用户名: 密码: 验证码:
木质素炭载体的制备及其在生物柴油合成中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国际原油价格剧烈而频繁地波动以及由于化石燃料的使用引起的环境恶化,重新激发起人类寻找新的可替代燃料的动力。从植物油或动物脂肪通过酯交换反应合成生物柴油被认为是可部分替代化石燃料的可再生燃料来源。生物柴油由于具有生产方法简单、可生物降解、非毒性、不含硫、低的温室气体排放等特点,是目前世界上最广泛应用的生物燃料之一。现阶段生物柴油的生产主要通过均相碱(KOH或NaOH)催化的酯交换反应合成,现在的生产技术主要存在以下问题:需要高精炼的原料油;均相催化剂不能回收和再利用;产品分离纯化等生产工艺复杂;均相催化剂具有腐蚀性,对设备材料要求高;生产成本高以及废水排放量大等缺点。固体催化剂能够解决均相法生物柴油生产的以上问题。
     针对以上问题,我们发展了一种从碱木质素出发基于绿色化学理念的生产活性炭载体用于负载催化剂合成生物柴油的新方法。其主要研究内容如下:
     利用从造纸废水中提取的低成本、可再生的碱木质素分别经过磷酸、氢氧化钾或碳酸钾化学活化制备得到了不同结构与理化性能的活性炭载体。通过改变活化剂种类、活化方法及活化条件可以调控活性炭的表面积、孔体积、孔结构以及活性炭表面功能基团的含量。制备的活性炭用深冷N2吸附等温、X-射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电镜(SEM)及表面分形维数等表征。
     采用磷酸活化得到的木质素介孔活性炭经浓硫酸磺化制备得到了含有-SO3H、-COOH及酚羟基的炭磺酸固体催化剂,用于油酸与甲醇的酯化反应合成油酸甲酯。制备的炭磺酸催化剂用SEM、BET、XRD、TGA以及FTIR表征。
     由于木质素炭磺酸固体催化剂酸强度较低,难于直接用于植物油与甲醇的酯交换反应合成生物柴油。我们采用直接共混方法,用碳酸钾为活化剂和催化剂原位一步活化碱木质素制备活性炭负载碳酸钾固体碱催化剂(K2CO3/KLC),对制备的催化剂进行了全面的表征。制备的固体碱催化剂用于菜籽油与甲醇在温和条件下催化酯交换反应合成生物柴油。考查了催化剂的制备条件、酯交换反应条件对菜籽油合成生物柴油产率的影响。结果表明K2CO3/KLC催化剂能够重复利用4次。制备的固体碱催化剂也被用于催化非可食性的麻疯果油合成生物柴油。由于麻疯果油含有较高的游离脂肪酸,需要两步转化合成生物柴油。我们首先采用制备的木质素炭磺酸固体催化剂用于麻疯果油的预处理(酯化反应),分离出固体酸催化剂后,进一步用K2CO3/KLC固体碱催化剂催化麻疯果油合成生物柴油。
     为了进一步拓展木质素炭载体的应用范围,我们采用磷酸活化的木质素介孔活性炭通过浸渍法制备得到了炭负载Ni、Pd催化剂用于硬脂酸、菜籽油、麻疯果油以及相应的生物柴油的脱氧制备绿色烷烃。进一步的研究将集中于提高催化剂的活性与稳定性以及发展复合或双功能的催化剂,用于高效、一步催化由生物质得到的长链脂肪酸及甘油三脂原料的脱氧及烷烃异构化合成与化石柴油结构完全相同的绿色柴油燃料。
The accelerating and frequently fluctuating price of conventional diesel, together with growing environmental concerns has sparked renewed attention on the search for an alternative fuel. Biodiesel (alkyl esters) from vegetable oil or animal fats via transesterification is potential substitutes for petroleum-based diesel fuel. Biodiesel is one of the most widely used biofuels in the world, due to its simplicity of production, biodegradability, non-toxicity, sulfur-free and reduction of green house gas emissions. The most widely used industrial method for the commercial production of biodiesel from vegetable oils/fats is a base catalyzed transesterification process using KOH or NaOH as the homogeneous catalysts. The major drawbacks of homogeneous catalytic reaction are as follows:the refined vegetable oils are required. These homogeneous base catalysts are corrosive and cannot be regenerated or reused, and separation of catalyst from products is difficult and requires more equipment which could result in higher production costs. In addition, the homogeneous catalysts have to be removed from the biodiesel and a large amount of waste water is generated which the process is not environmentally friendly. The heterogeneous catalysts can solve these problems encountered in homogeneous catalysts.
     Thinking of presenting problems, in this work, a new method has been developed to produce activated carbons (ACs) and biodiesel from kraft lignin based on the concept of green chemistry. The main research contents are as follows:
     First, the ACs support with various structure and physicochemical properties were prepared from low-cost, renewable kraft lignin (KL) which was obtained from paper effluent by H3PO4, KOH and K2CO3chemical activation, respectively. The BET surface area, pore volume, pore structure, morphology and the type and content of surface functional groups of ACs can be tailored by the change of the types of activating agent, activation methods and activation conditions. The prepared ACs were characterized by XRD, SEM, FTIR, cryogenic N2adsorption at77K and fractal dimensions.
     Then, the mesoporous ACs from KL by H3PO4activation were used to prepared carbon-based solid acid (KLC-SO3H) with SO3H, COOH and phenolic OH groups by the sulfonation of concentrated sulphuric acid. The prepared catalyst was characterized using SEM, XRD, BET, TGA and FTIR. The KLC-SO3H was found to be eco-friendly and recyclable heterogeneous catalyst for the esterification reaction of oleic acid with methanol.
     Due to the relative low acid strength of KLC-SO3H solid acid catalyst, we found that it is difficult to be used to catalyze transesterification reaction of rapeseed oil with methanol. So, a novel solid base catalyst K2CO3/KLC was prepared in situ by simply blending K2CO3with KL and subsequently activating at800℃for2h. The catalysts were characterized by TGA, DTA, FTIR, XRD, XPS and BET methods. The catalytic performance of prepared catalysts were evaluated by transesterification of rapeseed oil with methanol under mild reaction condition. The effect of preparation conditions of catalysts and reaction conditions on biodiesel yield of transesterification were investigated. The solid base catalyst can be reused for4times. In this work, the biodiesel from jatropha oil was also produced by a two-step process. The first-pretreatment of jatropha oil was completed by KLC-SO3H catalytic esterification, and then the second step K2CO3/KLC solid base catalytic transesterification was achieved after the KLC-SO3H was removed from the reaction mixture via centrifuge.
     For further development of application domain of kraft lignin activated carbons, the Ni/MAC, Pd/MAC catalysts were prepared using mesoporous activated carbons (MAC) from kraft lignin by H3PO4activation, and the catalysts were employed to catalyze the deoxygenation reaction of stearic acid, rapeseed oil, jatropha oil and correspording biodiesel. The further study is needed both for improving the activity and stabliity of catalysts and developing the difunctional or multifunctional catalyst to catalyze both deoxygenation and isomerization of biomass-derived triglycerides feeds in one step, production of green transportation fuels.
