42(004):513-518.
    [28]张春,题正义,李宗翔.内含瓦斯抑制条件下极限平衡区顶煤自燃模拟[J].中国矿业大学学报,2013,42(1).
    [29]秦波涛,鲁义,殷少举,等.近距离煤层综放面瓦斯与煤自燃复合灾害防治技术研究[J].采矿与安全工程学报,2013.
    [30]杨永辰,孟金锁,王同杰,等.采煤工作面特大瓦斯爆炸事故原因分析[J].煤炭学报,2007,32(7):734-736.
    [31]焦宇,段玉龙,周心权,等.煤矿火区密闭过程自燃诱发瓦斯爆炸的规律研究[J].煤炭学报,2012,37(5):850-856.
    [32]何敏.煤矿井下封闭火区的燃烧状态与气体分析研究[D].中国矿业大学(北京),2013.
    [33]许满贵,徐精彩.工业可燃气体爆炸极限及其计算[J].西安科技大学学报,2005,25(2).
    [34]徐景德.矿井瓦斯爆炸冲击波传播规律及影响因素的研究[D].北京:中国矿业大学,2002.
    [35]周心权,吴兵.煤矿井下瓦斯爆炸的基本特性[J].中国煤炭,2002,28(9):8-11.
    [36]赵潮锋.煤矿特别重大事故致因机理研究[D].辽宁工程技术大学,2010.
    [37]徐精彩,文虎,邓军,等.煤自燃极限参数研究[J].火灾科学,2000,9(2):14-18.
    [38]李宗翔,李钢钢,贾进章.易自燃煤层放顶煤开采工作面合理长度分析[J].中国矿业 大学学报2010.
    [39]袁亮,薛俊华,张农,等.煤层气抽采和煤与瓦斯共采关键技术现状与展望[J].煤炭科学技术,2013,41(009):6-11.
    [40]卢平,方良才,童云飞,等.深井煤层群首采层Y型通风工作面采空区卸压瓦斯抽采与综合治理研究[J].采矿与安全工程学报,2013.
    [41]肖峻峰,张德万,卢平,等.走向高抽巷布置参数分析与瓦斯抽采工程实践[J].天然气工业,2012,32(005):81-84.
    [42]袁亮,郭华,沈宝堂,等.低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J].煤炭学报,2011,36(3):357-365.
    [43]周福宝.沿空巷道喷涂防灭火新材料及应用[J].煤矿安全,2009.
    [44]周福宝,王德明,章永久,等.含氮气三相泡沫惰化火区的机理及应用研究[J].煤炭学报,2005,30(4):443-446.
    [45]董希琳,陈长江,郭艳丽.煤炭自燃阻化文献综述关[J].消防科学与技术,2002(2).
    [46]毛占利.高瓦斯煤层自燃火灾防治技术研究[D].西安:西安科技大学,2006.
    [47]煤层自燃胶体防灭火理论与技术[M].煤炭工业出版社,2004.
    [48]胡千庭.预防煤矿瓦斯灾害新技术的研究[J].矿业安全与环保,2006,33(5):1-7.
    [49]秦玉金,姜文忠,王学洋.采空区瓦斯爆炸(燃烧)点火源的确定[J].煤矿安全,2005,36(7):35-37.
    [50]罗海珠,梁运涛.煤自然发火预测预报技术的现状与展望[J].中国安全科学学报,2003,13(3):76-78.
    [51]邓军,徐精彩.煤自燃性参数的测试与应用[J].燃料化学学报,2001,29(6):553-556.
    [52]陆伟,王德明,仲晓星,等.基于活化能的煤自燃倾向性研究[J].2006.
    [53]文虎,许满贵,李莉,等.煤自燃的热量积聚过程及影响因素分析[J].辽宁工程技术大学学报:自然科学版,2003,22(2):151-154.
    [54]邓军,徐精彩,陈晓坤.煤自燃机理及预测理论研究进展[J].辽宁工程技术大学学报:自然科学版,2003,22(4):455-459.
    [55]徐精彩,文虎.综放面采空区遗煤自燃危险区域判定方法的研究[J].中国科学技术大学学报,2002,32(6):672-677.
    [56]文虎.煤自燃过程的实验及数值模拟研究[D].西安:西安科技大学,2003.
    [57]肖旸,王振平,马砺,等.煤自燃指标气体与特征温度的对应关系研究[J].煤炭科学技术,2008(6).
    [58]朱令起,周心权,谢建国,等.自然发火标志气体实验分析及优化选择[J].采矿与安全工程学报,2009,25(4):440-443.
