用户名: 密码: 验证码:
银杏果多糖的提取分离及功能特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银杏(Ginkgo biloba L)又称白果树、公孙树,属银杏科银杏属裸子植物,主产中国(梁立兴,1988)。其叶、果和外种皮等皆具有药用价值,被称为“全身都是宝的活化石”(张丽娇,等.2009)。银杏果是银杏树的种子,因其中种皮为白色的硬壳,故俗称白果。近年来,国内外对银杏果的研究主要集中在银杏酸、银杏酚、银杏蛋白及银杏油上,对银杏果多糖的报道很少。本研究以银杏果为原料,对银杏果中淀粉的理化性质和糊化特性进行了研究,对银杏果中非淀粉多糖的提取、分离纯化、结构鉴定、降血脂以及抗氧化活性进行了详细研究,以期为银杏果的研究和开发奠定理论基础。主要结论如下:
     (1)从银杏果中提取银杏果淀粉,对其特征性状进行了分析,结果表明:银杏果淀粉中的直链淀粉含量较高,约为32.1%;银杏果淀粉颗粒多呈多面球形和卵圆形,分子大小分布较为均匀,淀粉颗粒表面较为光滑;银杏果淀粉的透明度、溶解度、膨胀度比玉米淀粉高,比马铃薯淀粉低;凝沉性、冻融稳定性比玉米淀粉强,比马铃薯淀粉差;银杏果淀粉的粘度介于马铃薯淀粉和玉米淀粉之间;与马铃薯淀粉和玉米淀粉相比,银杏果淀粉的热稳定性差、抗老化能力弱;随着淀粉乳浓度的增加,银杏果淀粉糊的粘度增大,热稳定性下降;随着转数的增加,银杏果淀粉糊的粘度下降、热稳定性和抗老化性增强、糊化时间缩短、糊化温度降低;食盐的添加降低了银杏果淀粉糊的粘度、提高了热稳定性、增强了抗老化能力、出峰时间延长、糊化温度升高;蔗糖的添加提高了银杏果淀粉糊的粘度,延长糊化时间;柠檬酸的添加降低了银杏果淀粉糊的粘度和热稳定性,增强了银杏果淀粉糊的抗老化能力。
     (2)分别将热水浸提法、微波法应用于银杏果非淀粉多糖的提取,并采用正交分析优化提取工艺,得到两种提取方法的最佳工艺条件。热水浸提法:料液比为25mL/g、温度为90℃、时间为5h,在此条件下银杏果多糖的提取率为2.76%。微波法:微波辅助浸提法提取银杏白果多糖的最佳工艺条件为:料液比为40mL/g、微波功率为700W、萃取温度为50℃、萃取时间为5min,在此条件下银杏果多糖的提取率为4.87%。可以看出,微波提取法成本低,效率高,但微波法有可能会对多糖结构造成一定的影响。
     (3)研究了银杏果非淀粉多糖的脱蛋白、脱色工艺,并对工艺条件进行了优化。
     脱蛋白工艺:通过对Sevage法、三氯乙酸法、盐酸法和酶+Sevage法四种脱蛋白方法的比较,选取了木瓜蛋白酶联合Sevage法,在单因素试验的基础上进行正交试验,得出了木瓜蛋白酶联合Sevage法脱蛋白的最佳条件:酶用量O.1g,酶解温度40℃,酶解时间1.5h、溶液pH为7,在此条件下的蛋白脱除率为71.2%,多糖损失率15.3%。
     脱色工艺:采用大孔树脂法对银杏果多糖进行脱色,通过静态试验筛选出了脱色1号、D900和DA-201C三种树脂进行正交试验,通过正交试验和动态吸附试验对脱色条件进行优化,结果表明:脱色1号是银杏果多糖脱色的理想树脂。色素脱除的优化条件为:pH值为4.5,温度为25℃,上柱速度为1.5mL/min,上样浓度为选择4mg/mL,柱容量为2BV的条件下,多糖的脱色率为82.37%,多糖保留率为79.12%,蛋白去除率为88.39%。
     (4)脱色脱蛋白后的银杏果多糖(命名为GBSP)经过DEAE-52纤维素柱层析,分别用蒸馏水、0.lmol/L NaCl、0.3mol/L NaCl、0.5mol/L NaCl洗脱,主要得到蒸馏水洗脱组分GBSP1和0.1mol/L NaC洗脱组分GBSP2两个组分,得率分别为29.7%和37.9%。将GBSP1经SephadexG-200葡聚糖凝胶层析进一步分离纯化,经蒸馏水洗脱得到两个组分GBSP1-1和GBSP1-2,纯度分别为79.48%、100%。将纯化所得银杏果多糖GBSP1-2,经过紫外吸收光谱、SephadexG-200葡聚糖凝胶层析柱和HPLC检测验证为较纯的多糖,纯度可达100%。
     (5)银杏果多糖GBSP1-2理化性质表明:GBSP1-2中不含淀粉、蛋白质、还原糖等;为淡黄色粉末固体,无特殊气味;易溶于热水,不溶于乙醇、乙醚、丙酮等有机溶剂。液相色谱分析法分析银杏果多糖GBSP1-2的单糖组成为:甘露糖、半乳糖醛酸、葡萄糖和半乳糖。银杏果多糖GBSP1-2红外光谱显示,银杏果多糖GBSP1-2具有多糖的特征吸收峰,可推测多糖GBSP1-2是含有β-吡喃糖苷键的酸性多糖。
     (6)银杏果非淀粉多糖降血脂功能作用的试验结果表明:银杏果多糖能显著降低经高脂饲料喂养后小鼠的体重,能使肝指数下降、肾指数升高;银杏果多糖能显著降低高脂血症小鼠血清中TC、TG和LDL-C的含量、提高HDL-C的含量,且高剂量组和阳性对照组各项指标之间均无明显差异,说明高剂量的银杏果多糖具有降血脂功能,对高脂血症的发生有一定的预防作用;银杏果多糖能够显著降低动脉粥样硬化指数(AI),说明其对冠心病和动脉粥样硬化有一定的预防作用。
     (7)银杏果非淀粉多糖体外抗氧化活性验结果表明,银杏果多糖对DPPH自由基、超氧自由基和羟基自由基的清除效果显著,且随质量浓度的增大而增大,但清除效果不如抗氧化剂Vc。
     (8)银杏果非淀粉多糖体内抗氧化活性试验对高脂血症模型小鼠体内血清和肝脏中蛋白质、SOD、GSH-Px、CAT和MDA的变化进行了研究。结果显示,高脂血症可使小鼠血清和肝脏中蛋白质、SOD、GSH-Px和CAT的含量降低、MDA的含量升高,而银杏果多糖则能显著提高血清和肝脏中蛋白质、SOD、GSH-Px和CAT的含量、降低血清和肝脏中MDA的含量,具有很好的抗氧化作用。
Ginkgo{Ginkgo biloba L), also known as white nut,maidenhair tree, is a gymnosperm Ginkgo Ginkgo and is mainly produced in China (Liang Lixing,1988). Leaves, nuts and testa mused has medicinal value, known as the "body is a treasure living fossil"(Zhang Li Jiao, etc.,2009). Ginkgo ginkgo is seeds of tree, due to which the seed coat of white hard shell and it is commonly known as ginkgo. In recent years, research of ginkgo mainly is in ginkgo acid, ginkgo phenol, the ginkgo protein and oil ginkgo but rarely the polysaccharide reports of ginkgo nut. In this study, ginkgo nut as raw material, physical and chemical properties of the ginkgo starch polysaccharides and pasting properties were studied, and the non-starch polysaccharides ginkgo extract, purification, structural identification, lipid-lowering effect and antioxidantdetailed study of the theoretical basis for the research and development of the ginkgo. The main conclusions are as follows:
