用户名: 密码: 验证码:
机床用碳纤维增强树脂矿物复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国在精密机床结构设计与运动控制等方面发展迅速,但大部分基础构件仍然采用铸铁或钢材焊接结构制成,制备周期较长,材料的减振特性已接近于极值,并且生产过程污染严重,研究开发具有优良阻尼性能的基础构件材料对于推动机械工业的技术进步具有重要的理论与工程实际意义。
     树脂矿物复合材料以花岗石颗粒为骨料,以有机树脂作为粘结剂并选择添加部分增韧增强辅助组分制备而成,配合使用精密模具与预埋件设计工艺可在室温下一次浇铸成型,适用于制备精密机床的床身、底座等基础构件,其生产过程无需烧结,对环境基本无污染。
     与铸铁相比,树脂矿物复合材料的阻尼减振性能优异,但强度较低,耐热膨胀性能较差,在一定程度上限制了其大量推广应用。本文提出添加碳纤维并配合骨料级配优化增强树脂矿物复合材料,在保证其原有高阻尼特性的基础上提高材料的强度与耐热膨胀性能为本文研究重点,主要研究内容包括:①树脂矿物复合材料的组分优选与制备工艺优化;②树脂矿物复合材料的分形骨料级配与纤维增强机理;③树脂矿物复合材料的能量损耗机理与阻尼表征;④树脂矿物复合材料的碳纤维阻胀机理与热膨胀性能;⑤树脂矿物复合材料精密车床床身结构优化。
     基于树脂矿物复合材料的组分特征与反应机理优选树脂系统、骨料与辅助组分等,结合宏观特性表征获得各组分的基础配比范围。系统分析材料的长期性能变化规律,建立气泡的负压微圆柱模型,优化材料的制备与固化工艺,有效降低了树脂矿物复合材料的制备周期,材料七天强度达到149.92MPa。
     通过统计分析与简化假设,综合考虑不同粒径骨料的分散堆积规律,结合颗粒填充理论确定最终的关键控制筛孔尺寸。基于分形理论获得更为精确的骨料级配配方与评价参量,配合颗粒流仿真与图像处理技术验证了堆积空隙率的变化趋势,仿真结果与实测值基本一致,可作为后续级配设计的预验证环节。建立骨料的微观应力传递模型,结合材料抗压强度测试结果验证了上述模型的合理性,结果表明,随着最大骨料粒径的增加,骨架强度升高,树脂用量减少,骨料颗粒内部的缺陷与微裂纹将对复合材料的强度产生一定的影响。基于剪滞理论系统研究碳纤维的应力传递机制,分别建立了纤维断裂与端部脱粘情况下的应力重新分布模型,结合纤维增强实验获得了碳纤维的最佳用量范围。
     基于典型粘弹性材料的能量损耗机理获得树脂矿物复合材料的本征与界面阻尼表征因子,引入纤维方向效能系数定义,建立了树脂矿物复合材料的能量损耗机理模型。系统分析了树脂、骨料、增强纤维以及三者界面对应的材料阻尼产生机理,推导了微观界面滑移耗能公式,结果表明,增强纤维引入的大量界面将对树脂矿物复合材料阻尼性能产生重要影响。基于单因素实验获得了材料组分、骨料级配、纤维参量等对树脂矿物复合材料阻尼的影响规律,相比于其它因素,树脂的本征阻尼对树脂矿物复合材料的减振性能起主要作用,阻尼比最大值为目前常用HT200铸铁材料的十倍以上,合理的纤维用量与界面控制能够进一步提高材料的阻尼比,但需避免产生纤维缠绕结团现象。
     基于碳纤维在中低温条件下的负热膨胀特点,建立了树脂矿物复合材料的碳纤维阻胀机理模型,升温过程中碳纤维受拉而复合材料受压,界面失配应力将对复合材料的受热膨胀产生一定限制。基于损伤力学研究了骨料-树脂、碳纤维-树脂界面的裂纹产生与扩展规律,对树脂矿物复合材料的受热破坏现象进行了合理解释。结合树脂的玻璃态温区范围选择80℃平均线热膨胀系数作为评定参量,实验研究了各因素对树脂矿物复合材料平均线热膨胀系数的影响定量表征,树脂矿物复合材料的最优热膨胀性能已达到9.627*10-6/℃。
     应用Pro/E建立典型精密车床床身的简化三维模型并导入有限元分析软件,基于铸铁与树脂矿物复合材料的性能参量分别对模型进行了相应的定义。结合床身的实际工况分析并计算了静动态条件下的各部位受力情况,仿真分析了两种材料床身的静力学变形。在相同结构和尺寸条件下,树脂矿物复合材料床身在X、Y、Z方向的变形均为铸铁材料床身的3.5~3.6倍,提出了两种结构优化方案并进行了对应的静力学与热力耦合分析,优化后的树脂矿物复合复合材料床身变形能够满足整机刚度要求。优化设计的树脂矿物复合材料床身各阶固有频率均高于铸铁材料床身,一阶与二阶模态下的床身振型对导轨面的精度影响明显,在实际应用中需配合局部强化技术进行一定的增强。
For the past few years, structure design and motion control of precision machine tool in our country has developed rapidly, but most of the base components are still made of cast iron or steel welding structure, the preparation period is longer, vibration attenuation property is close to the limit and the environmental pollution in production process is serious. Research and development of materials with excellent damping performance has important theoretical and engineering practical significance in promoting technical progress of the engineering industry.
