用户名: 密码: 验证码:
氧化物与晶态碳异质结构构筑及气敏性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球的环境污染问题中,气体污染属于环境污染中一项十分重要的研究课题。目前,已知的大气污染物约有100多种,SO2、CO以及NO2作为三大气体污染物,尤其是NOx,对它的检测和控制在气敏传感等领域具有重要的实用价值和商业前景。在各种新型气敏传感材料中,晶态碳材料由于其优异的导电性、高效电子传输效率已被用作气敏传感领域,将晶态碳与对NOx有气敏响应的半导体金属氧化物形成复合材料可以实现在室温下对NOx气体的快速响应。本论文基于对气敏传感器中结构与性能关系的理解,设计合成出一系列金属氧化物/晶态碳基气敏传感材料,这些材料都是具有独特结构的高性能,高稳定性的非常有潜力的室温NOx气敏材料。本论文主要研究内容如下:
     (1)通过两步法合成了四氧化三铁/还原氧化石墨烯复合体(Fe/rGO-400)。首先在水热的条件下合成FeOOH/GO复合物,然后进一步在N2气氛下400℃焙烧得到Fe/rGO-400复合体。TEM分析表明在Fe/rGO2-400中Fe3O4纳米粒子均匀分散在还原氧化石墨表面,粒径在20~50nm左右;随着椭圆形Fe3O4在rGO上负载量的增大,纳米椭圆形Fe3O4的粒径尺寸逐步增大。XPS分析表明:在Fe3O4纳米粒子与rGO基底之间存在较强的相互作用。本实验所合成的Fe/rGO2-400材料在室温下对NOx有很好的气敏响应,对97.0ppm的NOx的气敏响应为35.6%,响应时间为29.3s。Fe/rGO-400具有特殊的层状结构,有利于待检测气体的扩散、吸附和脱附。此外,采用rGO作为碳基底,除了增加复合体的导电性以外,对纳米粒子的生长起到限域的作用,是制备该小尺寸、高分散Fe3O4粒子的必要条件。
     (2)采用液相回流法制备了三氧化二铟/还原氧化石墨复合体(In2O3/rGO)。在合成中,采用氧化石墨为碳源,硝酸铟为金属盐、SDBS为表面活性剂与尿素作为沉淀剂。同时,在没有氧化石墨时,合成了不同形貌的三氧化二铟气敏材料。采用所合成的气敏材料组装成气敏元件,对其进行室温下的NOx气敏测试。研究表明,三氧化二铟/还原氧化石墨复合体具有N型半导体特性,在室温下对97.0ppmNOx的响应为1.45,响应时间为25.0s。组装的纯三氧化二铟气敏传感器在室温下对NOx具有较好的气敏响应,对97.0ppm NOx的响应为17.0,响应时间为17.3s。材料在室温下NOx气敏性能增强的原因为特殊形貌和多孔结构。
     (3)以廉价的膨胀石墨为碳源,硝酸铈为金属盐,采用水热法合成了大约3nm的CeO2纳米粒子高度分散的二氧化铈/类石墨烯复合体(CeGNCs)。在合成中,在真空诱导下硝酸铈的溶液进入到膨胀石墨的层中,经过水热后CeO2纳米粒子在层中逐渐的长大,并剥离了膨胀石墨片层,最终形成二氧化铈/类石墨烯复合体。结果表明,大约3nm的CeO2的纳米粒子高度分散在大约10层的类石墨烯纳米片上。其中,CeO2含量为46.7wt%的CeGNC2在室温下对NOx展现了非常好的气敏性能,最低检测限可达5.0ppm,对100ppm NOx的响应为10.39%,响应时间为7.33s。该复合体在室温下NOx气敏响应增强主要是由于这种小尺寸的CeO2纳米粒子以及复合物导电性增强。CeO2纳米粒子与类石墨烯纳米片形成了肖特基接触,电子能够快速从导带上的获得并且迁移。
     (4)本文组装了基于三维纳米花状CuxO/多层石墨烯纳米片复合物(CuMGCs)的一种新型的室温NOx气敏器。在合成中,首先,对膨胀石墨采用KOH进行活化,在表面形成一些适中的活性基团,然后,醋酸铜以及表面活性剂(CTAB)在真空诱导下被压入活化的膨胀石墨层间,在回流过程中,同步地剥离活化的膨胀石墨形成多层石墨。最后,由5~9nm CuxO组装的三维纳米花均匀地生长在多层石墨烯的表面。KOH活化步骤在形成均匀的复合物中起到了非常重要的作用。将所合成的复合材料组装成气敏传感元件在室温下用于检测NOx,研究发现所合成的复合材料对NOx气体的气敏响应均比CuxO气敏性能显著提高。其中,CuMGC2气敏传感器在室温下对NOx的检测限可达ppb级,对97.0ppm NOx的灵敏度为95.1%,响应时间仅为9.6s。气敏响应增强主要归因于CuMGCs的导电性提高。一系列Mott-Schottky和EIS测量表明,CuMGCs的载流子密度远高于CuxO,很容易从导带上捕捉电子,并且快速的迁移。
During the global environmental pollution, air pollution is regarded as one of themost important research subjects. At present, there are more than100hundred kinds ofair pollutants, as we known. SO2, CO and NO2are known as three great environmentalpollutions, especially for NO2, their detection and control has the important practicalvalue and business prospects in gas sensors. Among various kinds of new gas sensormaterials, crystalline carbon materials could be applied as room temperature gas sensors,which was due to the superior electrical conductivity, exceeding electronic transmissionefficiency, and the combining crystalline carbon with the traditional metal oxidesemiconductor to form composite materials can be achieved the fast response to the gasat room temperature. In this thesis, based on the understanding of relation betweenmaterial structure and performance of gas sensors, a series of metal oxide/crystallinecarbon gas sensing composites were designed and already prepared. All the preparedgas sensing materials possess unique structure with high performance, high stability andgreat potential of room temperature NOxgas sensing materials. The main researchcontents are as following.