引文
陈嘉川,谢益民,李彦春,等.2007.天然高分子科学[M],北京:科学出版社,5-16.
    付伟,廖祥儒,王俊峰,等.2004.植物体内的木质素[J].生物学通报,39(2):12-14.
    范娟,詹怀宇,刘明华.2004.木质素基吸附材料的研究进展,中国造纸学报,19(2):181-187.
    范娟.2005.多功能球形木质素基吸附材料的制备及其性能研究[D]:[博士].广州:华南理工大学,31-32.
    高洁,汤烈贵.1996.纤维素科学[M].北京:科学出版社,211-226.
    高凯,李云,杨秀山.2011.影响丙酮丁醇发酵的主要因素及解决方案的研究进展[J].生物质化学工程,45(2):45-50.
    洪树楠.一种球形木质素金属吸附剂的研制及其应用研究[D]:[硕士].福州:福州大学,54-55.
    蒋挺大.2001.木质素[M].北京:化学工业出版社,2-3.
    马鸿宾.2008.固体碱催化合成生物柴油的基础研究[D]:[博士].天津:天津大学,7-8.
    李伟.2013.2012年中国原油对外依存度接近59%[EB/OL]. [2013-01-26] http://finance.qq.com/a/20130126/001592.htm.
    黎先发,罗学刚.2005.增容剂].DPE-g-MAH对木质素/聚乙烯吹塑薄膜形貌与性能的影响[J].化工学报,56(12):2429-2433.
    刘学军.多相催化制备生物柴油的催化剂及反应过程研究[D]:[博士].北京:清华大学,3.
    靳孝庆,王桂兰,何冰芳.2007.丙酮丁醇发酵的研究进展及其高产策略[J].化工进展,26(12):1727-1732.
    卢艳杰,龚院生,张连富.2004.油脂检测技术[M].北京,化学工业出版社,38-127.
    吴伟光,黄季焜,邓祥郑.2009.中国生物柴油原料树种麻疯树种植土地潜力分析[J].中国科学D辑:地球科学,39(12):1672-1680.
    许蕾蕾.基于多酸的杂化催化剂的设计及其在生物柴油合成中的应用[D]::[博士].长春:东北师范大学,23-24.
    尹芳,刘磊,江东,等.2012.麻疯树生物柴油发展适宜性、能量生产潜力与环境影响评估[J].农业工程学报,28(14):201-208.
    朱文魁,张双全,唐志红,等.2004.气体吸附法研究活性炭表面分形维数[J].碳素,2:12-15.
    中华人民共和国国家技术监督局,GB/T5530-1998,中华人民共和国国家标准[S].北京,中国标准出版社.
    中华人民共和国国家技术监督局,GB/T5534-1998,中华人民共和国国家标准[S].北京,中 国标准出版社.
    赵瑞方,华坚,陈放,等.2008.麻风树果壳活性炭表面分形维数的实验研究[J].安全与环境学报,8(2):51-54.
    张晓阳,杜风光,常春,等.纤维素生物质水解与应用[M].郑州:郑州大学出版社,9-12.
    Aafaqi R, Mohamed A R, and Bhatia S.2004. Kinetics of esterification of palmitic acid with isopropanol using p-toluene sulfonic acid and zinc ethanoate supported over silica gel as catalysts[J]. Journal of Chemical Technology and Biotechnology,79:1127-1134.
    Albuquerque M C G, Jimenez-Urbistondo I, Santamaria-Gonzalez J, et al.2008. CaO supported on mesoporous silicas as basic catalysts for transesterification reactions[J] Applied Catalysis A: General,334:35-43.
    Alonso D M, Gallo J M R, Mellmer M A, et al.2013. Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts[J]. Catalysis Science Technology,3: 927-931.
    Andersson N, Wilson D I, Germagard U.2003. An improved kinetic model structure for softwood kraft cooking[J]. Nordic Pulp & Paper Research Journal,18(3):200-209.
    Argyropoulos D S.2003. Salient reactions in lignin during pulping and oxygen bleaching:An overview[J]. Journal of pulp and paper science,29(9):308-313.
    Azadi P, Inderwildi O R, Farnood R, et al.2013. Liquid fuels, hydrogen and chemicals from lignin: A critical review[J]. Renewable and Sustainable Energy Reviews 21 (2013) 506-523.
    Baeza J, Parra C, Berrocal A, et al.2005. Prediction of bioethanol production from soft- and hardwood[C].229th ACS National Meeting. Washington:ACS,126.
    Baroutian S, Aroua M K, Raman A A A, et al.2010. Potassium hydroxide catalyst supported on palm shell activated carbon for transesterification of palm oil[J]. Fuel Processing Technology, 91:1378-1385.
    Baklanova O N, Plaksin G V, Drozdov V A.2003. Preparation of microporous sorbents from cedar nutshells and hydrolytic lignin[J]. Carbon,41:1793-1800.
    Babel K, Jurewicz K.2008. KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption[J]. Carbon,46:1948-1956.
    Basso M C, Cerrella E G, and Cukierman A L.2004. Cadmium uptake by lignocellulosic materials:effect of lignin content[J]. Separation Science and Technology,39 (5):1163-1175.
    Bedia J, Rosas J M, Marquez J, et al.2009. Preparation and characterization of carbon based acid catalysts for the dehydration of 2-propanol[J]. Carbon,47:286-294.
    Boey P L, Maniam G P, Hamid S A.2011. Performance of calcium oxide as a heterogeneous catalyst in biodiesel production:A review[J]. Chemical Engineering Journal,168:15-22.
    Bridgwater T.2006. Biomass for energy[J]. Journal of the Science of Food and Agriculture,86, (12):1755-1768.
    Brito A, Borges M E, Otero N.2007. Zeolite Y as a Heterogeneous Catalyst in Biodiesel Fuel Production from Used Vegetable Oil[J]. Energy Fuels,21 (6):3280-3283.
    Burton R A. Gidley M J, and Fincher G B.2010. Heterogeneity in the chemistry, structure and function of plant cell walls[J]. Nature Chemical Biology,6(10):724-732.
    Cagnon B, Xavier Py, Guillot A, et al.2009. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors[J]. Bioresource Technology,100:292-298.
    Calabria G M M, Goncalves A R.2006. Obtainment of Chelating Agents Throughthe Enzymatic Oxidation of Ligninsby Phenol Oxidase[J]. Applied Biochemistry and Biotechnology,129-132: 320-325.
    Carrasquillo-Flores R, Ka□ldstro□m M, Schu□th F, et al.2013. Mechanocatalytic depolymerization of dry (ligno)cellulose as an entry process for high-yield production of furfurals[J]. ACS Catalysis,3:993-997.
    Carrott P J M, Ribeiro Carrott M M L, Suhas.2010. Comparison of the Dubinin-Radushkevich and Quenched Solid Density Functional Theory approaches for the characterisation of narrow microporosity in activated carbons obtained by chemical activation with KOH or NaOH of Kraft and hydrolytic lignins[J]. Carbon,48:4162-4169.