     (1) Ginkgo starch polysaccharide extracted from ginkgo nut and its characteristic traits were analyzed, the results showed that:ginkgo starch amylose content is higher, and at around32.1%; Ginkgo nut starch granules is mostly multi-faceted spherical and oval, which molecular size distribution is more uniform and smooth surface of starch granules. Transparency, solubility, expansibility, retrogradation and freeze-thaw stability of ginkgo starch are better than corn but worse than potato; Viscosity of ginkgo starch is between corn and potato, close to potato, twice as much as corn. Compare with potato and corn, the thermostability and anti-aged of ginkgo starch are worse; With the increasing of the concentration of starch milk, the starch viscosity is strengthened and thermostability is weakened. With the increasing of the speed, the starch thermostability and anti-aged are strengthened and viscosity is weakened, the time of gelatinization is shorter and the temperature is lower. The addition of sodium chloride decreases the viscosity and improves the anti-aging and thermostability, makes the peak time later and the pasting temperature higher. The addition of sucrose improves the viscosity, makes the pasting time later. The addition of citric acid decreases the viscosity and thermostability and strengthens the anti-aging.
     (2) The hot water extraction and the microwave method respectively applied to the extraction of ginkgo non-starch polysaccharides and orthogonal optimize the extraction process, to get the optimum conditions of the two extraction methods. The hot water extraction:solid-liquid ratio to25mL/g, a temperature of90℃and for5h, and2.76%of the the polysaccharides extraction rate under this condition ginkgo nut.
     Microwave method:Microwave-assisted Extraction of Ginkgo biloba ginkgo polysaccharide optimum conditions:the solid-liquid ratio of40mL/g, microwave power to700W, extraction temperature of50℃and extraction time of5min under this condition ginkgo nut polysaccharide extraction rate of4.87%. As it can be seen, the microwave extraction is low of cost, high efficiency, but the microwave method might have affected in polysaccharide structure.
     (3) Non-starch polysaccharides of ginkgo nut of the deproteinized, bleaching process, and the process conditions were optimized.
     The deproteinized process:Comparison of four methods of removing protein of the Sevage law, trichloroacetic acid, hydrochloric acid and enzymes+Sevage law, and selected Papain Stock Sevage method on the basis of single factor test orthogonal test of which was out the papain Stock Sevage of law deproteinized the best conditions:enzyme dosage0.1g, reaction temperature40℃, the hydrolysis time1.5h and the pH of the solution is7Under these conditions, and the protein removal rate of71.2%, and polysaccharideloss rate of15.3%.