     (1) Ferroferric oxide/reduced graphite oxide composite (Fe/rGO-400) has beensynthesized with a two-step synthetic method. Firstly, FeOOH/graphite oxide composite(FeOOH/GO) precursors have been prepared by hydrothermal method, and thenFe/rGO-400were obtained after calcinated at400℃under N2atmosphere. The TEManalysis indicate that Fe3O4nanoparticles with a diameter of20~50nm uniformlydispersed on the surface of the rGO. With the increment of Fe3O4load, the size of Fe3O4nanoparticles in composite gradually became bigger. XPS analysis shows that there is astrong interaction between the metal oxide and rGO substrate. The synthesis ofFe/rGO2-400materials has good gas response to NOxgases at room temperature, in which the gas sensitivity to97.0ppm NOxis35.6%and the response time is29.3s.Fe/rGO-400have special layered structures, which is favor for the diffusion, adsorptionand desorption of the target gas. In addition, the introduction of rGO as carbon substrateincrease the conductivity of composite, restrict the growth of FeOOH nanoparticles, it isnecessary for the preparation of the small size, high dispersion of Fe3O4particles.
     In2O3/reduced graphite oxide composites (In2O3/rGO) have been successfullysynthesized. In the synthesis, GO was used as carbon resource, Indium nitrate as themetal salts, SDBS as surfactant and urea as precipitant. In addition, differentmorphological In2O3have been prepared in absence of GO. When being as the gassensing materials to fabricate into gas sensors, the room temperature NOxgas test havebeen carried out. Studies have shown that the In2O3/rGO have the N type semiconductorcharacteristic, which shows NOxgas sensing performance with high gas response of1.45and the response time of25.0s to97.0ppm NOxat room temperature. In addition,the sensor based on pure In2O3have better response to NOxthan that of In2O3/rGO, thesensor has higher gas response of17.0and the response time of17.3s to97.0ppm NOxat room temperature. The improvement of room temperature NOxgas sensingperformance for the synthesized products is due to the special morphology and porousstructure.
     (3) The CeO2/graphene-like nanosheet composites (CeGNCs) have beensynthesized via a facile solvothermal reaction by using expanded graphite as carbonsource and cerium nitrate as metal salts. In the synthesis, Ce(NO3)3precursor waspromoted full infusion into the interlayers of expanded graphite (EG) undervacuum-assisted conditions, and then CeO2nanoparticles grow in situ in the interlayersof inexpensive EG under solvothermal condition to form CeGNCs. The results showthat the CeO2particles (about3nm) are highly dispersed on graphene-like nanosheet(>10layers). Especially, the CeGNCs with46.7wt%of CeO2shows higher NOxgassensing performance with low detection limit of5.0ppm, high sensitivity (10.39%), short response time (7.33s) towards100ppm NOx. The enhancement of roomtemperature gas response to NOxfor the composites is due mainly to tiny CeO2nanoparticles and improved conductivity of the composites. CeO2nanoparticles andgraphene like nanosheet can formed a schottky contact, electronics can be quicklyobtained from conduction band and migrated.
     (4)3D nanoflower-like CuxO/multilayer graphene composites (CuMGCs) havebeen successfully synthesized as a new type of room temperature NOxgas sensor.Firstly, the expanded graphite was used as carbon resource and activated by KOH andmany moderate functional groups were generated; and secondly, the Cu(CH3COO)2andCTAB were promoted full infusion into the interlayers of activated EG (aEG) by meanof a vacuum-assisted technique and then react with functional groups of aEGaccompanied by the exfoliation of aEG via a reflux treatment. Eventually, the3Dnanoflower consisting of5~9nm CuxO nanoparticles homogeneously in situ grow onaEG. The KOH activation EG plays a crucial role in uniformly formation for CuMGCs.When being used as gas sensors for detection of NOx, the CuMGCs achieved a higherresponse at room temperature than that of the corresponding CuxO. In detail, theCuMGCs shows higher NOxgas sensing performance with low detection limit of97ppb, high gas response of95.1%and short response time of9.6s to97.0ppm NOxatroom temperature. Meantime, the CuMGCs sensor presents a favorable linearity, goodselectivity and stability. The enhancement of the sensing response is mainly attributed tothe improved conductivity of the CuMGCs. A series of Mott-Schottky and EISmeasurements demonstrated that the CuMGCs have much higher donor densities thanthe CuxO and can easily capture and migrate electrons from the conduction band,resulting in the enhancement of electrical conductivity.
引文
[1] G. Korotcenkov. Metal oxides for solid-state gas sensors: What determines ourchoice?[J]. Mater. Sci. Eng., B,2007,139(1):1-23.
    [2] A. ricoli, M. Righettoni, and A. Teleki. Semiconductor Gas Sensors: Dry SynthesisandApplication[J]. Angew. Chem. Int. Ed.,2010,49:7632-7659.
    [3]徐开先.实用新型传感器及其应用[M].辽宁:科学技术出版社,1995.