    Carrott P J M, Suhas, Ribeiro Carrott M M L, et al.2008. Reactivity and porosity development during pyrolysis and physical activation in CO2 or steam of kraft and hydrolytic lignins[J]. Journal of Analytical Applied Pyrolysis,82:264-271.
    Cantrell D G, Gillie L J, Lee A F, et al.2005. Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis[J]. Applied Catalysis A:General,287:183-190.
    Chakar F S, Ragauskas A J.2004. Review of current and future softwood kraft lignin process chemistry[J]. Industrial Crops and Products,20131-141.
    Chen G, Fang B S.2011. Preparation of solid acid catalyst from glucose-starch mixturefor biodiesel production[J]. Bioresource Technology,102:2635-2640.
    Chiappero M, Phuong Thi Mai Do, Crossley S, et al.2011. Direct conversion of triglycerides to olefins and paraffins over noble metal supported catalysts[J]. Fuel,90:1155-1165.
    Cotoruelo L M, Marques M D, Diaz F J, et al.2012. Lignin-based activated carbons as adsorbents for crystal violet removal from aqueous solutions[J]. Environmental Progress & Sustainable Energy,31:386-396.
    Cotoruelo L M, Marques M D, Rodriguez-Mirasol J, et al.2009. Lignin-based activated carbons for adsorption of sodium dodecylbenzene sulfonate:Equilibrium and kinetic studies[J]. Journal of Colloid and Interface Science,332:39-45.
    Cotoruelo L M, Marques M D, Diaz F J, et al.2010. Equilibrium and kinetic study of congo red adsorption onto lignin-based activated carbons[J]. Transport Porous Media,83:573-590.
    Dehkhoda A M, West A H, Ellis N.2010. Biochar based solid acid catalyst for biodiesel production[J]. Applied Catalysis A:General,382:197-204.
    Demirbas M F.2009. Biorefineries for biofuel upgrading:A critical review[J]. Applied Energy,86: S151-S161.
    Deng X, Fang Z, Liu Y H, et al.2011. Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst[J]. Energy,36:777-784.
    Dong D J.1993. Characterization of kraft lignin and investigation of pulping effects on pulp yield, lignin, molecular mass and lignin content of black liquor with a central composite pulping design[D]:[Pn.D.]. United States:University of Florida,78-92.
    Du S K, Zhu X N, Wang H, et al.2013. High pressure assist-alkali pretreatment of cotton stalk and physiochemical characterization of biomass[J]. Bioresource Technology,148:494-500.
    Fargione J E, Plevin R J, and Hill J D.2010. The Ecological Impact of Biofuels[J]. Annual Review of Ecology, Evolution, and Systematics,41(1):351-377.
    Fierro V, Torne-Fernandez V, Celzard A, et al.2007. Influence of the demineralisation on the chemical activation of Kraft lignin with orthophosphoric acid[J]. Journal of Hazardous Materials,149:126-133.
    Fierro V, Torne-Fernandez V, Celzard A.2007. Methodical study of the chemical activation of Kraft lignin with KOH and NaOH[J]. Microporous and Mesoporous Materials,101:419-431.
    Fierro V, Torn6-Ferndez V, Celzard A.2006. Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoricacid:Synthesis and textural characterisation[J]. Microporous and Mesoporous Materials,92:243-250.
    Fierro V, Torne-Fernandez V, Monta D, et al.2005. Study of the decomposition of kraft lignin impregnated with orthophosphoric acid[J]. Thermochimica Acta,433:142-148.
    Focher B, Marzetti A, Crescenci V.1991. Steam steam explosion techniques, fundamentals and industrial applications[M]. Milan Italy:Gordon and Breach Science Publishers,28-56.
    Furuta S, Matsuhashi H, and Arata K.2004. Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure[J]. Catal.Commun.,5:721-723.
    Ganeshpure P A, George G, and Das J.2007. Application of triethylammonium salts as ionic liquid catalyst and medium for fischer esterification[J]. ARKIVOC,8:273-278.
    Garrido-Herrera FJ, Daza-Fernandez I, Gonzalez-Pradas E, et al.2009. Lignin-based formulations to prevent pesticides pollution[J]. Journal of Hazardous Materials,168:220-220.
    Geng L, Wang Y, Yu G, et al.2011. Efficient carbon-based solid acid catalysts for the esterification of oleic acid[J]. Catalysis Communications,13:26-30.
    Granados M L, Poves M D Z, Alonso M D, et al.2007. Biodiesel from sunflower oil by using activated calcium oxide[J] Applied Catalysis B:Environmental,73:317-326.
    Girgis B S, El-Hendawy A N A.2002. Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid[J]. Microporous and Mesoporous Materials,52,105-117.
    Gonzalez-Serrano E, Cordero T, Rodriguez-Mirasol J, et al.2004. Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors[J]. Water Research,38:3043-3050.
    Gosselink R W, Stellwagen D R, and Bitter J H.2013. Tungsten-based catalysts for selective deoxygenation[J]. Angewante Chemie International Editon,52,1-5.
    Guo Y P, Rockstraw D A.2006. Physical and chemical properties of arbons synthesized fromxylan, cellulose, and Kraft lignin by H3PO4 activation[J]. Carbon,44:1464-1475.
    Hancsok J, Kovacs F, and Krar M.2004. Production of vegetable oil fatty acid methyl esters from used frying oil by combined acidic/alkali Transesterification[J]. Petroleum & Coal,46:36-44.
    Haro M, Ruiz B, Andrade M, et al.2012. Dual role of copper on the reactivity of activated carbons from coal and lignocellulosic precursors[J]. Microporous and Mesoporous Materials,154: 68-73.
    Hara M.2010. Biodiesel production by amorphous carbon bearing SO3H, COOH and phenolic OH groups, a solid br(?)nsted acid catalyst[J]. Topics in Catalysis,53:805-810.
    Han S H, Cho D H, Kim Y H, et al.2013. Biobutanol production from 2-year-old willow biomass by acidhydrolysis and acetone-butanol-ethanol fermentation[J]. Energy,61:13-17.
    Hatfield R D, Marita J M, Frost K, et al.2009. Grass lignin acylation:p-coumaroyl transferase activity and cell wall characteristics os C3 and C4 grasses[J]. PLANTA,229(6):1253-1267.
    Hayashi J. Muroyama K. Gomes V G.2002. Fractal dimensions of activated carbons prepared from lignin by chemical activation[J]. Carbon,40:617-636.
    Hayashi J, Kazehaya A, Muroyama K, et al.2000. Preparation of activated carbon from lignin by chemical activation[J]. Carbon,38:1873-1878.
    He L M, Wu C Y, Cheng H Y, et al.2012. Highly selective and efficient catalytic conversion of ethyl stearate into liquid hydrocarbons over a Ru/TiO2 catalyst under mild conditions[J]. Catal. Sci. Technol.,2:1328-1331.
    Holladay J E, Bozell J J, White J F, et al.2007. Top value added chemicals from biomass:volume Ⅱ-results of screenings for potential candidates from biorefinery lignin[R]. Pacific Northwest National Laboratory,8-32.
    Hon D and Shiraishi N.2000. Wood and cellulosic chemistry[M]. New York:Marcell and Decker Inc,382-395.