     Bleaching process:decolorization of ginkgo nut polysaccharide by macroporous resin method, and screened out by static tests Decolorization No.1, the D900and DA-201C of three resins orthogonal test, the bleaching conditions by orthogonal test and dynamic assayoptimization, and results show that:Decolorization No.1is a ideal resin of ginkgo nut polysaccharide decolorization. The pigment removal optimal conditions:the pH of the solution is4.5, a temperature of25℃, the speed of the column was1.5mL/min, the concentration of the sample of selection is4mg/mL and the column capacity is2BV conditions under polysaccharide decolorization rate of82.37%, polysaccharides retention rate of79.12%, and protein removal rate of88.39%.
     (4) Bleaching the polysaccharide after the deproteinized after DEAE-52cellulose column chromatography, and respectively with distilled water,0.1mol/L NaCl,0.3mol/L NaCl,0.5mol/L NaCl elution primarily and then to get GBSP1and GBSP2, two a component, and yield29.7%and37.9%, respectively. GBSP1by the SephadexG-200dextran gel chromatography are further isolated and purified and then distilled water afforded two components GBSP1-1, and GBSP1-2, and purity of79.48%and100%, respectively. Purified ginkgo nut polysaccharide of GBSP1-2after UV absorption spectrum, Sephadex G-200Sephadex chromatography and HPLC validation pure polysaccharide, up to100%purity.
     (5) Physical and chemical properties show that:the polysaccharide GBSP1-2of ginkgo nut does not contain starch, protein, reducing sugar and so on; solid as a pale yellow powder, no special smell; soluble in water, insoluble in alcohol, ether, acetone and other organic solvents. By high performance liquid chromatography analysis the the ginkgo polysaccharide GBSP1-2single sugar composition:mannose, galactose, glucuronic acid, glucose and galactose. The infrared spectrum of the polysaccharide GBSP1-2of the Ginkgo nut show that ginkgo nut the polysaccharide GBSP1-2is a polysaccharide characteristic absorption peak and speculated that the polysaccharide GBSP1-2is the acidic polysaccharide containing beta-pyran-glycosidic bond.
     (6) The ginkgo nut NSP lipid-lowering function of the test results show that:ginkgo nut polysaccharides can significantly reduce the weight by the high fat diet mice, liver index can decrease,renal index increased; ginkgo nut polysaccharides can significantly reduced the TC, TG and LDL-C, increased HDL-C of mice, and no significant differences between the high-dose group and positive control group the indicators, indicating that high doses of ginkgo nut polysaccharide with lipid-lowering function for the occurrence of high-hyperlipidemia some preventive effect; ginkgo nut polysaccharides can significantly reduce the atherosclerosis index (AI) and have some preventive effect on coronary heart disease and atherosclerosis hardening.
     (7) Ginkgo non-starch polysaccharides in vitro antioxidant activity of experimental results show that ginkgo nut polysaccharides on DPPH radical, superoxide and hydroxyl radicals scavenging effect was significant, and increases with the increase of the mass concentration, but Cleareffective as antioxidants Vc.
     (8) Non-starch polysaccharides of ginkgo nut antioxidant activity in vivo experiment use hyperlipidemia model mice and research the serum and liver protein, SOD, GSH-Px, CAT and MDA changes. The results showed that hyperlipidemia mice can in serum and liver protein, SOD, GSH-Px and CAT decreased, MDA content increased but ginkgo nut polysaccharides can significantly improve the protein in serum and liver SOD GSH-Px and CAT content, decreased serum and liver MDA content, and with good antioxidant.