    [4]唐昌鹤,唐省吾.气、湿敏感器件及其应用[M].北京:科学出版社,1988.
    [5]张维新,朱秀文,毛赣如.半导体传感器[M].天津:天津大学出版社,1990.
    [6]牛德芳.半导体传感器原理及其应用[M].大连:理工大学出版社,1993.
    [7]邓玉良.纳米技术制作火灾报警传感器的前景展望[J].消防技术,2001,8:33-34.
    [8]冯祖勇. α-Fe2O3基气敏纳米材料的制备及其结构、性能的研究.硕士究生论文.福州大学,2001.
    [9]谭明伟. γ-Fe2O3气体传感器敏感机理与应用研究.硕士究生论文.吉林大学,2005.
    [10]裴素华,孙海波,张华,江玉清. γ-Fe2O3响应苯类气体敏感材料特性研究[J].功能材料与器件学报,2004,10:41-44.
    [11]牛新书,徐荭,王新军. C-Fe2O3超微粉的制备及气敏掺杂效应研究新进展[J].传感技术学报,2000,4:330-335.
    [12]田敬民,李守智.金属氧化物半导体气敏机理探析[J].西安理工大学学报,2002,18(2):144-147.
    [13] N. Yamagoe. Interactions of tin oxide surface with O2, H2O and H2[J]. Surf. Sci,1979,86(5):335-39.
    [14] A. M. Azad, S. A.Akbat. Solid-states gas sensor: a review[J]. J. Electrochem SOC,1992,139(12):3690-3701.
    [15] D. I. Bilenko, O. Y. Belobrovaja, O. Y. Coldobanova. In situ measurement ofporous silicon and the influence of ambient gas on its properties[J]. Sens.Actuators, A,2000,79(2):147-152.
    [16] S. Zangooie, R. Bjorklund, H. Arwin Vapor. Sensitivity of thin porous siliconlayers[J]. Sens. Actuators, B,1997,43(1-3):168-l74.
    [17] G. Wang, H. Arwin. Modification of vapor sensitivity in ellipsometric gas sensingby copper deposition in porous silicon[J]. Sens. Actuators, B,2002,85(1-2):95-103.
    [18] J. Mizsei. Gas Sensor Applications of Porous Si Layers[J]. Thin Solid Films,2007,515:8310-8315.
    [19] G. Barillaro, A. Nannini, F. APSFET. APSFET: a new, porous silicon-based gassensing device[J]. Sens. Actuators, B,2003,93(1):263-270.
    [20]徐爽,杨颖,邬洪源.一维Pt/SnO2纳米纤维的制备及NOx气敏性研究[J].无机材料学报,2013,28(6),584-588.
    [21] F. Favier, E. C. Walter, M. P. Zach, T. Benter, R. M. Penner. Hydrogen sensorsand switches from electrodeposited palladium mesowire arrays[J]. Science,2001,293:2227-2231.
    [22] E. C. Walter, F. Favier, R. M. Penner. Palladium mesowire arrays for fasthydrogen sensors and hydrogen-actuated switches[J]. Anal. Chem.,2002,74:1546-1553.
    [23] K. Scharnagl, M. Eriksson, A. Karthigeyan, M. Burgmair, M. Zimmer,I. Eisele.Hydrogen detection at high concentrations with stabilised palladium[J]. Sens.Actuators, B,2001,78:138-143.
    [24] D. Chen, J. Xu, Z. Xie, G. Z. Shen. Nanowires assembled SnO2nanopolyhedronswith enhanced gas sensing properties[J]. ACS Appl. Mater: Interfaces,2011,3:2112-2117.
    [25] X. Wang, X. G. Han, S. F. Xie, K. Qin, Y. Q. Jiang, S. B. Zhang, X. L. Mu, G. X.Chen, Z. X. Xie, L. S. Zheng. Controlled synthesis and enhanced catalytic andgas-sensing properties of Tin dioxide nanoparticles with exposed high-energyfacets[J]. Chem. Eur. J.,2012,18:2283-2289.
    [26] X. H. Liu, J. Zhang, X. Z. Guo, S. R. Wang, S. H. Wu. Core-shellα-Fe2O3@SnO2/Au hybrid structures and their enhanced gas sensingproperties[J]. RSC Adv.,2012,2:1650-1655.
    [27] H. J. Song, X. H. Jia, H. Qi, X. F. Yang, H. Tang, C. Y. Min. Flexiblemorphology-controlled synthesis of monodisperse α-Fe2O3hierarchical hollowmicrospheres and their gas-sensing properties[J]. J. Mater. Chem.,2012,22:3508-3516.
    [28] C. M. Chang, M. H. Hon, L. I. Chi. Improvement in CO sensing characteristicsby decorating ZnO nanorod arrays with Pd nanoparticles and the relatedmechanisms[J]. RSC Adv.,2012,2:2469-2475
    [29] J. Yi, J. M. Lee, W. I. Park. Vertically aligned ZnO nanorods and graphene hybridarchitectures for high-sensitive flexible gas sensors[J]. Sens. Actuators, B,2011,155(1):264-269.
    [30] X. Z. Wang, W. Liu, J. R. Liu, F. L. Wang, J. Kong, Q. Song, C. Z. He, L. Q.Luan. Synthesis of nestlike ZnO hierarchically porous structures and analysis oftheir gas sensing properties[J]. ACS Appl. Mater. Interfaces,2012,4:817-825.