    Hsu L Y, Teng H.2000. Influence of different chemical reagents on the preparation of activated carbons from bituminous coal[J]. Fuel Processing Technology,64,155-166.
    Huber G W and Dumesic J A.2006. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery [J]. Catalysis Today,111:119-132.
    Huber G W, Iborra S, and Corma A.2006. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chem. Rev.106:4044-4098.
    Hu Q L, Su X J, Tan L et al.2013. Effects of a steam explosion pretreatment on sugar production by enzymatic hydrolysis and structural properties of reed straw[J]. Bioscience. Biotechnology, and Biochemistry,77(11):2181-2187.
    Ibrahim M, Glasser W G et al.1999. Steam-assisted biomass fractionation. Part Ⅲ:a quantitative evaluation of the "clean fractionation" concept[J]. Bioresource Technology,70: 181-192.
    Ibrahim V, Mamo G, Gustafsson P J, et al.2013. Production and properties of adhesives formulated from laccase modified Kraft lignin[J]. Industrial Crops and Products,45:343-348.
    International Energy Agency.2010. World energy outlook 2010 executive summary[R]. Paris, France:IEA Publications,4-6.
    International Energy Agency.2009. Transport, Energy and CO2:Moving towards sustainability[M]. Paris, France:Organization for Economic Co-operation and Development, 91-93.
    Ismailova M G, Makhkamov Kh M, and Ismailova P L 2000. High-efficiency carbonaceous medical sorbent made from cotton lignin[J], Pharmaceutical Chemistry Journal,34 (12):666-668.
    Ismailova M G.2009. Influence of the carbonization conditions on the formation of the porous structure of activated carbon from cotton lignin[J]. Protection of Metals and Physical Chemistry of Surfaces,45(2):212-215.
    Jacobson K, Gopinath R, Meher L C, et al.2008. Solid acid catalyzed biodiesel production from waste cooking oil[J]. Applied Catalysis B:Environmental,85:86-91.
    Jia Guo J, Xu W S, Chen Y L, et al.2005. Adsorption of NH3 onto activated carbon prepared from palm shells impregnated with H2SO4[J]. Journal of Colloid and Interface Science,281: 285-290.
    Juan J C, Zhang J C, Jiang Y J, et al.2007. Zirconium sulfate supported on activated carbon as catalyst for esterification of oleic acid by n-butanol under solvent-free conditions[J]. Catalysis Letters,117(3-4):153-158.
    Jesus E P A, Marcos A S.2010. Effect of the presence of lignin or peat in IPN hydrogels on the sorption of heavy metals[J]. Polymer Bulletin,65:495-508.
    Kannan D C.2009. A solid catalyst method for biodiesel production[D]:[Ph.D.]. United States: The Pennsylvania State University, University Park, PA,1-3.
    Kadangode S M.2001. Lignin conversion into reformulated hydrocarbon and partially oxygenated gasoline compositions [D]:[Ph.D.]. United States:The University of Utah,75-156.
    Kang S M, Li X L, Fan J, et al.2013. Hydrothermal conversion of lignin:A review[J]. Renewable and Sustainable Energy Reviews,27:546-558.
    Kang S M, Li X L, Li B, et al.2011. Effects of Lignins on Antioxidant Biodiesel Production in Supercritical Methanol[J]. Energy Fuels,25:2746-2748.
    Katada N, Hatanaka T, Ota M, et al.2009. Biodiesel production using heteropoly acid-derived solid acid catalyst H4PNbWllO40/WO3-Nb2O5[J]. Applied Catalysis A:General,363: 164-168.
    Kamm B, Gruber P R, Kamm M.2008. Biorefineries-Industrial Processes and Products[M]// Kamm B, Kamm M, Schmidt M, et al. Lignocellulose-based Chemical Products and Product Family Trees. New York:John Wiley & Sons, Inc.,97-149.
    Khezami L, Chetouani A, Taouk B, et al.2005. Production and characterisation of activated carbon from wood components in powder:Cellulose, lignin, xylan[J]. Powder Technology,157: 48-56.
    Kijima M, Hirukawa T, Hanawa F, et al.2011. Thermal conversion of alkaline lignin and its structured derivatives to porous carbonized materials[J] Bioresource Technology,102, 6279-6285.
    Kleinert M and Barth T.2008. Towards a lignincellulosic biorefinery:Direct one-step conversion of lignin to hydrogen-enriched biofuel[J]. Energy & Fuels,22(2):1371-1379.
    Kocsisova T, Cvengros L, and Lutisan J.2005. High-temperature esterification of fatty acids with methanol at ambient pressure[J]. European Journal of Lipid Science and Technology,107: 87-92.
    Komintarachat C, and Chuepeng S.2009. Solid acid catalyst for biodiesel production from waste used cooking oils[J]. Industrial & Engineering Chemistry Research,48:9350-9353.
    Kosikova B, Slamenova D, Mikulasova M, et al.2002. Reduction of carcinogenesis by bio-based lignin derivatives[J]. Biomass and Bioenergy,23:153-159.
    Kouzu M, Hidaka J, Komichi Y, et al.2009. A process to transesterify vegetable oil with methanol in the presence of quick lime bit functioning as solid base catalyst[J]. Fuel,88:1983-1990.
    Kriaa A, Hamdi N, Srasra E.2010. Removal of Cu (Ⅱ) from water pollutant with Tunisian activated lignin prepared by phosphoric acid activation[J]. Desalination,250:179-187.
    Kovacs S, Kasza T, Thernesz A, et al.2011. Fuel production by hydrotreating of triglycerides on NiMo/Al2O3/F catalyst[J]. Chemical Engineering Journal,176-177:237-243.
    Kubo S, Yoshida T, Kadla J F.2007. Surface porosity of lignin/PP blend carbon fibers[J]. Journal of Wood Chemistry and Technology,27:257-271.
    Kucherenko V A, Shendrik T G, Tamarkina Y V, et al.2010. Nanoporosity development in the thermal-shock KOH activation of brown coal[J]. Carbon,48:4556-4577.
    Kubicka D, Kaluza L.2010. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Applied Catalysis A:General,372:199-208.
    Kubicka D, Bejblova M, Vlk J.2010. Catalytic deoxygenation of C18 fatty acids over mesoporous Pd/C catalyst for synthesis of biofuels[J]. Topics in Catalysis,53:168-178.
    Kumar P, Barrett D M, Delwiche M J, et al.2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production[J]. Industrial & Engineering Chemistry Research,48(8):3713-3729.
    Kumar V.2009. Pyrolysis and gasification of lignin and effect of alkali addition[D]:[Ph.D.]. United States:Georgia Institute of Technology,27-45.
    Kusdiana D, and Saka S.2004. Effects of water on biodiesel fuel production by supercritical methanol treatment[J]. Bioresource Technology,91:289-295.
    Lam M K, Lee K T.2010. Accelerating transesterification reaction with biodiesel as co-solvent:A case study for solid acid sulfated tin oxide catalyst[J]. Fuel,89:3866-3870.