     Resin mineral composite (RMC) is composed of granite aggregate, organic resin system and some other auxiliary components that it can be casting at room temperature in conjunction with precision mold and embedded part designing technology. RMC is suitable to produce the base components of precision machine tool, such as bed, base and so on. There is no high temperature sintering in its productive process, which is basically no pollution to the environment.
     Compared with cast iron, RMC has better damping and vibration attenuation property. However, the strength of RMC is lower and the thermal expansion property is worse that its application is restricted to some extent, In this article, carbon fiber is used in cooperate with the gradation optimization of aggregate to reinforce RMC. How to improve the strength and thermal expansion performance on the basis of high damping property is the main research emphasis. The contents include the following:①Component and preparation optimization of RMC;②Fractal aggregate gradation and fiber reinforcing mechanism of RMC;③Energy loss mechanism and damping characterization of RMC;④Carbon fiber's block expansion mechanism and thermal expansion property of RMC;⑤Structure optimization of RMC precision lathe bed.
     Based on the property of components and their reaction mechanism, resin system, aggregate and auxiliary components are optimized, the basic ratio of each component is obtained combined with the macroscopic characterization of RMC. Negative pressure cylinder model of bubble in RMC is established, the preparation and curing process is optimized according to the long-term behavior analysis, which can effectively reduce the preparation period. The compressive strength in the seventh day is already reached149.92MPa.
     Statistical analysis and simplification are used, dispersion and stacking sequence of aggregates with different size are overall considered, the final dimension of screen holes are proposed based on the particle filling theory. Fractal theory is used to get a more accurate formula and gradation evaluation parameter. Particle flow simulation and image process method are used to identify the tendency of porosity, the simulation results are basically identical with the actually measured value that it can be used as a verification element in the follow-up gradation design. Stress transfer model of contiguous aggregates is established and compressive strength test is used to validate the aforementioned assumptions. Experimental results show that with the increase of the maximum aggregate size, skeleton strength increases and resin consumption reduced, internal defecs and micro cracks in single aggregate have more influence to the strength of RMC. Stress transmission mechanism of carbon fiber is systematically researched based on the shear lag theory, stress redistribution model under the fiber breakage or interface debonding condition are established respectively too, the optimal dosage of carbon fiber is acquired combined with the experimental research.
     Effective intrinsic and interfacial damping factor is obtained based on the energy dissipation mechanism of viscoelastic materials, the fiber's direction coefficient is introduced and the model of energy loss mechanism is established. Mechanism of damping production between resin, aggregate, reinforcing fiber and their interfaces are analyzed detailedly, the energy dissipation formula of micro interface slip is deduced, which has important influence to the damping property. Single factor experiments are used to get the influence of component, aggregate gradation and fiber's parameter to the damping ratio. Compared to the other factors, intrinsic damping of resin plays the most important role in vibration attenuation. The maximum damping ratio is about ten times the HT200cast iron, reasonable fiber dosage and interface control can further improve the damping performance of RMC, but there also need to avoid the fibers'winding cluster phenomenon.