    [31] E. Li, Z. X. Cheng, J. Q. Xu, Q. Y. Pan, W. J. Yu, Y. L. Chu. Indium oxide withnovel morphology: synthesis and application in C2H5OH gas sensing[J]. Cryst.Growth Des.,2009,9(5):2146-2151.
    [32] L. G. Gai, M. Li, H. H. Jiang, Y. Ma, Y. Tian, H. Liu. Nitrogen-doped In2O3nanocrystals constituting hierarchical structures with enhanced gas-sensingproperties[J]. CrystEngComm,2012,14:7479-7486.
    [33] K. Yao, C. Daniela, Z. M. Zeng, J. J. Chen, J. O. Connor Charles, W. L. Zhou.Parts per billion-level H2S detection at room temperature based onself-assembled In2O3nanoparticles[J]. J. Phys. Chem,2009,113:14812-14817.
    [34] C. X. Wang, L. W. Yin, L. Y. Zhang, Y. X. Qi, N. Lun, N. N. Liu. Large scalesynthesis and gas-sensing properties of anatase TiO2three-dimensionalhierarchical nanostructures[J]. Langmuir,2010,26(15):12841-12848.
    [35] G. Jian, Y. H. Li, Z. S. Hu, Z. Z. Zhou, Y. L. Deng. Ultrasensitive NH3gas sensorfrom polyaniline nanograin enchased TiO2fibers[J], J. Phys. Chem. C,2010,114(21):9970-9974.
    [36] J. Nisar, Z. Topalian, A. D. Sarkar, L. sterlund, R. Ahuja. TiO2-based gas sensor:a possible application to SO2[J]. ACS Appl. Mater. Interfaces,2013,5(17):8516-8522.
    [37] Z. Xie, Y. G. Zhu, J. Xu, H. T. Huang, D. Chen, G. Z. Shen. Porous WO3withenhanced photocatalytic and selective gas sensing properties[J]. CrystEngComm,2011,13:6393-6398.
    [38] L. F. Zhu, J. C. She, J. Y. Luo, S. Z. Deng, J. Chen, N. S. Xu. Study of physicaland chemical processes of H2Sensing of Pt-Coated WO3nanowire films[J]. J.Phys. Chem. C,2010,114:15504-15509.
    [39] K. Hosono, I. Matsubara, N. Murayama, S. Woosuck, N. Izu. Synthesis ofpolypyrrole/MoO3hybrid thin films and their volatile organic compoundgas-sensing properties[J]. Chem. Mater.,2005,17(2):349-354
    [40] S. C. Lee, S. Y. Kim, B. W. Hwang, S. Y. Jung, D. Ragupathy, I. S. Son, D. D.Lee, J. C. Kim. Improvement of H2S sensing properties of SnO2-based thick filmgas sensors promoted with MoO3and NiO[J]. Sensors,2013,13:3889-3901.
    [41] G. H. Li, X. W. Wang, H. Y. Ding, T. Zhang. A facile synthesis method forNi(OH)2ultrathin nanosheets and their conversion to porous NiO nanosheets usedfor formaldehyde sensing[J]. RSC Adv.,2012,2:13018-13023.
    [42] J. Wang, L. Wei, L. Zhang, C. H. Jiang, S. W. Kong, Y. F. Zhang. Preparation ofhigh aspect ratio nickel oxide nanowires and their gas sensing devices with fastresponse and high sensitivity[J]. J. Mater. Chem.,2012,22(17):8327-8335.
    [43] M. M. Rahman, A. Jamal, S. B. Khan, M. Faisal. CuO codoped ZnO basednanostructured materials for sensitive chemical sensor applications[J]. ACS Appl.Mater. Interfaces,2011,3:1346-1351.
    [44] S. T. Shishiyanu, T. S. Shishiyanu, O. I. Lupan. Novel NO2gas sensor based oncuprous oxide thin lms[J]. Sens. Actuators, B,2006,113:468-476.
    [45] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,I. V. Grigorieva and A. A. Firsov. Electric field effect in atomically thin carbinfilms[J]. Science,2004,306:666-669.
    [46] X. Huang, Z. Y. Yin, S. X. Wu, X. Y. Qi, Q. Y. He, Q. C. Zhang, Q. Y. Yan, F.Boey and H. Zhang. Graphene-based materials: synthesis, characterization,properties, and applications[J]. Small,2011,7(14):1876-1902.
    [47] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks and M. C. Hersam. Carbonnanomaterials for electronics, optoelectronics, photovoltaics, and sensing[J].Chem. Soc. Rev.,2013,42(7):2824-2860.
    [48] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58.
    [49] S. Peng, K. Cho.Ab nitio study of doped carbon nanotube sensors[J]. Nano Lett.,2003,3(4):513-517.
    [50] S. J. Tans,A. R. M. Verschueren, C. Dekker. Room-temperature transistor basedon a single carbon nanotube[J]. Nature,1998,393:49-52.
    [51] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, P. Avouris. Single and multi-wallcarbon nanotube field-effect transistors[J]. Appl.Phys. Lett.,1998,3:2447-2449.
    [52] J. Kong, N. R. Franklin, C. Zhou, M. G.Chapline, S. Peng, K. Cho and H. Dai.Nanotube molecular wires as chemical sensors[J]. Science,2000,287:622-625.
    [53] B. L. Allen, P. D. Kichambare, A. Star, Carbon Nanotube Field-Effect-Transistor-Based Biosensors[J]. Adv. Mater,2007,19(11):1439-1451.
    [54] Z. Chen, J. Appenzeller, J. Knoch, Y. M. Lin, P. Avouris. The role ofmetal-nanotube contact in the performance of carbon nanotube field-effecttransistors[J]. Nano Lett.,2005,5:1497-1502.