    Lange H, Decina S, Crestini C.2013. Oxidative upgrade of lignin-Recent routes reviewed[J]. European Polymer Journal,49:1151-1173.
    Lalvani S B, Hubner A, Wiltowski T S.2000. Chromium adsorption by lignin[J]. Energy sources, 22:45-56.
    Lallave M, Bedia J, Ruiz-Rosas R, et al.2007. Filled and hollow carbon nanofibers by coaxial electrospinning of alcell lignin without binder polymers[J]. Advanced Materials,19, 4292-4296.
    Lestari S, Simakova I, Tokarev A, et al.2008. Synthesis of biodiesel via deoxygenation of stearic acid over supported Pd/C catalyst[J]. Catalysis Letters,122:247-251.
    Lewis N G, Sarkanen S.1998. Lignin and Lignan Biosynthesis[M]//Brunow G, Kilpelainen I, Sipila J, et al., Oxidative Coupling of Phenols and the Biosynthesis of Lignin. United States: American Chemical Society, Vol.697, Chapter 10,131-147.
    Liang X Z, Gao S, Wu H H, et al.2009. Highly efficient procedure for the synthesis of biodiesel from soybean oil[J]. Fuel Processing Technology,90:701-704.
    Liang F B, Song Y L, Huang C P.2013. Synthesis of novel lignin-based ion-exchange resin and Its utilization in heavy metals removal[J]. Industrial & Engineering Chemistry Research, 52(3):1267-1274.
    Li C Z, Zheng M Y, Wang A Q et al.2012. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts:simultaneous conversion of cellulose, hemicellulose and lignin[J]. Energy & Environmental Science,5:6383-6390.
    Liu F J, Li W, Sun Q, et al.2011. Transesterification to biodiesel with superhydrophobic porous solid base catalysts[J]. ChemSusChem,4:1059-1062.
    Liu M, Jia S Y, Gong Y Y, et al.2013. Effective hydrolysis of cellulose into glucose over sulfonated sugar-derived carbon in an ionic liquid[J]. Industrial & Engineering Chemistry Research,52(24):8167-8173.
    Lin S Y and Dence C W.1992. Methods in Lignin Chemistry[M]. New York:Springer-Verlag, 527-560.
    Li S D.2003. Synthesis and properties of activated carbon from lignin[D]:[M.S.]. New York: State University of New York,5-27.
    Liu H, Su LY, Shao Y, et al.2012. Biodiesel production catalyzed by cinder supported CaO/KF particle catalyst[J]. Fuel,97:651-657.
    Liu J, Liu C, Zhou G, et al.2012. Hydrotreatment of Jatropha oil over NiMoLa/Al2O3 catalyst[J]. Green Chemistry,14:2499-2505.
    Liu H, Su L Y, Liu F F, et al.2011. Cinder supported K2CO3 as catalyst for biodiesel production[J]. Applied Catalysis B:Environmental,106:550-558.
    Liu X H, Xiong X Y, Liu C M, et al.2010. Preparation of biodiesel by transesterification of rapeseed oil with methanol using solid base catalyst calcined KaCO3/γ-Al2Oa3[J]. Journal of the American Oil Chemists Society,87:817-823.
    Liu X, He H, Wang Y, et al.2008. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst[J]. Fuel,87:216-221.
    Liu X Y, Huang M, Ma H L, et al.2010. Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process[J]. Molecules,15:7188-7196.
    Li Y H, Qiu F X, Yang D Y, et al.2011. Preparation, characterization and application of heterogeneous solid base catalyst for biodiesel production from soybean oil[J]. Biomass and bioenergy,35:2787-2795.
    Liu, Y J.2007. Biodiesel forming reactions using heterogeneous catalysis[D]:[Ph.D.]. United States:Clemson University,4-10.
    Liu Y Y, Sotelo-Boyas R, Murata K, et al.2009. Hydrotreatment of jatropha oil to produce green diesel over trifunctional Ni-Mo/SiO2-Al2O3 catalyst[J]. Chemistry Letters,38(6):552-553.
    Liu Y Y, Sotelo-Boyas R, Murata K, et al.2011. Hydrotreatment of vegetable oils to produce bio-hydrogenated diesel and liquefied petroleum gas fuel over catalysts containing sulfided Ni_Mo and solid acids[J]. Energy Fuels,25:4675-4685.
    Luki6 I, Krstic J, Jovanovic D, et al.2009. Alumina/silica supported K2CO3 as a catalyst for biodiesel synthesis from sunflower oil[J]. Bioresource Technology,100:4690-6.
    Luo J Y, Zhou D D; Liu J L. et al.2008. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds[J]. Journal of The Electrochemical Society, 155(11):A789-A793.
    Marchetti J M, Errazu A F.2010. Biodiesel production from acid oils and ethanol using a solid basic resin as catalyst[J]. Biomass Bioenergy,34:272-277.
    MacLeod C S, Harvey A P, Lee A F, et al.2008. Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production[J]. Chemical Engineering Journal,135:63-70.
    Madsen A T, Ahmed El H, Christensen C H, et al.2011. Hydrodeoxygenation of waste fat for diesel production:study on model feed with Pt/alumina catalyst[J]. Fuel,90:3433-3438.
    Marco-Lozar J P, Linares-Solano A, Cazorla-Amor6s D.2011. Effect of the porous texture and surface chemistry of activated carbons on the adsorption of a germanium complex from dilute aqueous solutions[J]. Carbon,49:3325-3331.
    Mariano A P, Dias M O S, Junqueira T L, et al.2013. Utilization of pentoses from sugarcane biomass:Techno-economics of biogas vs. butanol production[J]. Bioresource Technology, 142:390-399.
    Marton W.1971. In Lignins:Occurrence, Formation, Structure and Reactions[M]. Sarkanen K V, and Ludwig C H. New York:Wiley-Interscience,639-694.
    Merdy P, Guillon E, Aplincourt M, et al.2002. Copper sorption on a straw lignin:experiments and EPR characterization[J]. Journal of Colloid and Interface Science,245,24-31.
    Melero J A, Bautista L F, Morales G, et al.2010. Biodiesel production from crude palm oil using sulfonic acid-modified mesostructured catalysts[J]. Chemical Engineering Journal,161: 323-331.
    Melero J A, Iglesias J, and Garcia A.2012. Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges[J]. Energy & Environemntal Science,5: 7393-7420.
    Mirkhani V, Moghadam M, Tangestaninejad S, et al.2009. Preparation of an improved sulfonated carbon-based solid acid as a novel, efficient, and reusable catalyst for chemoselective synthesis of 2-oxazolines and bis-oxazolines[J]. Monatshefte fur Chemie,140:1489-1494.
    Mishra S B, Langwenya S P, Mamba B B, et al.2010. Study on surface morphology and physicochemical properties of raw and activated South African coal and coal fly ash[J]. Physics and Chemistry of the Earth,35:811-814.
    Mohan D, Charles U. Pittman Jr., Steele P H.2006. Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin—a biosorbent[J]. Journal of Colloid and Interface Science,297:489-504.
    Murkute A D, Jackson J E, Miller D J.2011. Supported mesoporous solid base catalysts for condensation of carboxylic acids[J]. Journal of Catalysis,278:189-199.