引文
1. 敖自华,王璋,许时婴.银杏淀粉特性的研究[J].食品科学,1999,20(10):35-29
    2. 白卫东,王琴,李伟雄.不同介质条件对银杏淀粉糊流变特性的影响[J].农业工程学报,2006,22(7):3841
    3. 陈传平.2007.金樱子多糖的提取、纯化及其降血脂作用的研究[D].合肥:安徽师范大学
    4. 陈克克,张红旭.高效液相色谱法分析地瓜儿多糖的单糖组成[J].食品科技,2008,33(11):262-265
    5. 陈群.2000.银杏白果多糖的提取、免疫调节作用和抗肿瘤活性研究[D].济南:山东师范大学
    6. 陈群,杨桂文,安利国.银杏白果的提取、纯化和分析[J].中国药学杂志,2002,37(5)331-333
    7. 陈文静,季宇彬.2007.五味子多糖药理作用的研究进展[J].食品与药品,9(12):66-67
    8. 陈文英,王成章,高彩霞,等.白果中总黄酮的含量及其油脂的化学成分研究[J].生物质化学工程,2006,40(6):6-8
    9. 陈西娟,王成章,陈虹霞,等.白果油的提取工艺及其化学成分研究[J].西北植物学报,2010,30(4):645-651
    10.陈向涛.2008.中药活性多糖研究与展望[A].2008临床中药学学术研讨会论文集[C]
    11.陈旭,汪震.2000.白果的妙用[A].全国中西医结合教育学术研讨会论文集[C]
    12.陈彦,孙玉军,方伟.威灵仙多糖的抗氧化活性研究[J].中华中医药杂志,2008,23(3):267
    13.陈永亮,蔡建琦,李丽,等.微波法提取旋覆花多糖工艺研究[J].甘肃科技,2006,22(5):147-149
    14.池爱平,陈锦屏.微波辅助提取绞股蓝多糖的工艺研究[J].食品科学,2007,28(7):181-184
    15.初敏,齐锡祥,朱飞,等.多糖研究概述[J].中药研究与信息,2003,5(4):18-20
    16.丛媛媛.2008.新疆胀果甘草多糖的分离纯化、结构分析和生物活性研究[D].乌鲁木齐:新疆医科大学
    17.戴红旗,鄢贵龙,刘沐东,等.葛根提取物抗氧化活性研究[J].安徽农业科学,2008(24)
    18.戴金凤,李磊.紫萁多糖单糖组成及摩尔比GC分析[J].江西农业大学学报,2001,23(4):492494
    19.邓乾春,陈春艳,田斌强,等.化学发光法测定白果白蛋白的体外抗氧化活性[J].中草药,2007,38(5):685-687
    20.丁成丽,刘力,王强.柱前衍生高效液相色谱法分析新疆桃胶的多糖组成[J].分析科学学报,2012,28(3):319-322
    21.丁红秀.2007.毛竹叶多糖构成及生物活性研究[D].南昌:南昌大学
    22.窦佩娟;张静;孙润广;焦自明;李佳媚;茶树菇多糖的提取、气相色谱分析和AFM观测以及活性研究[J];食品工业科技;2012,33(2):93-96
    23.董福英,程传格,刘建华,等.白果中脂肪酸的GC-MS分析[J].分析测试学报,1999,18(5):72-75
    24.董晶晶,李晓坤,杨云,等.首乌藤多糖酶法提取工艺研究[J].中国现代应用药学,2011,28(6):519-523
    25.范延丽.2008.花桑寄生多糖分离、纯化及抗肿瘤活性的研究[D].福州:福建师范大学
    26.方一泓.2007茶树菇子实体多糖的分离纯化及生物活性研究[D].福州:福建师范大学
    27.丰朝霞,张鸿.分光光度法测定茯苓中多糖总糖含量[J].时珍国医国药,2000,11(2):109-110
    28.丰贵鹏.多糖结构的研究方法及其活性的研究进展[J].平原大学学报,2006,23(5):128-130
    29.冯婷,何聪芬,赵华,等.植物多糖研究概况[J].北京工商大学学报(自然科学版),2004,22(5):14
    30.高晓旭.2009.北五味子多糖理化性质、结构及活性研究[D].沈阳:沈阳农业大学
    31.葛霞,陈婷婷,蔡教英,等.青钱柳多糖抗氧化活性的研究[J]中国食品学报,2011,(05)
    32.耿敬章;银杏中营养成分和功能因子的研究进展[J];氨基酸和生物资源;2011,33(1):63-66
    33.顾正彪,王东良.小麦A淀粉和小麦B淀粉的比较[J].中国粮油学报,2004,19(6):28-30
    34.郭敏亮,姜涌明.考马斯亮蓝显色液组分对蛋白质测定的影响[J].生物化学与生物物理进展,1996,23(6):558-561
    35.郭素芬,包海花,李志强,等.甘薯僵勺抗家兔主动脉粥样硬化形成作用[J].中国动脉硬化杂志,2004,12(1)7:23-27
    36.韩春然,徐丽萍.黑木耳多糖的提取纯化及降血脂作用的研究[J].中国食品学报,2007,7(1):54-58
    37.韩强,林惠芬,朱玲莉.一些天然提取物对超氧自由基和羟基自由基的清除作用[J].日用化学工业,2000,30(3):14-21
    38.韩琴琴.高脂血症的原因及分类[J].实用老年医学,1998,(05):5-7
    39.郝桂堂,戴军,陈尚卫,等.夏枯草多糖的分离、纯化及结构初步分析[J].天然产物研究与开发,2007(19):591-594,625
    40.黄卉,王弘,刘欣.多糖的构效关系研究进展[J].广州食品工业科技,2004,20(3):159-161
    41.黄明圈,上官新晨,徐明生,等.青钱柳多糖降血脂作用的研究[J].江西农业大学学报.2011,(01)
    42.黄森.氧自由基与糖尿病发病机制[J].实用临床医学,2006,7(4):146-147
    43.黄文.2002白果活性蛋白的分离、纯化、结构及其生物活性研究[D].武汉:华中农业大学
    44.黄文,谢笔钧,王益.白果的研究和开发利用[J].湖北林业科技,002,3:41-42
    45.黄晓德,赵伯涛,钱骅,等.芦笋茎叶多糖的提取纯化研究[J].江西农业学报,2006,18(1):15-18
    46.江和源,将迎.茶叶多糖的微波辅助提取技术研究[J].食品科技,2003,(1):17-19
    47.孔庆胜,王彦英,蒋滢.南瓜多糖的分离、纯化及其降血脂作用[J].中国生化药物志,2000,21(3):30-1.