    [55] A. Star, T. R. Han, V. Joshi, J. C. P. Gabriel, G. GrSner, Nanoelectronic carbondioxide sensors[J]. Adv. Mater.,2004,16:2049-2052.
    [56] Y. Lu, C. Partridge, M. Meyyappan, J. Li. A carbon nanotube sensor array forsensitive gas discrimination using principal component analysis[J]. J.Electroanal. Chem.,2006,593:105-110.
    [57] M. Penza, G. Cassano, R. Rossi, M. Alvisi, A. Rizzo, M. A. Signore, T.Dikonimos, E. Serra, R. Giorgi. Enhancement of sensitivity in gas chemiresistorsbased on carbon nanotube surface functionalized with noble metal (Au, Pt)nanoclusters[J]. Appl. Phys. Lett.,2007,90(1731231):176-184.
    [58] Y. X. Liang, Y. J. Chen, T. H. Wang. Low-resistance gas sensors fabricated frommultiwalled carbon nanotubes coated with a thin tin oxide layer[J]. Appl. Phys.Lett.,2004,85(4):666-668.
    [59] O. Kuzmych, B. L. Allen, A. Star. Carbon nanotube sensors for exhaled breathcomponents[J]. Nanotechnology,2007,18(37):375502-375508.
    [60] C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj. Graphene:The New Two-Dimensional Nanomaterial[J]. Angew. Chem. Int. Ed.,2009,48:7752-7777.
    [61] J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, B. H. Weiller.Practical Chemical Sensor from Chemically Derived Graphene[J]. ACS Nano,2009,3:301-306.
    [62] H. Y. Jeong, D. S. Lee, H. K. Choi, D. H. Lee, J. E. Kim, J. Y. Lee, W. J. Lee, S.O. Kim, S. Y. Choi. Flexible Room-Temperature NO2Gas Sensors Based onCarbon Nanotubes/Reduced Graphene Hybrid Films[J]. Appl. Phys. Lett.2010,96:213105-213110.
    [63] R. S. Sundaram, C. Gomez-Navarro, K. Balasubramanian, M. Burghard, K. Kern.Electrochemical Modification of Graphene[J]. Adv. Mater.,2008,20:3050-3053.
    [64] J. L. Johnson, A. Behnam, S. J. Pearton, A. Ural. Hydrogen Sensing UsingPd-Functionalized Multi-layer Graphene Nanoribbon Networks[J]. Adv. Mater.,2010,22:4877-4880.
    [65] V. Dua, S. P. Surwade, S. Ammu, S. R. Agnihotra, S. Jain, K. E. Roberts, S. Park,R. S. Ruoff, S. K. Manohar. All-Organic Vapor Sensor Using Inkjet-PrintedReduced Graphene Oxide[J]. Angew. Chem., Int. Ed.,2010,49,2154-2157.
    [66] W. W. Li, X. M. Geng, Y. F. Guo, J. Z. Rong, Y. P. Gong, L. Q. Wu, X. M. Zhang,P. Li, J. B. Xu, G. S. Cheng, M. T. Sun, and L. W. Liu. Reduced Graphene OxideElectrically Contacted Graphene Sensor for Highly Sensitive Nitric OxideDetection[J]. ACS Nano.,2011,5(9):6955-6961.
    [67] Z. Y. Zhang, R. J. Zou, G. S. Song, L. Yu, Z. G. Chen, J. Q. Hu. Highly alignedSnO2nanorods on graphene sheets for gas sensors[J]. J. Mater. Chem.,2011,21(43):17360-17365.
    [68] J. Qin, M. H. Cao, N. Li, C.W. Hu. Graphene-wrapped WO3nanoparticles withimproved performances in electrical conductivity and gas sensing properties[J].J. Mater. Chem.,2011,21(43):17167-17174.
    [69] S. Z. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar,J. Wei, C. H. Sow. Reduced graphene oxide conjugated Cu2O nanowiremesocrystals for high-performance NO2gas sensor[J]. J. Am. Chem. Soc,2012,134(10):4905-4917.
    [70] T. Zhang, S. Qiang, F. Lewis, E. S. Kolesar, Y. L. Wu, X. Z. Chi, H.Q. Zhang.Gas sensor based on interdigitated gate electrode eld effect transistor[J]. RareMetal Mater Eng.,2006,35:140-142.
    [71] S. Nakamaya, Potentiometric NO2gas sensor using LiRESiO4(RE=Nd and Sm)[J]. Cera. Inter.,2001,27:191-194.
    [72] G. W. Hance, J. D. Jolson, T. B. Schef er. Electrochemical gas sensor for thedetection of nitrogen dioxide[J]. United States patent number,1999,5,718.
    [73] A. S. El-Basaty, T. A. El-Brolossy, S. Abdalla, S. Negm, R. A. Abdella, H. Talaat.Surface plasmon sensor for NO2gas[J]. Surf. Interface Anal.,2008,40:1623-1626.
    [74] E. V. Emelin, I. N. Nikolaev. Physicochemical measurements-Sensitivity of MOSsensors to hydrogen, hydrogen sul de, and nitrogen dioxide in different gasatmospheres[J]. Meas. Sci. Technol.,2006,49:524-528.
    [75] S. Capone, A. Forleo, L. Francioso, R. Rella, P. Siciliano, J. Spadavecchia, D. S.Presicce, A. M. Taurino. Solid state gases sensors: state of the art and futureactivities[J]. J. Optical. Adv. Mater,2003,5:1335-1348.