    Mussatto S I, Fernandes M, Rocha G J M, et al.2010. Production, characterization and application of activated carbon from brewer's spent grain lignin. Bioresource Technology,101:2450-2457.
    Nagy M.2009. Biofuels from lignin and novel biodiesel analysis. [D]:[Ph.D.]. United States: Georgia Institute of Technology,5-30.
    Najafpour G, Ideris A, Salmanpour S et al. 2007. acid hydrolysis of pretreated palm oil lignocellulosic wastes[J]. IJE Transactions B:Applications,20(2):147-156.
    Ni J P, Wang H L, Chen Y Y, et al.2013. A novel facile two-step method for producing glucose from cellulose[J]. Bioresource Technology,137:106-110.
    Nimz H.1973. Chemistry of potential chromophoric groups in beech lignin[J]. Tappi Journal,56 (5):124-126.
    Nimmanwudipong T.2012. Catalytic conversion of lignin-derived compounds to fuels and chemicals [D]:[Ph.D.]. United States:University of California Davis,37-48.
    Olarte M V.2011. Base-catalyzed depolymerization of lignin and hydrodeoxygenation of lignin model model compounds for alternative fuel production [D]:[Ph.D.]. United States:Georgia Institute of Technology,14-38.
    Oliveira S C, Pereira F M, Ferraz A, et al.2000. Mathematical modeling of controlled-release systems of herbicides using lignins as matrices[J]. Applied Biochemistry and Biotechnology, 84-86:595-615.
    Onda A, Ochi T, Yanagisawa K.2009. Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal conditions[J]. Topics in Catalysis,52: 801-807.
    Oscar L. M.2009. Dilute sulfuric acid pretreatment of switchgrass in microwave reactor for biofuel conversion:An investigation of yields, kinetics, and enzymatic digestibility of solids[D]:[Ph.D.]. United States:Virginia Commonwealth University,21-54.
    Pappu V K S, Yanez A J, Peereboom L, et al.2011. A kinetic model of the Amberlyst-15 catalyzed transesterification of methyl stearate with n-butanol[J]. Bioresource Technology,102: 4270-4272.
    Parsell T H, Owen B C, Klein I, et al.2013. Cleavage and hydrodeoxygenation (HDO) of C-O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis[J]. Chemical Science,4: 806-813.
    Parajuli D, Inoue K, Ohto K, et al.2005. Adsorption of heavy metals on crosslinked lignocatechol: a modified lignin gel[J]. Reactive & Functional Polymers,62:129-139.
    Peng B X, Yao Y, Zhao C, et al.2012. Towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts[J]. Angewant Chemie International Edition, 51:2072-2075.
    Peng B X, Yuan X G, Chen Zhao C, et al.2012. Stabilizing catalytic pathways via redundancy:-selective reduction of microalgae oil to alkanes[J]. Journal of the American Chemical Society,134(22):9400-9405.
    Peng B X, Zhao C, Kasakov S, et al.2013. Manipulating catalytic pathways:deoxygenation of palmitic acid on multifunctional catalysts[J]. Chemistry-A European Journal,19:4732-4741.
    Perezdrienko I V, Molodozhenyuk T B, Shermatov B E, et al.2001. Effect of carbonization temperature and activation on structural formation of active lignin carbons[J]. Russian Journal of Applied Chemistry,74(10):1650-1652.
    Perez N A, Rincon G, Delgado L A, et al.2006. Use of biopolymers for the removal of heavy metals produced by the oil industry—A feasibility study[J]. Adsorption,12:279-286.
    Pienkos P T, Zhang M.2009. Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates[J]. Cellulose,16(4):743-762.
    Pietrzak R.2009. XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal[J]. Fuel,88:1871-1877.
    Pietre M K de, Almeida L C P, Landers R, et al.2010. H3PO4- and H2SO4-treated niobic acid as heterogeneous catalyst for methyl ester production[J]. Reaction Kinetics Mechanisms and Catalysis,99:269-280.
    Pua F L, Fang Z, Zakaria S, et al.2011. Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin[J]. Biotechnology for Biofuels,4: 56-63.
    Qiu F X, Li Y H, Yang D Y, et al.2011. Heterogeneous solid base nanocatalyst:Preparation, characterization and application in biodiesel production[J]. Bioresource Technology,102: 4150-4156.
    Ragauskas A J, Williams C K, Davison B H, et al.,2006. The path forward for biofuels and biomaterials[J]. Science,27:484-489.
    Ramadhas A S, Jayaraj S, and Muraleedharan C.2005. Biodiesel production from high FFA rubber seed oil[J]. Fuel,84:335-340.
    Ramos M J, Fernandez C M, Casas A, et al.2009. Influence of fatty acid composition of raw materials on biodiesel properties[J]. Bioresource Technology,100:261-268.
    Rao B V S K, Mouli K C, Rambabu N, et al.2011. Carbon-based solid acid catalyst from de-oiled canola meal for biodiesel production[J].Catalysis Communications.,14:20-26.
    Ren H F, Zhou Y G, Liu L.2013. Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids[J]. Bioresource Technology,129:616-619.
    Richard-Hess J, Wright CT, Kenney KL.2007. Cellulosic biomass feedstocks and logistics for ethanol production[J]. Biofuels, Bioproducts, and Biorefining,1:181-190.
    Rivers D B, Emert G H.1987. Lignocellulose pretreatment:A comparison of wet and dry ball attrition[J]. Biotechnology Letters,9(5):365-368.
    Rozmyslowicz R, Maki-Arvela P, Tokarev A, et al.2012. Influence of hydrogen in catalytic deoxygenation of fatty acids and their derivatives over Pd/C[J]. Industrial and Engineering. Chemistry Research,51:8922-8927.
    Rosas J M, Bedia J, Rodriguez-Mirasol J, et al.2010. On the preparation and characterization of chars and activated carbons from orange skin[J]. Fuel Processing Technology,91:1345-1354.
    Rosas R R, Bedia J, Lallave M, et al.2010. The production of submicron diameter carbon fibers by the electrospinning of lignin[J]. Carbon,48:696-705.
    Ruiz-Rosas R, Bedia J, Lallave M, et al.2010. The production of submicron diameter carbon fibers by the electrospinning of lignin[J]. Carbon,48:696-705.
    Saha B C.2003. Hemicellulose bioconversion[J]. Journal of Ind Microbiology and Biotechnology, 30:279-291.
    Santhy K, Selvapathy P.2006. Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon[J]. Bioresource Technology,97:1329-1336.
    Santillan-Jimenez E, Crocker M.2012. Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation/decarbonylation[J]. Journal of Chemical Technology & Biotechnology,87:1041-1050.
    Sarkanen K V, Ludwig C H.1971. Lignin:Occurance, Formation, Structure and Reactions[M]. New York:Wiley-Interscience,639-694.
    Sarkar B, Sridhar S, Saravanan K, et al.2010. Preparation of fatty acid methyl ester through temperature gradient driven pervaporation process[J]. Chemical Engineering Journal,162: 609-615.