    48.李碧婵.红菇多糖体外抗氧化活性的研究[J].武夷学院学报,2010,(05)
    49.李春英.2002.甘草多糖提取纯化工艺研究[D].哈尔滨:东北林业大学
    50.李公斌.2006.黑木耳多糖分子修饰及功能与应用研究[D].哈尔滨:东北林业大学
    51.李飞.2009.山楂蜂花粉多糖提取、分离纯化、结构鉴定和生物活性的研究[D].北京:北京化工大学
    52.李妍.2005.荨麻多糖提取分离、结构分析及功能的研究[D].北京:中国人民解放军军事医学科学院
    53.李鹏,彭修娟,杨新杰.大孔吸附树脂技术在中药化学研究中的应用[J].亚太传统医药,2010,6(2):117-120
    54.李天金,翟树平,李洁,等.刺五加多糖提取纯化工艺的优化[J].安徽农业科学,2009,37(17): 7977-7980
    55.李先佳.2006.桑叶黄酮和多糖提取、纯化和分离工艺优化[D].贵阳:贵州大学
    56.李小定.2002.灰树花多糖的结构及其生物活性[D].武汉:华中农业大学
    57.李小平,陈锦屏,邓红,等.红枣多糖沉淀特性及抗氧化作用[J].食品科学,2005,26(10):214-216
    58.李新华,韩晓芳,于娜.荞麦淀粉的性质研究[J].2009,30(11):104-108
    59.李新华,杨强,王琳,等.银杏果淀粉与玉米、马铃薯淀粉理化性质的比较研究[J].食品工业科技,2012,33(9):142-145
    60.李新华,杨强,王琳.微波辅助提取银杏白果多糖的工艺研究[J].食品科技,
    61.李雪华,龙盛京.大枣多糖的提取与抗活性氧研究[J].广西科学,2000,7(1):54-56
    62.李忠海,徐廷丽,孙昌波,等.3种百合淀粉主要理化性质的研究[J].食品与发酵工业,2005,31(5):5-8
    63.梁立兴.中国银杏[M].济南:山东科学技术出版社,1988:2
    64.林爱琴.2004.仙人掌多糖的分离纯化[D].福州:福建师范大学
    65.林光荣,林清洪,李金雨,等.银杏酸对6种蔬菜病原菌物的抑制作用[J].热带作物学报,2010,31(3):480-484
    66.林文庭,张智芳.浒苔多糖降血脂及抗脂质过氧化作用.中国公共卫生,2009,25(5):567-569
    67.凌育赵.白花蛇舌草多糖的分离提取及含量测定[J].生物技术,2005,15(4):48-50
    68.柳红,张静.南瓜AP1多糖结构的分析和原子力显微镜研究[J].食品科学,2009,30(5):55-59
    69.刘宝磊,李超英.大孔树脂技术分离纯化皂苷及多糖类成分的研究[J].长春中医药大学学报,2009,25(03):136-137
    70.刘超,陈光亮,赵帜平,等.丹皮多糖对正常及高血糖小鼠的降血糖作用[J].安徽中医学院学报,1998,17(6):45-47
    71.刘成梅,付桂明,涂宗财,等.百合多糖降血糖功能研究[J].食品科学,2002,23(6):113
    72.刘大政.2008.黑木耳多糖的分离纯化及结构分析[D].长春:东北师范大学
    73.刘青,刘珍伶,周娟.金线莲多糖的体外抗氧化活性[J].华侨大学学报:自然科学版,2010,31(6):718-720.
    74.刘锐.多糖类物质的研究进展[J].安徽农业科学,2005,33(9):1722-1725
    75.刘树兴,赵芳.从天然植物中开发抗氧化剂的研究进展[J].食品研究与开发,2007,28(7):179
    76.刘霞,申湘忠.超声波辅助提取香瓜多糖工艺的优化[J].安徽农业科学,2011,39(10):6060-6062
    77.刘育玲,姚开,贾冬英,等.茶多糖酶法提取的优化条件及其对葡萄糖激酶活性的影响[J].食品科技,2010(2):134-137
    78.刘占峰,孙汉文.多糖的化学修饰研究进展[J].河北大学学报(自然科学版),2005,25(1):104-108
    79.罗丽萍,高荫榆,洪雪娥,等.薯蔓黄酮和多糖体内抗氧化作用研究[J].食品科学,2005,26(8):408-410.