    [76] S. T. Navale, A. T. Mane, M. A. Chougule, R. D. Sakhare, S. R. Nalage, V. B.Patil. Highly selective and sensitive room temperature NO2gas sensor based onpolypyrrole thin lms[J]. Synth Met.,2014,189:94.
    [77] M. D. Li, M. Hu, D. L. Jia, S. Y. Ma, W. J.Yan. NO2-sensing properties based onthe nanocomposite of n-Highly selective and sensitive room temperature NO2gassensor based on polypyrrole thin lms WO3-x/n-porous silicon at roomtemperature[J]. Sens. Actuators, B,2013,186:140-147.
    [78] D. L. Yan, M. Hua, S. Y. Li, J. R. Liang, Y. Q. Wu, S. Y. Ma. Electrochemicaldeposition of ZnO nanostructures onto porous silicon and their enhanced gassensing to NO2at room temperature[J]. Electrochimica Acta,2014,115:297.
    [79] P. G. Su, T. T. Pan. Fabrication of a room-temperature NO2gas sensor based onWO3lms and WO3/MWCNT nanocomposite lms by combining polyol processwith metal organic decomposition method[J]. Mater. Chem. Phys.,2011,12:351-357.
    [80] N. Chen, X. G. Lia, X. Y. Wang, J. Yu, J. Wang, Z. N. Tang, S. A. Akbar.Enhanced room temperature sensing of Co3O4-intercalated reducedgrapheneoxide based gas sensors[J]. Sens. Actuators, B,2013,188:902-908.
    [81] H. Zhang, J. C. Feng, T. Fei, S. Liu, T. Zhang. SnO2nanoparticles-reducedgraphene oxide nanocomposites for NO2sensing at low operating temperature[J].Sens. Actuators, B,2014,190:472-478.
    [82] B. J. Jiang, C. G. Tian, W. Zhou, J. Q. Wang, Y. Xie, Q. J. Pan, Z. Y. Ren, Y. Z.Dong, D. Fu, J. L. Han, H. G. Fu. In Situ Growth of TiO2in Interlayers ofExpanded Graphite for the Fabrication of TiO2-Graphene with EnhancedPhotocatalyticActivity[J]. Chem. Eur. J.,2011,17:8379-8387.
    [83] L. Wang G. Mu, C. G. Tian, L. Sun, W. Zhou,T. X. Tan, and H. G. Fu. In SituIntercalating Expandable Graphite for Mesoporous Carbon/Graphite NanosheetComposites as High-Performance Supercapacitor Electrodes[J]. ChemSusChem,2012,5:2442-2450.
    [84] R. J. Lv, K. Y. Shi, W. Zhou, L. Wang, C. G. Tian, K. Pan, L. Sun, H. G. Fu.Highly dispersed Ni-decorated porous hollow carbon nanofibers: fabrication,characterization, and NOxgas sensors at room temperature[J]. J. Mater. Chem.,2012,22(47):24814-24820.
    [85] T. Becker, S. Ahlers, Bosch-v Braunmühl C, G. Müllera, O. Kiesewetterb. Gassensing properties of thin-and thick-film tin-oxide materials[J]. Sens. Actuators,B,2001,77(1):55-61.
    [86] M. Ozaki. Preparation and properties of well-defined magnetic particles[J]. MRSbulletin,1989,14(12):35-40.
    [87](a) L. Babes, B. Denizot, G. Tanguy, J. J. Le Jeune, P. Jallet. Synthesis of ironoxide nanoparticles used as MRI contrast agents: a parametric study[J]. J.Colloid Interface Sci.,1999,212(2):474-482;(b) T. Neuberger, B. Schopf, H.Hofmann, M. Hofmann, B. von Rechenberg. Superparamagnetic nanoparticlesfor biomedical applications: possibilities and limitations of a new drug deliverysystem[J]. J. Magn. Magn. Mater.,2005,293(1):483-496.
    [88](a) X. J. Wang, J. F. Tian, T. Z. Yang, L. H. Bao, C. Hui, F. Liu, C. M. Shen, C. Z.Gu, N. S. Xu, H. J. Gao. Single crystalline boron nanocones: Electric transportand field emission properties[J]. Adv. Mater,2007,19(24):4480-4485;(b) H. F.Yin, C. Wang, H. G. Zhu, S. H. Overbury, S. H. Sun, S. Dai. Colloidaldeposition synthesis of supported gold nanocatalysts based on Au-Fe3O4dumbbell nanoparticles[J]. Chem. Commun.,2008,36:4357-4359.
    [89] T. Fukushima, K. Sekizawa, Y. Jin, M. Yamaya, H. Sasaki, T. Takishima. Effectsof beta-adrenergic receptor activation on alveolar macrophage cytoplasmicmotility[J]. Am. J. Phys. Cell. Mol. Phys.,1993,265(1):67-72.
    [90] Y. R. Chemla, H. L. Crossman, Y. Poon, R.McDermott, R. Stevens,M. D. Alper, J.Clarke. Ultrasensitive magnetic biosensor for homogeneous immunoassay[J].Proc. Nat. Acad. Sci.,2000,97(26):14268-14272.
    [91] J. Ugelstad, A. Berge, T. Ellingsen, R. Schmid, T. N. Nilsen, P. C. Mork, P.Stenstad, E. Hornes, O. Preparation and application of new monosized polymerparticles[J]. Prog. Poly. Sci.,1992,17(1):87-161.