     For the characteristic that carbon fibers have negative thermal expansion property in room temperature condition, its block-expansion model in RMC is established. In the warming process, carbon fiber is under tensile stress and RMC is under compressive stress, interface mismatch stress is generated, which can restrict the thermal expansion of RMC. The basic principle of damage mechanics is used to research the crack production and extension between aggregate, carbon fiber and resin, reasonable explanation is conducted to the destruction phenomenon under heat effect. Combined with the glass state temperature of resin, average thermal expansion coefficient in80℃is used as an evaluation parameter. Finally, the influence of each component is researched by experimental method, the optimal expansion coefficient of RMC is about9.627x10-6/℃.
     Simplified three-dimensional model of typical precision lathe bed is established in Pro/E and imported into FEA software. The corresponding model definition is proceeded according to the parameter of cast iron and RMC. All the bed stress distribution under static and dynamic condition are analyzed and calculated according to their actual working conditions, their final deformations are acquired too. According to the results, the deformation of RMC precision machining tool in X, Y and Z direction are all about3.5~3.6times that of cast iron, two corresponding structure optimization schemes are proposed and the corresponding deformation analysis and thermal-mechanical analysis are conducted in order to satisfy the stiffness requirement of the machine tool. Natural frequency of optimized RMC in each order are all higher than cast iron, the first and second order have a more obvious influence to the guide rail surface, which needs to cooperate with local reinforcement technology in practical application.
引文
[1]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.
    [2]Herbert Schulz, Toshimichi Moriwaki. High-speed Machining[J]. CIRP Annals Manufacturing Technology,1992,41(2):637-643.
    [3]杨叔子,吴波.先进制造技术及其发展趋势[J].机械工程学报,2003,39(10):73-78.
    [4]郑鹏.机床加工过程振动特性及对加工表面质量影响的研究[D].武汉:华中科技大学,2012.
    [5]S. A. Tobias.机床振动学[M].天津大学机械制造系译.北京:机械工业出版社,1980.
    [6]F. Cortes, G. Castillo. Comparison between the dynamical properties of polymer concrete and grey cast iron for machine tool applications[J], Materials & Design,2007,28: 1461-1466.
    [7]S. Adanur, A. S. Mosallam, M. Shinozuka, et al. A comparative study on static and dynamic responses of FRP composite and steel suspension bridges[J]. Journal of Reinforced Plastics and Composites,2011,15:1265-1279.
    [8]T. Wang, J. H. Zhang, S. M. Hao. Damping research of fiber-reinforced resin mineral composite-based micromechanical modeling[J], Journal of Reinforced Plastics and Composites,2013,32(12):875-880.
    [9]Lech Czarnecki. Polymer concretes[J], Cement Wapno Beton,2010,15(2):63-85.
    [10]D. W. Fowler. Polymers in concrete:a vision for the 21st century[J], Cement and Concrete Composites,1999,21(5-6):449-452.
    [11]H. B. Wanger. Polymer modified hydraulic cement[J], Industrial and Engineering Chemistry,1965,4(3):191-196.
    [12]D. G. Manning, B. B. Hope. The effect of porosity on the compressive strength and elastic modulus of polymer impregnated concrete[J], Cement and Concrete Research, 1971,1(6):631-644.
    [13]忻秀卿.聚合物混凝土复合材料的技术进展[J].新型建筑材料,1995,2:27-30.
    [14]J. Wongpa, K. Kiattikomol, C. Jaturapitakkul, et al. Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete[J], Materials & Design, 2010,31(10):4748-4754.
    [15]A. Garbacz, J. J. Sokolowska. Concrete-like polymer composites with fly ashes-comparative study[J], Construction and Building Materials,2013,38:689-699.
    [16]Sezan Orak. Investigation of vibration damping on polymer concrete with polyester resin[J], Cement and Concrete Research,2000,30:171-174.
    [17]黄十元,蒋家奋,杨南如.近代混凝土技术[M].西安:陕西科学技术出版社,1998.
    [18]陈建龙.人造花岗岩精密外圆磨床床身的研制[D].上海:同济大学,1989.
    [19]崔剑.钢纤维聚合物混凝土材料优化及其机床床身的研究[D].阜新:辽宁工程技术大学,2003.
    [20]Hyun Surk Kim, Kyu Ycol Park, Dal Gil Lee. A study on the epoxy resin concrete for the ultra-precision machine tool bed[J], Journal of Materials Processing Technology,1995, 48(1):649-655.