    Schuchardt U, Vargas R M, and Gelbard G.1996. Transesterification of soybean oil catalyzed by alkylguanidines heterogenized on different substituted polystyrenes [J]. Journal of Molecular Catalysis a-Chemical,109:37-44.
    Serio M D, Ledda M, Cozzolino M, et al.2006. Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts[J]. Industrial & Engineering Chemistry Research,45, 3009-3014.
    Shevchenko S M and Bailey G W.1996. Life after death:Lignin-humic relationships reexamined[J]. Critical Reviews in Environmental Science and Technology,26(2):95-153.
    Shi N, Liu Q Y, Zhang Q, et al.2013. High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system[J]. Green Chemistry,15: 1967-1974.
    Sharma R K, Wcoten J B, Baliga V L, et al.2004. Characterization of chars from pyrolysis of lignin[J]. Fuel,83:1469-1482.
    Shi J C, Gao H Y, Xia Y M, et al.2013. Efficient process for the direct transformation of cellulose and carbohydrates to 5-(hydroxymenthyl)furfural with dual-core sulfonic acid ionic liquids and co-catalysts[J]. RSC Advances,21(3):7782-7790.
    Shu Q, Zhang Q, Xu G H, et al.2009. Synthesis of biodiesel from cottonseed oil and methanol using a carbon-based solid acid catalyst[J]. Fuel Processing Technology,90:1002-1008.
    Shu Q, Gao J X, Liao Y H et al.2011. Reaction kinetics of biodiesel synthesis from waste oil using a carbon-based solid acid catalyst[J]. Chinese Journal of Chemical Engineering,19(1): 163-168.
    Simakova I, Rozmyslowicz B, Simakova O, et al.2011. Catalytic deoxygenation of C18 fatty acids over mesoporous Pd/C catalyst for synthesis of biofuels[J]. Topics in Catalysis,54: 460-466.
    Sun Y, Cheng J Y.2002. Hydrolysis of lignocellulosic materials for ethanol production:a review[J]. Bioresource Technology,83(1):1-11.
    Small C C, Hashisho Z, Ulrich A C.2012. Preparation and characterization of activated carbon from oil sands coke[J]. Fuel,92:69-76.
    Sjostrom E.1981. Wood Chemistry:Fundamentals and Applications[M]. Orlando:Academic Press,68-82.
    Song J L, Feng S A, Zhao J H, et al.2010. Activated carbon catalyzing the formation of carbon nanotubes[J]. Materials Research Bulletin,45:1234-1239.
    Strassberger Z, Alberts A H, Louwerse M J, et al.2013. Catalytic cleavage of lignin β-O-4 link mimics using copper on alumina and magnesia-alumina[J]. Green Chemistry,15:768-774.
    Suganuma S, Nakajima K, Kitano M, et al.2008. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH Groups[J]. Journal of the American Chemical Society,130: 12787-12793.
    Suhas, Carrott P J M, Ribeiro Carrott M ML.2007. Lignin-from natural adsorbent to activated carbon:A review[J]. Bioresource Technology,98:2301-2312.
    Suhas, Carrott P J M, Ribeiro Carrott M M L.2009. Using alkali metals to control reactivity and porosity during physical activation of demineralised kraft lignin[J]. Carbon,47:1012-1017.
    Suppes G J, Bockwinkel K, Lucas S, et al.2001. Calcium carbonate catalyzed alcoholysis of fats and oils[J]. Journal of the American Oil Chemists Society,78:139-145.
    Sun J, Rood M J, Rostam-Abadi M, et al.1996. Natural gas storage with activated carbon from a bituminous coal[J]. Gas Separation and Purification,10:91-96.
    Tabasso S, Montoneri E, Carnaroglio D, et al.2014. Microwave-assisted flash conversion of non-edible polysaccharides and post-harvest tomato plant waste to levulinic acid[J]. Green Chemistry,16:73-76.
    Tang X, Hu L, Sun Y, et al.2013. Conversion of biomass to novel platform chemical gamma-valerolactone by selective reduction of levulinic Acid[J]. Progresss in Chemistry, 25(11):1906-1914.
    Tang Y, Meng M, Zhang J, et al.2011. Efficient preparation of biodiesel from rapeseed oil over modified CaO[J]. Applied Energy,88:2735-2739.
    Tavakoli-Hoseini N, Davoodnia A.2011. Carbon-based solid acid as an efficient and reusable catalyst for one-pot synthesis of tetrasubstituted imidazoles under solvent-free conditions[J]. Chinese Journal of Chemistry,29:203-206.
    Taylor N G.2008. Cellulose biosynthesis and deposition in higher plants[J]. New Phytologist, 178(2):239-252.
    Teng GY, Gao LJ, Xiao GM, et al.2009. Transesterification of soybean oil to biodiesel over heterogeneous solid base catalyst[J]. Energy and Fuels,23:4630-4634.
    Thielemans W.2004. Lignin and carbon nanotube utilization in bio-based composites [D]: [Ph.D.]. United States:University of Delaware,22-24.
    Thitsartarn W, Kawi S.2011. An active and stable CaO-CeO2 catalyst for transesterification of oil to biodiesel[J]. Green Chemistry,13:3423-3430.
    Toledano A, Serrano L, Labidi J, et al.2013. Heterogeneously catalysed mild hydrogenolytic depolymerisation of lignin under microwave irradiation with hydrogen-donating solvents[J]. ChemCatChem,5:977-985.
    Toda M, Takagaki A, Okamura M, et al.2005. Biodiesel made with sugar catalyst[J]. Nature, 438:178-179.
    Torne-Fernandez V, Mateo-Sanz J M, Montane D, et al.2009. Statistical optimization of the synthesis of highly microporous carbons by chemical activation of kraft lignin with NaOH[J]. Journal of Chemical and Engineering Data,54,2216-2221.
    Ugartondo V, Mitjans M, & Vinardell M P.2009. Applicability of lignins from different sources as antioxidants based on the protective effects on lipid peroxidation induced by oxygen radicals[J]. Industrial Crops and Products,30:184-184.
    Uraki Y, Taniwatashi R, Kubo S, et al.2000 Activated carbon sheet prepared from softwood acetic acid lignin[J]. Journal of Wood Science,46:52-58.
    Uraki Y, Nakatani A, Kubo S, et al.2001. Preparation of activated carbon fibers with large specific surface area from softwood acetic acid lignin[J]. Journal of Wood Science,47: 465-469.
    USDOE and USDA.2008. Sustainability of Biofuels:Future Research Opportunities[R]. http://genomicsgtl.energy.gov/biofuels/sustainability/.
    Umdu E S, Tuncer M, Seker E.2009. Transesterification of Nannochloropsis oculata microalga's lipid to biodiesel on Al2O3 supported CaO and MgO catalysts[J]. Bioresource Technology,100: 2828-2831.
    Vazquez M, Oliva M, Tellez-Luis S J, et al. Hydrolysis of sorghum straw using phosphoric acid: evaluation of furfural production[J]. Bioresource Technology,98(16):3053-3060.
    Vyas A P, Subrahmanyam N, Patel PA.2009. Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst[J]. Fuel,88:625-628.