    [92] R. P. Tandon, M. R. Tripathy, A. K. Arora. Gas and humidity response of ironoxide-Polypyrrole nanocomposites[J]. Sen. Actuators, B,2006,114(2):768-773.
    [93] R. P. Tandon, M. R. Tripathy, A. K. Arora, S. Hotchandani. Gas and humidityresponse of iron oxide-Polypyrrole nanocomposites[J]. Sen. Actuators, B,2006,114(2):768-773.
    [94] S. O. Hwang, C. H. Kim, Y. Myung. Synthesis of vertically alignedmanganese-doped Fe3O4nanowire arrays and their excellent room-temperaturegas sensing ability[J]. J. Phys. Chem. C,2008,112(36):13911-13916.
    [95] Z. H. Ai, K. J. Deng, Q. F. Wan, L. Z. Zhang and S. C. Lee. Facilemicrowave-assisted synthesis and magnetic and gas sensing properties of Fe3O4nanoroses[J]. J. Phys. Chem. C,2010,114:6237-6242.
    [96] S. F. Si, C. H. Li, X. Wang, D. P. Yu, Q. Peng, Y. D. Li.Magnetic monodisperseFe3O4nanoparticles[J]. Cryst. Growth Des.,2005,5(2):391-393.
    [97] L. J. Cote, R. Cruz-Silva, J. Huang. Flash reduction and patterning of graphiteoxide and its polymer composite[J]. J. Am. Chem. Soc,2009,131:11027-11032.
    [98] Y. Xu, H. Bai, G. Lu. Flexible graphene films via the filtration of water-solublenoncovalent functionalized graphene sheets[J]. J. Am. Chem. Soc,2008,130:5856-5857.
    [99] F. Meng, S. A. Morin, J. Song. Rational solution growth of γ-FeOOH nanowiresdriven by screw dislocations and their conversion to α-Fe2O3nanowires[J]. J.Am. Chem. Soc,2011,133:8408-8411
    [100](a) J. P. Zhao, S. F. Pei, W. C. Ren, L. B. Gao, H.M. Cheng. Efficientpreparation of large-area graphene oxide sheets for transparent conductivefilms[J]. ACS nano,2010,4(9):5245-5252;(b) H. X. Tang, G. J. Ehlert, Y. R.Lin, H. A. Sodano. Highly efficient synthesis of graphene nanocomposites[J].Nano Lett.,2011,12(1):84-90
    [101] J. Qu, Y. X. Yin, Y. Q. Wang, Y. Yan, Y. G. Guo, W. G. Song. Layer Structuredα-Fe2O3nanodisk/reduced graphene oxide composites as high-performanceanode materials for lithium-ion batteries[J], ACS Appl. Mater. Interfaces,2013,5:3932-3936.
    [102] S. C. Chang, M. H. Huang. Formation of short In2O3nanorod arrays withinmesoporous silica[J], J. Phys. Chem. C,2008,112:2304-2307.
    [103] T. Wagner, T. Sauerwald, C. D. Kohl. Gas sensor based on ordered mesoporousIn2O3[J]. Thin Solid Films,2009,517(22):6170-6175.
    [104] D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, C. W. Zhou.Detection of NO2down to ppb levels using individual and multiple In2O3nanowire devices[J]. Nano Lett.,2004,4(10):1919-1924.
    [105] X. Lai, D. Wang, N. Han, J. Du, J. Li, C. J. Xing, Y. F. Chen, X. T. Li. Orderedarrays of bead-chain-like In2O3nanorods and their enhanced sensingperformance for formaldehyde[J]. Chem. Mater.,2010,22(10):3033-3042.
    [106] T. Mori, K. Kajihara, K. Kanamura. Indium-based ultraviolet-transparentelectroconductive oxyfluoride InOF: ambient-pressure synthesis and uniqueelectronic properties in comparison with In2O3[J]. J. Am. Chem. Soc,2013,135(35):13080-13088.
    [107] X. Y. Lai, H. Wang, D. Mao. Mesoporous indium oxide synthesized via ananocasting route[J]. Mater Lett.,2008,62(23):3868-3871.
    [108] A. Prim, E. Pellicer, E. Rossinyol, F. Peiró, A. Cornet, J. R. Morante. A NovelMesoporous CaO-Loaded In2O3Material for CO2Sensing[J]. Adv. Funct. Mater.,2007,17(15):2957-2963.
    [109] Y. S. Li, J. Xu, J. F. Chao,D. Chen, S. X. Ouyang, J. H. Ye, G. Z. Shen.High-aspect-ratio single-crystalline porous In2O3nanobelts with enhanced gassensing properties[J]. J. Mater. Chem. A,2011,21(34):12852-12857.
    [110] J. T. Zai, J. Zhu, R. R. Qi, X. F. Nearly monodispersed In(OH)3hierarchicalnanospheres and nanocubes: tunable ligand-assisted synthesis and theirconversion into hierarchical In2O3for gas sensing[J]. J. Mater. Chem. A,2013,1(3):735-745.
    [111] L. Harald, S.-P. Michael, S. Sabine, P. Kristian, K. Bernhard, B. Johannes and P.Simon. A new preparation pathway to well-defined In2O3nanoparticles at lowsubstrate temperatures[J]. J. Phys. Chem. C,2008,112(4):918-925.
    [112] C. L. Chen, D. R. Chen, X. L. Jiao, and S. H. Chen. In2O3nanocrystals with atunable size in the range of4-10nm: one-step synthesis, characterization, andoptical properties[J]. J. Phys. Chem. C,2007,111:18039-18043.