    [21]D. I. Kim, S. C. Jung, J. E. Lee, et al. Parametric study on design of composite-foam-resin concrete sanwich structures for precision machine tool structures[J], Composite Structures,2006,75(1-4):408-414.
    [22]于学成.混凝士做机床基础件的研究[D].上海:同济大学,1 987.
    [23]吴隆.用环氧树脂混凝士制造机床床身的研究[J].组合机床与自动化,1994,11:12-14.
    [24]陈艳秋.聚合矿物复合材料做机床基础件的配方及性能研究[D].济南:山东大学,1998.
    [25]胡果明.从CIMT93看树脂混凝士基础零件的应用[J].机床,1993,3:4-6.
    [26]代少俊.高性能纤维复合材料[M].上海:华东理工大学出版社,2013.
    [27]G. Dilli Babu, K. Sivaji Babu, B. Uma Maheswar Gowd. Effect of Machining Parameters on Milled Natural Fiber-Reinforced Plastic Composites[J], Journal of Advanced Mechanical Engineering,2013,1:1-12.
    [28]Sie Chin Tjong. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J], Materials Science and Engineering:R:Reports,2013,74(10):281-350.
    [29]Rajlakshmi Nayak, Dora P. Tarkes, Alok Satapathy. A computational and experimental investigation on thermal conductivity of particle reinforced epoxy composites[J], Computational Materials Science,2010,48(3):576-581.
    [30]P. S. Theocaris. The Mesophase Concept in Composites[M], Springer-Verlag, Berlin, 1987.
    [31]Lawrence T. Drzal. The effect of polymeric matrix mechanical properties on the fiber-matrix interfacial shear strength[J], Materials Science and Engineering:A,1990,126(1-2): 289-293.
    [32]W. A. Zisman. Influence of constitution on adhesion[J], Industrial and Engineering Chemistry,1963,55(10):18-38.
    [33]杨序纲.复合材料界面[M].北京:化学工业出版社,2010.
    [34]Yanjun Xie, Callum A. S. Hill, Zefang Xiao, et al. Silane coupling agents used for natural fiber/polymer composites:A review[J], Composites Part A:Applied Science and Manufacturing,2010,41(7):806-819.
    [35]Pramod Kumar, Rakesh Chandra, S. P. Singh. Interphase Effect on Fiber-Reinforced Polymer Composites[J], Composites Interfaces,2010,17(1):15-35.
    [36]Andrea Fabianelli, Sarah Pollington, Federica Papacchini, et al. The effect of different surface treatments on bond strength between leucite reinforced feldspathic ceramic and composite resin[J], Journal of Dentistry,2010,38(1):39-43.
    [37]J. Wang, R. G. Hoagland, X. Y. Liu, et al. The influence of interface shear strength on the glide dislocation-interface interactions[J], Acta Materialia,2011,59(8):3164-3173.
    [38]Satish Kumar, Harit Doshi, Mohan Srinivasarao, et al. Fibers from polypropylene/nano carbon fiber composites[J], Polymer,2002,43(5):1701-1703.
    [39]S. V. Joshi, L. T. Drzal, A. K. Mohanty, et al. Are natural fiber composites environmentally superior to glass fiber reinforced composites[J], Composites Part A: Applied Science and Manufacturing,2004,35(3):371-376.
    [40]Motoyuki Suzuki. Activated carbon fiber:Fundamentals and applications[J], Carbon, 1994,32(4):577-586.
    [41]J. S. Lee, T. J. Kang. Changes in physico-chemical and morphological properties of carbon fiber by surface treatment[J]. Carbon,1997,35:209-216.
    [42]S. Wang, Z. H. Chen, W. J. Ma, et al. Influence of heat treatment on physical-chemical properties of PAN-based carbon fiber[J]. Ceramics International,2006,32:291-295.
    [43]H. Guo, Y. D. Huang, L. Liu, et al. Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites[J]. Materials & Design, 2010,31:1186-1190.
    [44]A. V. Asten, N. V. Veenendaal, S. Koster. Surface characterization of industrial fibers with inverse gas chromatography[J]. Journal of Chromatography A,2000,888:175-196.
    [45]林志勇,杜慷慨,叶葳.碳纤维表面氧化还原研究[J].华侨大学学报(自然科学版),1999,20(4):354-357.