    80.罗祖友,胡筱波,吴谋成.植物多糖的降血糖与降血脂作用[J].食品科学,2007,28(10):596-600
    81.倪德江.2003.乌龙茶多糖的形成特征、结构、降血糖作用及其机理[D].武汉:华中农业大学
    82.孟祥艳.2008,黄米淀粉理化特性的研究[D].重庆:西南大学
    83.聂少平,谢明勇,罗珍.微波技术提取茶多糖的研究[J].食品科学,2005,26(11):103-107
    84.聂永心.2011.黄伞子实体多糖的分离纯化、结构鉴定及生物活性的研究[D].泰安:山东农业大学
    85.齐斌.2005.黄精降血糖活性成分的提取、分离及结构鉴定[D].无锡:江南大学
    86.秦利鸿,曹建波,易伟松.绿茶多糖的扫描电镜制样新方法及原子力显微镜观察[J].电子显微学报,2009,8(2):162-167
    87.曲春香,沈颂东,王雪峰,等.用考马斯亮蓝测定植物粗体液中可溶性蛋白质含量方法的研究[J].苏州大学学报:自然科学版,2006,22(2):82-85
    88.冉靓.2006.两种植物多糖的分离纯化、结构鉴定及初步生物学活性的研究[D].重庆:重庆大学
    89.盛家荣,曾令辉,翟春,陈超球.多糖的提取、分离及结构分析[J].广西师院学报(自然科学版),1999,(4):49-54
    90.石磊,王勇,石勇,等.虎眼万年青多糖的原子力显微镜观察[J].吉林大学学报(医学版),2003,29(1):32-35
    91.石文娟.2008黄姜淀粉性质研究[D].重庆:西南大学
    92.孙群,阚健全,赵国华,等.活性多糖构效关系研究进展[J].广州食品工业科技,2004,20(1):104
    93.孙希云.2011.蓝莓多糖的分离纯化、结构鉴定及免疫活性研究[D].沈阳:沈阳农业大学
    94.孙玉军,陈彦,王洵.等.蜜环菌胞外多糖的分离纯化及其性质研究[J].安徽大学学报(自然科学版),2005,29(5):87-91
    95.陶锋,李向荣,占洁.大孔吸附树脂分离纯化金钱草总黄酮工艺研究[J].医药导报,2009,28(5):636-638
    96.陶俊.2010.油茶籽多糖分离纯化及降脂机理的研究[D].合肥:安徽农业大学
    97.吴勋贵,王泽根,蔡寅,等.苦瓜多糖的提取、分离纯化及组成性质[J];生物加工过程;2011,9(1):19-23
    98.韦璐,秦小明,林华娟,等.金花茶多糖的降血脂功能研究[J].食品科技,2008,(7):247-249
    99.魏宝东,陈留勇,孟宪军,等.黄桃水溶性多糖的化学结构分析[J].食品工业科技,2005,26(6):86-89
    100.伍乐芹,姜绍芬,张静.白术多糖WAM-1结构的色谱分析和原子力显微镜观察[J].天然产物研究与开发,2012,5(24):631-634
    101.吴先辉.苦瓜多糖超声波提取工艺的研究[J].长江蔬菜,2009,(24):42-44
    102.吴玉和.2009.大孔树脂对中药多糖的分离纯化[D].天津:天津大学
    103.汪兰,邓乾春,张芸,等.银杏淀粉颗粒结构及物化特性的研究[J].中国粮油学报.2007,22(4):66-70
    104.汪艳群.2012.五味子多糖的分离、结构鉴定及免疫活性研究[D].沈阳:沈阳农业大学
    105.王博.2008.超声萃取对茯苓菌核多糖提取率及结构影响的研究[D].西安:陕西师范大学
    106.王改萍.2003.银杏营养贮藏蛋白质的变化规律研究[D].南京:南京林业大学
    107.王杰,王连荣,祝树德,等.氢化白果酸对果树病原菌的抑制效果[J];江苏农业研究;2000,21(4):48-50
    108.王玲,籍保平.龙眼粗多糖提取的影响因素及工艺的研究[J].现代食品科 技,2006,22(3):53-55
    109.王琴,陈文青,温其标.银杏淀粉流变特性的初探[J].食品科学,1999(10):35-39
    110.王琴,邹杰,温其标.超声强化提取银杏多糖[J].食品与发酵工业,2006,32(1):126-128
    111.王卫国,吴强,胡宝坤,等.几种测定灰树花多糖中蛋白质含量方法的比较研究[J].中国食用菌,2003,22(1):27-30
    112.王丽华.2008.槐花多糖的分离纯化与抗氧化活性研究[D].西安:陕西师范大学大学
    113.王文平,郭祀远,李琳.硫酸口苯酚法测定野木瓜中多糖含量的研究[J].食品科学,2007,28(4):276-278
    114.王晓燕.2009.黑加仑多糖抗氧化及降血脂试验研究[D].乌鲁木齐:新疆医科大学
    115.王颖,盛龙生,楼凤昌,等.银杏总酸中有关成分的LC/DAD/API/MS分析[J].中国药科大学学报,2001,32(5):371-374
    116.王元凤.2005.茶多糖的分离纯化、结构及构效关系研究[D].无锡:江南大学
    117.王泽文,冷凯良,孙伟红,等.柱前衍生高效液相色谱法分析海带岩藻聚糖的单糖及糖醛酸组成[J].分析科学学报,2011,27(1):26-30
    118.夏翠,熊双丽,彭天蓉.夏枯草多糖脱色工艺研究[J].2009,37(6):2552-2553,2603
    119.许燕燕.植物多糖的提取方法和工艺[J].福建水产,2006,(3):32-35
    120.谢红旗,周春山.香菇多糖脱色工艺研究[J].离子交换与吸附,2007,23(2):158-165
    121.谢明勇,聂少平,天然产物活性多糖结构与功能研究进展[J].中国食品学报,2010,10(2):1-11
    122.徐瑾,李彤,张庆合,等.柱前衍生化高效液相色谱等度洗脱分析单糖的方法建立[J].生命科学仪器,2005,3(2):30-32
    123.徐平平,孙润广,张静,等.女贞子多糖结构的原子力显微镜研究[J],电子显微学报,2009,28(2):157-161
    124.姚丹,王宏军.黄芪多糖单糖组分的气相色谱分析[J].安徽农业科学,2012,40(9):5128-5129
    125.摇文华,尹卓荣.2006.大枣多糖脱色的工业化研究[J].天然产物分离,4(1):6-8
    126.闫巧娟,韩鲁佳,江正强.酶法脱除黄芪多糖中的蛋白质[J].食品科技,2004,6:23
    127.阳佛送,李雪华.多糖结构研究的方法和进展[J].食品科技,2008,33(3):200-203
    128.杨海艳.2009.纳米水分子簇的特性与生物学效应[D].天津:天津大学
    129.杨开.2003.姬松茸多糖的提取、纯化和结构分析[D].杭州:浙江工业大学
    130.杨强,李新华,林子木.银杏果多糖树脂脱色工艺[J].食品与发酵工业,2012,38(12):107-110
    131.杨世平,孙润广.2005.陕北红枣中多糖结构和组分的分析鉴定[J].食品与机械,21(5):4345