    Wang H M, Male J, and Wang Y.2013. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catalysis,3:1047-1070.
    Wang Y H, Wang J, Fan G L, et al.2012. Synthesis of a novel Ni/C catalyst derived from a composite precursor for hydrodechlorination[J]. Catalysis Communications,19:56-60.
    Wang X Y and Rinaldi R.2012. Solvent effects on the hydrogenolysis of diphenyl ether with raney nickel and their implications for the conversion of lignin[J]. ChemSusChem,5:455-466.
    Wang Y X, Liu B S, Zheng C.2010. Preparation and adsorption properties of corncob-derived activated carbon with high surface area[J]. Journal of Chemical and Engineering Data,55, 4669-4676.
    Wan T, Yu P, Wang S G, et al.2009. Application of sodium aluminate as a heterogeneous base catalyst for biodiesel production from soybean oil[J]. Energy and Fuels,23:1089-1092.
    Watson P, Hussein A, Reath S, et al.2003. The kraft pulping properties of Canadian red and sugar maple[J].TAPPI Journal,2:26-32.
    Watkins R S, Adam F L, Wilson K.2004. Li-CaO catalysed tri-glyceride transesterification for biodiesel applications[J] Green Chemistry.6:335-340.
    Weingarten R, Conner Wm C, Huber G W.2012. Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy & Environmental Science,2012,5,7559-7574.
    Weiss N, Borjesson J, Pedersen L S, et al.2013. Enzymatic lignocellulose hydrolysis:Improved cellulase productivity by insoluble solids recycling[J]. Biotechnology for Biofuels,2013,6:5.
    Werpy T, Petersen G, Aden A, et al.2004. Top value added chemicals from biomass:Volume I-Results of screening for potential candidates from sugars and synthesis gas[R]. Pacific Northwest National Laboratory, (PNNL) National Renewable Energy Laboratory (NREL), 25-76.
    Wickholm K, Larsson P T, Iversen T.1998. Assignment of non-crystalline forms in cellulose I by CP/MAS carbon-13 NMR spectroscopy[J]. Carbohydrate Research,312(3):123-129.
    Wickholm K, Hult E L, Larsson P T, et al.2001. Quantification of cellulose forms in complex cellulose materials:a chemometric model[J]. Cellulose,8(2):139-148.
    Wu Y, Zhang S Z, Guo X Y, et al.2008. Adsorption of chromium(Ⅲ) on lignin[J]. Bioresource Technology,99:7709-7715.
    Wu F C, Wu P H, Tseng R L, et al.2010. Preparation of activated carbons from unburnt coal in bottom ash with KOH activation for liquid-phase adsorption[J]. Journal of Environmental Management,91:1097-1102.
    Wyman C E.1994. Ethanol from lignocellulosic biomass-technology, economics, and opportunities[J]. Bioresource Technology,50(1):3-16.
    Xiao Z H, Jin S H, Pang M, et al.2013. Conversion of highly concentrated cellulose to 1,2-propanediol and ethylene glycol over highly efficient CuCr catalysts[J]. Green Chemistry, 15:891-895.
    Xie W L, Peng H, and Chen L G.2006. Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil[J]. Journal of Molecular Catalysis a-Chemical,246:24-32.
    Xie X F, Goodell B, Zhang D J, et al.2009. Characterization of carbons derived from cellulose and lignin and their oxidative behavior[J]. Bioresource Technology,100:1797-1802.
    Xi J X, Zhang Y, Xia Q N, et al.2013. Direct conversion of cellulose into sorbitol with high yield by a novel mesoporous niobium phosphate supported Ruthenium bifunctional catalyst[J]. Applied Catalysis A:General,459:52-58.
    Xing H B, Wang T, Zhou Z H, et al.2005. Novel bronsted-acidic ionic liquids for esterifications[J]. Industrial & Engineering Chemistry Research,44:4147-4150.
    Xiang Q.2002. Conversion of lignocellulosic substrate into chemicals-kinetic study of dilute acid hydrolysis and lignin utilization [D]:[Ph.D.]. United States:Auburn University,122-154.
    Yakovlev V A, Khromova S A, Sherstyuk O V, et al.2009. Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel[J]. Catalysis Today,144: 362-366.
    Yan D B, Krishnagopalan G A.2003. Dynamic modeling of carbohydrates degradation in kraft pulping of softwood[J]. Appita Journal,56(5):391-396.
    Yang Y X, Ochoa-Hernandez C, O'Shea V A de la P, et al.2012. Ni2P/SBA-15 as a hydrodeoxygenation catalyst with enhanced selectivity for the conversion of methyl oleate into n-octadecane[J]. ACS Catalysis,2:592-598.
    Yan L, Sorial G A.2011. Chemical activation of bituminous coal for hampering oligomerization of organic contaminants[J]. Journal of Hazardous Materials,197:311-319.
    Yoosuk B, Krasae P, Puttasawat B, et al.2010. Magnesia modified with strontium as a solid base catalyst for transesterification of palm olein[J]. Chemical Engineering Journal,162:58-66.
    Yu H, Jin Y G, Li Z L, et al.2008. Feng Peng, Hongjuan Wang. Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst[J]. Journal of Solid State Chemistry,181:432-438.
    Zabeti M, Wan Daud W M A, Aroua M K.2009. Activity of solid catalysts for biodiesel production:A review[J]. Fuel Processing Technology 90:770-777.
    Zaldivar J, Nielsen J, and Olsson L.2001. Fuel ethanol production from lignocellulose:a challenge for metabolic engineering and process integration[J]. Applied Microbiology and Biotechnology,56(1-2):17-34.
    Zhang C X, Zhang R, Xing B L, et al.2010. Effect of pore structure on the electrochemical perform-ance of coal-based activated carbons in non-aqueous electrolyte[J]. New Carbon Materials,25(2):129-133.
    Zhang H Y, Xiao R, Jin B S, et al.2013. Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst[J]. Bioresource Technology,140:256-262.
    Zhang W, Ma Y F, Xu Y Z, et al.2013. Lignocellulosic ethanol residue-based lignin-phenol-formaldehyde resin adhesive[J]. International Journal of Adhesion & Adhesives, 40:11-18.
    Zhang Y, Dube M A, McLean D D, et al.2003. Biodiesel production from waste cooking oil:1. Process design and technological assessment[J]. Bioresource Technology,89:1-16.
    Zhang S, Zu Y G, Fu Y J, et al.2010. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst[J]. Bioresource Technology,101:931-936.
    Zhang L, Xian M, He Y C, et al.2009. A Brasted acidic ionic liquid as an efficient and environmentally benign catalyst for biodiesel synthesis from free fatty acids and alcohols[J]. Bioresource Technology,100:4368-4373.
    Zheng Y, Pan Z L, Zhang R H.2009. Overview of biomass pretreatment for cellulosic ethanol production[J]. International Journal of Agricultural and Biological Engineering,2(3):51-68.
    Zhou M S, Qiu X Q, Yang D J. et al.2007. High-performance dispersant of coal-water slurry synthesized from wheat straw alkali lignin[J]. Fuel Processing Technology,88:375-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700