    [46]Y. V. Basova, H. Hatori, Y. Yamada, et al. Effect of oxidation reduction surface t reatment on the elect rochemical behavior of PAN2 based carbon fibers[J]. Electrochemistry Communications,1999,1(11):540-544.
    [47]M. E. Schrader, I. Lerner, D. Oria. Radioisotope Study of Coupling Agents in Reinforced Plastics[J]. Modern Plastic,1967,45(1):195-200.
    [48]A Valadez-Gonzalez, J. M Cervantes-Uc, R Olayo, et al. Chemical modification of henequen fibers with an organosilane coupling agent[J]. Composites Part B:Engineering, 1999,30(3):321-331.
    [49]K. L. Pickering, A. Abdalla, C. Ji, et al. The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites[J]. Composites Part A:Applied Science and Manufacturing,2003,34(10):915-926.
    [50]刘玉文,张志谦,黄玉东等.硅烷偶联剂对电子束固化碳纤维复合材料界面的增效研究[J].材料科学与工艺,2001,9(4):379-382.
    [51]H. L. Cox. The Elasticity and strength of Paper and Other Fibrous Materials[J], Journal of the Mechanics and Physics of Solids,1952,3:72-74.
    [52]R. Hill. Theory of Mechanical Properties of Fiber-Strengthened Materials[J], Journal of the Mechanics and Physics of Solids,1965,4:189-198.
    [53]Hiroshi Fukuda, Kozo Kawata. Stress and Strain Fields in Short Fiber-Reinforced Composite[J], Fibre Science and Technology,1974,7(2):129-156.
    [54]B. W. Rosen. Mechanics and Composite Strengthening[M], Fibre Composite Materials, Chapter 3,1965, ASM, Metals Park, Ohio.
    [55]J. K. Kim, Y. W. Mai. Stress transfer in the fibre fragmentation test[J], Journal of Materials Science,1995,30(12):3024-3032.
    [56]Christos C. Chamis. Computerized Multilevel Analysis for Multilayered Fiber Composites[J], Computer and Structures,1973,3(3):467-482.
    [57]D. F. Adams, D. E. Walrath. Losipescu Shear Properties of SMC Composites Materials[C], Sixth Conference on Composite Materials:Testing and Design. American Phoenix,1982,787:19-33.
    [58]熊伟,矫桂琼,刘红霞.纤维桥连对陶瓷基复合材料断裂韧度的影响[J].机械强度,2009,31(5):808-811.
    [59]荀勇,陈伯望.纤维桥作用的探讨与验证[J].湖南大学学报,1996,23(4):112-116.
    [60]崔崧,黄宝宗,张凤鹏等.具有大倾斜角的纤维桥联分析[J].东北大学学报(自然科学版),2002,23(5):503-506.
    [61]陈忠达.级配理论应用研究[J].重庆交通学院学报,2005,8:80-81.
    [62]鲁华征.级配碎石设计方法研究[D].西安:长安大学,2006.
    [63]沙庆林.多碎石沥青混凝土SAC系列的设计与施工[M].北京:人民交通出版社, 2005.
    [64]Ibrahim M A. Laboratory comparison study for the use of stone matrix asphalt in hot weather climates[J], Construction and Building Materials,2006,20(10):155-161.
    [65]Vavrik W R, Pine W J, Huber G. The bailey method of gradation evaluation:The influence of aggregate gradation and packing characteristics on voids in the mineral aggregate[J], Association of Asphalt Paving Technologists,2001,70(5):50-57.
    [66]Johannes Kepler. The Six-cornered snowflake:Strena, seu de nive sexangula[M]. Clarendon Press,1966.
    [67]林绣贤.柔性路面结构设计方法[M].北京:人民交通出版社,1998.
    [68]W. B. Fuller, S. E. Thompson. The laws of proportioning concrete[J], Trans, ASCE, 1907,59:67-143.
    [69]R. Plunkett. Damping analysis:An Historical Perspectice[J], Mechanics and Mechanisms of Material Damping,1992,1169:562-569.
    [70]D. D. L. Chung. Structural composite materials tailored for damping[J], Journal of Alloys and Compounds,2003,355:216-223.
    [71]N. Moiseev. Effect of a viscoelastic admixture on transient vibration in a concrete and steel floor[C], SPIE Proceedings 1619, Vibration Control in Microelectronics, Optics and Metrology, San Jose,1991,11:192-202.