    132.杨文远,郭辉,王天勇.宁夏黄精中黄精多糖的提取、分离和测定[J].宁夏大学学报(自然科学版),1997,18(2):359-360
    133.杨小红,周远明,张瑜,等.白首乌降血脂作用研究[J].时珍国药医药,2010,21(6):1381-1382
    134.杨小虎.2010.红芪多糖抗氧化作用研究[D].兰州:甘肃农业大学
    135.仰榴青,徐佐旗,吴向阳,等.银杏多糖的研究进展[J].食品科学,2004,25(11):372-375
    136.于洁,程迪,董丽.2008.苯酚-硫酸法测定河南丝瓜络多糖的含量[J].新乡医学院学报,25(1):36-38
    137.俞慧红,竺巧玲,戴飞,等.多糖抗氧化作用的研究现状[J].食品研究与开发,2008,29(3):172-175
    138.袁军,陈龙,孙文静,等.芋头淀粉提取工艺优化及淀粉特性研究[J].食品工业科技,2012,33(19):252-256
    139.曾绍校.2007.莲子淀粉品质特性的研究与应用[D].福州:福建农林大学
    140.赵琳静,宋小平,黎方雅,等.多糖及其衍生物抗氧化性质的研究进展[J].上海工程技术大学学报,2008,22(1):44
    141.赵鹏,蔡飞,庞菁华,等.2009.超声辅助提取菊花多糖工艺优化研究[J].中国酿造,8:169-171
    142.赵全,岳晓霞,毛迪锐,等.四种常用淀粉物理性质的比较研究[J].食品与机械,2005,21(1):22-24
    143.赵伟.2004.肉苁蓉茎水溶性多糖的结构研究[D].长春:东北师范大学
    144.赵盈.2011.柿子多糖的提取、分离、结构分析及体外抗氧化作用研究[D].西安:陕西师范大学
    145.章华伟.2003.荞麦淀粉的加工工艺、特性及其改性研究[D].杨凌:西北农林科技大学
    146.张丽娇,费瑞,高立宏,等.银杏多糖的生物活性研究进展[J].安徽农业科学,2009,37(32):16185-16186,16192
    147.张立娟,于国萍.黑木耳多糖酶法提取条件的优化及脱蛋白工艺的研究[J].食品工业科技,2005,26(5):109
    148.张丽萍.2007.苹果多糖的分离纯化及其自由基消除活性与红外光谱分析[D].杨凌:西北农林科技大学
    149.张民,王建华,甘璐,等.枸杞多糖-4组成分析及其生理活性研究[J].食品与发酵工业,2003,29(2):22-24
    150.张树政.1999.糖生物学:生命科学的新前沿[M].生命的化学,19(3):103-107
    151.张拥军,姚惠源.南瓜多糖的分离、纯化及其降血糖作用[J].中国粮油学报,2002,17(4):59-62
    152.张元超,李伟雄,黄立新.赤小豆淀粉性质的研究[J].食品科学,2006,27(3):44-47
    153.郑宝东,郑金贵,曾绍校.果蔬多糖的研究现状及应用前景[J].食品科学,2003,24(1):152
    154.郑宝东,曾绍校.余甘多糖对小鼠的抗氧化作用[J].福建农林大学学报(自然科学版),2004,33(1):110-112
    155.郑宝华.2006.南方红豆杉叶中活性多糖提取与纯化研究[D].杭州:浙江大学
    156.周启升,刘训理,段祖安.2010.植物多糖的研究与开发应用进展[J].蚕业科学,36(3):465-469
    157.周琼,石文娟,张丽琼,等.黄姜淀粉的基本性质研究[J].食品科学,2007,28(12):40-42
    158.周蓉,齐莉,王雅芬,等.甘草多糖的分离纯化及高效毛细管电泳分析[J].分析化学,1999,27(2):245
    159.朱越雄,孙海一,曹广力.野生糙皮侧耳子实体多糖的脱色素效果比较[J].光谱试验室,2005,22(5):1070-1073
    160. A.D.R.Castrejo'n, et al.2008. Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during nut maturation and ripening [J].Food Chemistry,109:564-572
    161. Bao X F, Wang X S, Dong Q,et al.2002.Structural features of imunologically active polysaccharides from Ganoderma lucidum [J]. Phytochemistry,59:175-181
    162. Cardoso S M,Silva A M S,Coimbra M A.2002.Structural characterisation of the olive pomace pectic polysaccharide arabinan side chains[J].Carbohydrate Research,337(10):917-924
    163. Deng C,Wu M C.2007.Study on the effect immunity function of Agro 2 cybe aegirit polysaccharide in mice[J].Qingdao Agricul Univ(Natur Sci),24(1):42-44
    164. Fungwe T.V., Cagen L.M., Cook GA, et al. Dietary cholesterol stimulates hepatic biosynthesis of triglyceride and reduces oxidation of fatty acids in the rat [J]. Journal of Lipid Research,1993,34
    165. Ge Q,Zhang A,Sun P.2009.Structural investigation of a novel water-soluble heteropolysaccharide from the nuting bodies of Phellinus baumii Pilht[J].Food Chemistry,114(2):391-395
    166. Guillen F,Martinez MJ,Munoz C,et al.Quinone redox cycling in the ligninolytic fungus Pleurotuseryngii Leading to extracellular production of superoxide anion radical[J].Arch Biochem Biophys,1997,339(1):190-199