    [59]袁树杰.用火灾指标及热电偶测温法分析采空区煤炭自燃[J].煤矿安全,2001 (5):7-9.
    [60]程卫民,王振平,辛嵩,等.煤巷煤自燃火源红外探测的影响因素及判别方法[J].煤炭科学技术,2003,31(8):37-40.
    [61]邬剑明.煤自燃火灾防治新技术及矿用新型密闭堵漏材料的研究与应用[D].太原:太原理工大学,2008.
    [62]于庆.分布式光纤测温技术在煤矿中的应用[J].工矿自动化,2012(4):5-8.
    [63]朱红青,王海燕.氧浓度对松散煤氧化速率影响的实验研究[J].煤炭工程,2013,45(8):]10-112.
    [64]马汉鹏,陆伟,王德明,等.煤自燃过程物理吸附氧的研究[J].煤炭科学技术,2006,34(7):26-29.
    [65]王继仁,邓存宝.煤微观结构与组分量质差异自燃理论[J].煤炭学报,2007,32(12):1.
    [66]何萍,唐修义.煤氧化过程中气体的形成特征与煤自燃指标气体选择[J].煤炭学报,1994,19(6):635-643.
    [67]钱鸣高,缪协兴.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230.
    [68]许家林,钱鸣高.覆岩关键层位置的判别方法[J].中国矿业大学学报,2000,29(5):463-467.
    [69]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122-126.
    [70]许家林,刘华民.采空区瓦斯抽放钻孔布置的研究[J].煤炭科学技术,1997,25(4):28-29.
    [71]袁亮.卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J].煤炭学报,2009,34(1):1-8.
    [72]袁亮,郭华,李平,等.大直径地面钻井采空区采动区瓦斯抽采理论与技术[J].煤炭学报,2013,38(1).
    [73]侯俊领,谢广祥,唐永志,等.厚冲积层薄基岩采场围岩三维力学特征[J].煤炭学报,2013,38(12).
    [74]孔祥言.高等渗流力学[M].中国科学技术大学出版社,1999.
    [75]黄延章,杨正明,何英,等.低渗透多孔介质中的非线性渗流理论[J].力学与实践,2013,35(5):1-8.
    [76]李子文,林柏泉,郝志勇,等.煤体多孔介质孔隙度的分形特征研究[J].采矿与安全工程学报,2013.
    [77]段品佳,王芝银.煤岩孔隙率与渗透率变化规律试验研究[J].地下空间与工程学报,2013,6:011.
    [78]傅钻谋,马廷文·计算流体力学[M].北京:高等教育出版社,2002
    [79]蒋曙光.综放场流场数学模型及数值计算[J].煤炭学报,1998,23(3):258-261.
    [80]王福军.计算流体力学分析:CFD软件原理与应用[M].北京,清华大学出版社2004.
    [81]Fluent 14.0 Theory Guide[J]. Ansys Inc,2013.
    [82]Fluent14.0 User's Guide[J]. User Inputs for Porous Media,2013:6.
    [83]李宗翔,衣刚,武建国,等.基于“O”型冒落及耗氧非均匀采空区自燃分布特征[J].煤炭学报,2012,37(3):.484-489.
    [84]邓军,徐精彩,文虎.采空区自然发火动态数学模型研究[J].湘潭矿业学院学报,1998,13(1):11-16.
    [85]周西华.双高矿井采场自燃与爆炸特性及防治技术研究[D].辽宁工程技术大学,2006.
    [86]秦汝祥.高瓦斯高产工作面立体_W_型空气动力学系统研究[D].安徽理工大学,2008.
    [87]车强.采空区气体三维多场耦合规律研究[D].中国矿业大学(北京),2010.
    [88]张国枢,谭允祯,陈开岩.通风与安全学[J].2000.
    [89]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1996:47-126
    [90]余陶,卢平,孙金华,等.基于钻孔瓦斯流量和压力测定有效抽采半径[J].采矿与安全工程学报,2012.
    [91]谢军.综放采空区三维空间自然发火规律研究[D].青岛:山东科技大学,2008.
    [92]谢军,薛生.综放采空区空间自燃三带划分指标及方法研究[J].煤炭科学技术,2011,39(1):65-68.
    [93]李宗翔,刘立群.采空区自然发火“三带”划分的数值模拟[J].辽宁工程技术大学学报:自然科学版,2002,21(5):545-548.
    [94]安德森,颂平,赵淼.计算流体力学基础及其应用[M].机械工业出版社,2007.
    [95]Fluent Udf Manual[J]. Fluent Inc., New Hampshire,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700