    [72]W. C. Wong, P. Fang, J. K. Pan. Polymer Effects on the Vibration Damping Behavior of Cement[J], Journal of Materials in Civil Engineering, ASCE,2003:211-216.
    [73]张少辉,陈花玲.国外纤维增强树脂基复合材料阻尼研究综述[J].航空材料学报,2004,22(1):58-62.
    [74]P. Rupnowski, M. Gentz, J. K. Sutter. An Evaluation of the Elastic Properties and Thermal Expansion Coefficient of Medium and High Modulus Graphite Fibers[J], Composites,2005,36:327-338.
    [75]F. A. Hummel. Thermal expansion properties of some synthetic Lithia minerals[J], Journal of the American Ceramic Society,1951,34(8):235-239.
    [76]A. W. Sleight, T. A. Mary, J. S. O. Evans. Negative thermal expansion of ZrW2Og[P], US Patent,1995-05.
    [77]A. W. David, L. Philip, A. V. Lius, et al. Negative thermal expansion in the siliceous zeolites chabazite and ITQ-4:a neutron powder diffraction study[J], Chemistry of Materials,1999,11(9):2508-2514.
    [78]K. Takenaka, H. Takagi. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides[J], Applied Physics Letters,2005,87(26):261902-261902-3.
    [79]G. Korb, J. Korab, G. Groboth. Thermal expansion behaviour of unidirectional carbon-fibre-reinforced copper-matrix composites[J], Composites Part A:Applied Science and Manufacturing,1998,29(12):1563-1567.
    [80]王兴业,朱文山,王晓晨.复合材料零膨胀系数层合板的设计[J].宇航材料工艺,1986,1:39-44.
    [81]U. Rajendra, K. K. Chawla. Thermal Expansion of Matrix-Metrix Composites[J], Composites Science Technology,1994,50:13-22.
    [82]成玲.碳/环氧编制复合材料热膨胀特性分析[J].固体火箭技术,2010,33(1):108-111.
    [83]孙志刚,宋迎东,高希光等.细观结构对复合材料热膨胀系数的影响研究[J].应用力学学报,2004,21(2):146-150.
    [84]熊璇,吕国志,吕毅.细观力学法预测单向复合材料的有效热膨胀系数[J].强度与环境,2008,35(2):24-30.
    [85]刘兵山,燕瑛,田金梅.纤维增强对称层合复合材料的宏观热膨胀系数研究[J].强度与环境,2008,35(5):17-24.
    [86]姚学锋,杨佳,姚振汉等.编织结构复合材料热膨胀特性的实验研究[J].复合材料学报,2000,17(4):20-25.
    [87]M. A. Elbestawi, S. C. Veldhuis, I. M. Deiab, et al. Development of a novel modular and agile face machining technology[J]. C1RP Annals-Manufacturing Technology,2002,51(1): 307-310.
    [88]M. Zatarain, E. Lejardi, F. Egana, et al. Modular synthesis of machine tools[J]. CIRP Annals-Manufacturing Technology,1998,47(1):333-336.
    [89]Sun-Min Kim, Jae-Hoon Ha, Sung-Ho Jeong. The dynamic behavior of machine tools&manufacture grinding wheel et al:Effect of joint conditions on spindle[J]. International Journal of 2001,41 (1):1749-1761.
    [90]汤文成,易红.板厚对机床床身动态特性的影响[J].制造技术与机床,1997,21(3):13-14.
    [91]张镭,窦广会,张珂.CKS6125数控机床床身的有限元分析与研究[J].机床与液压,2009,37(7):171-173.
    [92]朱军.高速立式加工中心模态分析及结构优化设计[D].上海交通大学,2010.
    [93]白文峰.纤维增强聚合物混凝土及其界面与阻尼机理研究[D].济南:山东大学,2009.
    [94]陈平.环氧树脂及其应用[M].北京:化学工业出版社,2004.
    [95]李晓林,罗朝霞,张立群.热固性酚醛树脂的合成与性能研究[J].热固性树脂,2007,22(2):27-30.
    [96]石学堂.改性胺类固化剂与特种建筑胶结剂的制备研究[D].大连:大连理工大学,2008.