    167. Hsia-Yin Lin,Cheng-Chun Chou.Antioxidative activities of water soluble disaccharide chitosan derivatives[J].Food Reseach International,2004,3788:3-889
    168. Jun Kayashita, et al.1996.Buckwheat Protein Extract Suppression of the Growth Depression in Rats Induced by Feeding Amaranth. Biosci. Biotechol. Biochem,60(9):1530-1531
    169. Mislovicova D, Masarova J, Bendzalova K, et al. Sonication of chitin-glucan, preparation of water-soluble fractions and characterization by HPLC [J]. Ultrasonic Sonochemistry,2000, 7:63-68
    170. Mohammad Minhajuddin.,et al.Hypolipidemic and antioxidant properties of tocotrienol rich fraction isolated from rice bran oil in experimentally induced hyperlipidemic rats.Food and Chemical Toxicology,2005,(43):747-753
    171. Paredes-Lopez.1999.Isolation and partial characterization of banana starches [J] Journal of Agricultural and Food Chemisty,47:854-857
    172. Passalllonti'S.Vanzo A, Vhtovsek U, et al.Hepatic uptake of grape anthoeyanins and the role of bilitranslocace[J]. Food-Research:International,2005 (38):953-960
    173. Peng Y, Zhang L, Zhang Y, et al. Solution properties of water-insoluble polysaccharides from the mycelium of Ganoderma tsugae[J].Carbohydrate Polymers,2005,59:351-356
    174. Qun Chen, Gui-Wen Yang, Li-Guo An.Apoptosis of hepatoma cells SMMC-7721 induced by Ginkgo biloba seed poly saccharide[J]. World J Gastroenterol,2002,8(5):832-836
    175. Rajbir Singh, Sukhpreet Singh, Subodh Kumar, et al. Studies on antioxidant potential of methanol extract fractions of Acacia auriculiformis[J]. Cunn. Food Chemistry,2006,103:508
    176. Ranhotra G S, Gelroth J A, Glaser B K.1996.Effect of resistant starch on blood and liver lipids in hamsters.Cereal chem, a,73(2):176-178
    177. Rcharson A, Maria C B S. Review of Biological Research in aging [J]. Biological Researchin ging,1983(1):255-257
    178. Sang Woo Kim. Production and Characterization of extracellular polysaccharides from all Enthomopathogenic Fungus Cordyceps militaris NG3.Biotechn01.Prog,2003,19:428435
    179. Susumu Honda, Shigeo Suzuki, et al. Analysis of carbohydrates as 1-pheny 1-3-methy 1-5-pyrazolone derivatives by capillary microchip electrophoresis and capillary electro-chromatography[J].Journal of Pharmaceutical and Biomedical Analysis,2003, 30:1689-1714
    180. Wang D, Wang C, Li J, et al. Components and activity of polysaccharides from coarse tea[J]. Journal of Agriculture Food and Chemistry,2001,49:507-510
    181. Yang Yan, Liu Wan Shun, Han BaoQin,et al. Antioxidative properties of a newly synthesized 2 glucosamine thiazolidine 4(R) carboxylic acid (G1cNH2Cys) in mice[J].Nutrition Research,2006,26:373
    182. Yasser F.M,Kishk,Hanan M A, et al.Free-radical scavenging and antioxidative activities of 80me polysaccha. rides in emulsions[J]. LWT-Food Science and Technology, 2007,40(2):270-277
    183. Zhang Z,Yu C X.Effect of melatonin leering and memory impairment induced by aluminum chloride and its mechanism[J].Acts Pharmsceutica Sinica.2002.37:682

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700