    [97]张红州.纤维混凝土界面性能及纤维作用机理研究[D].广州:广东工业大学,2004.
    [98]P. S. Song, S. Hwang. Mechanical properties of high-strength steel fiber-reinforced concrete[J]. Construction and Building Materials,2004,18(9):669-673.
    [99]J. A. Carneiro, P. R. L. Lima, M. B. Leite, et al. Compressive stress-strain behavior of steel fiber reinforced-recycled aggregate concrete[J]. Cement and Concrete Composites, 2014,46:65-72.
    [100]F. Nota, R. Savino, S. Fico. The interaction between drops and solidification front in presence of Marangoni effect[J]. Acta Astronautica,2006,59:20-31.
    [101]孙曼灵,郑高锋.胺类环氧固化剂胺值测定方法的探讨[J].热固性树脂,2006,21(2):30-35.
    [102]罗渝然.化学键能数据手册[M].北京:科学出版社,2005.
    [103]R. W. Rice. Evaluating porosity parameters for porosity-property relation[J]. Journal of the American Ceramic Society,1993,76(7):1801-1808.
    [104]M. Blander, J. L. Katz. Bubble nucleation in liquids[J]. AIChE Journal,1975,21(5): 833-848.
    [105]蔡业彬,国明成,彭玉成,等.泡沫塑料加工过程中的气泡成核理论(I)-经典成核理论及评述[J].塑料科技,2005,3:11-16.
    [106]周杏鹏.现代检测技术[M].北京:高等教育出版社,2004.
    [107]裴磊,任瑞波,范正金.基于逐级填充理论骨密结构水稳碎石级配设计[J].山东建筑大学学报,2010,25(2):134-140.
    [108]C. A. Weymouth. Effect of particle interference in mortars and concretes[J]. Rock Products,1933,36(2):26-31.
    [109]M. J. Bailey, R. F. Muth, U. O. Nourse. A Regression Method for Real Estate Price Index Construction[J]. Journal of the American Statistical Association,1963,58(304): 933-942.
    [110]Sheng Cui, Jinsong Liu, Xiaoming Ma. A novel efficient optimal design method for gain-flattened multiwavelength pumped fiber Raman amplifier [J]. Photonics Technology Letters,2004,16(11):2451-2453.
    [111]B. B. Mandelbrot. How long is the coast of Britain[J]. Science,1967,156(3775): 636-638.
    [112]王积森,李剑锋,孙杰,等.聚合树脂混凝土骨料粒度分布模型[J].机械科学与技术,1999,18(3):463-464.
    [113]D. O. Potyondy. Simulating stress corrosion with a bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(5):677-691.
    [114]吴其俊,周克栋,郝磊,等.连续损伤力学在复合材料厚壁圆筒渐进破坏分析中的应用[J].南京理工大学学报,2011,35(4):479-483.
    [115]B. Budiansky, J. W. Hutchinson. Matrix Fracture in Fiber-Reinforced Ceramics[J]. Journal of the Mechanics and Physics of Solids,1986,34(2):167-189.
    [116]B. W. Rosen. Tensile failure of fibrous composites[J]. AIAA Journal,1964,2(11): 1985-1991.
    [117]徐秉业.应用弹塑性力学[M].北京:清华大学出版社,1995.
    [118]席尔瓦.振动阻尼、控制和设计[M].北京:机械工业出版社,2013.
    [119]C.甄纳.金属的弹性与滞弹性[M].北京:科学出版社,1965.
    [120]W. A. Lederman. The Damping Properties of Composite Materials[D]. The University of Wiscomsin-Milwaukee,1991.
    [121]R. A. Schapery. Thermal expansion coefficients of composite materials based on energy principles[J]. Journal of Composite Materials,1968,2(3):380-404.
    [122]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [123]商跃进.有限元原理与应用指南[M].北京:清华大学出版社,2005.
    [124]周昌玉.有限元分析的基本方法及工程应用[M].北京:化学工业出版社,2006.
    [125]樊静.YHC-1000吨门形液压机的三维有限元分析[D].合肥:合肥工业大学,2008.
    [126]郑玉庆,卜伟筠.体外预应力梁的振动问题的研究分析[J].四川建筑科学研究,2002,28(3):37-39.
    [127]曹妍妍,赵登峰.有限元模态分析理论及其应用[J].机械工程与自动化,2007,45(1):73-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700