    [113] W. J. Kim, D. Pradhanb and Y. Sohn. Fundamental nature and CO oxidationactivities of indium oxide nanostructures:1D-wires,2D-plates, and3D-cubesand donuts[J]. J. Mater. Chem. A,2013,1:10193-10202.
    [114] H. X. Yang, S. P. Wang and Y. Z. Yang. Zn-doped In2O3nanostructures:preparation, structure and gas-sensing properties[J]. CrystEngComm,2012,14:1135-1142.
    [115] S. T. Jean and Y. C. Her. Growth mechanism and photoluminescence propertiesof In2O3nanotowers[J]. Cryst. Growth Des.,2010,10(5):2104-2110.
    [116] J. B. Mu, B. Chen, M. Y. Zhang, Z. C. Guo, P. Zhang, Z. Y. Zhang, Y. Y. Sun, C.L. Shao, and Y. C. Liu. Enhancement of the visible-light photocatalytic activityof In2O3-TiO2nanofiber heteroarchitectures[J]. ACS Appl. Mater. Interfaces,2012,4:424-430.
    [117] B. Pujilaksono, U. Klement, L. Nyborg, U. Jelvestam, S. Hill, D. Burgard. X-rayphotoelectron spectroscopy studies of indium tin oxide nanocrystallinepowder[J]. Mater. Charact.,2005,54(1),1-7.
    [118] A. Gurlo, M. Ivanovskaya, A. Pfau, U. Weimar, W. Gopel. Sol-gel preparedIn2O3thin films[J]. Thin Solid Films,1997,307(1):288-293.
    [119] H. Y. Kim, H. M. Lee, G. Henkelman. CO oxidation mechanism onCeO2-supported Au nanoparticles[J]. J. Am. Chem. Soc,2012,134:1560-1570.
    [120] H. Imagawa, S. H. Sun. Controlled synthesis of monodisperse CeO2nanoplatesdeveloped from assembled nanoparticles[J], J. Phys. Chem. C,2012,116:2761-2765.
    [121] S. Chauhan, G. J. Richards, T. Mori, P. F. Yan, J. P. Hill, K. Ariga, J. Zou, J.Drennan. Fabrication of a nano-structured Pt-loaded cerium oxide nanowire andits anode performance in the methanol electro-oxidation reaction[J]. J. Mater.Chem. A,2013,1(20):6262-6270.
    [122] X. W. Ouyang, W. Li, S. L. Xie, T. Zhai, M. H. Yu, J. Y. Gan, X. H. Lu.Hierarchical CeO2nanospheres as highly-efficient adsorbents for dye removal[J].New J. Chem,2013,37(3):585-588.
    [123] N. D. Mota, D. A. Finkelstein, J. D. Kirtland, C. A. Rodriguez, A. D. Stroock, H.D. Abru a. Membraneless, room-temperature, direct borohydride/cerium fuelcell with power density of over0.25W/cm2[J]. J. Am. Chem. Soc,2012,134(14):6076-6079.
    [124] S. V.Manorama, N. Izu, W. Shin, I. Natsubara, N. Murayama. On the platinumsensitization of nanosized cerium dioxide oxygen sensors[J]. Sen. Actuators, B,2003,89:299-304.
    [125] N. Izu,W. Shin, I. Matsubara, N. Murayama. Improvement in response ofresistive oxygen sensor based on ceria-zirconia thick film with Pt catalyst onsurface[J]. Sen. Actuators B,2009,139(2):317-321.
    [126] D. Barreca, A. Gasparotto, C. Maccato, C. Maragno, E. Tondello, E. Comini, G.Sberveglieri. Columnar CeO2nanostructures for sensor application[J].Nanotechnology,2007,18(12):125502.
    [127] G. S. Bang, H. M. So, M. J. Lee, C. W. Ahn. Preparation of graphene with fewdefects using expanded graphite and rose bengal[J]. J. Mater. Chem.,2012,22(11):4806-4810.
    [128] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth.The structure of suspended graphene sheets[J]. Nature,2007,446(7131):60-63.
    [129] C. Y. Cao, Z. M. Cui, C. Q. Chen, W. G. Song, W. Cai. Ceria hollownanospheres produced by a template-free microwave-assisted hydrothermalmethod for heavy metal ion removal and catalysis[J]. J. Phys. Chem. C,2010,114(21):9865-9870.
    [130] Y. Y. Luo, G. H. Li, G. T. Duan, L. D. Zhang. One-step synthesis of sphericalα-Ni (OH)2nanoarchitectures[J]. Nanotechnology,2006,17(16):4278.
    [131] M. A. Kiani, M. F. Mousavi, S. Ghasemi. Size effect investigation on batteryperformance: Comparison between micro-and nano-particles of β-Ni (OH)2asnickel battery cathode material[J]. J. Power Sources,2010,195(17):5794-5800.
    [132] W. P. Halperin. Quantum size effects in metal particles[J]. Rev. Modern Phys.,1986,58(3):533-606.
    [133] M. J. Madou, S. R. Morrison. Chemical sensing with solid state devices[J].Academic, Press Inc, New York,1988.
    [134] L. Liao, H. B.Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, W. F. Zhang.Size dependence of gas sensitivity of ZnO nanorods[J]. J. Phys. Chem. C,2007,111(5):1900-1903.
    [135] N. M. Shaalana, T. Yamazakia, T. Kikuta. Influence of morphology andstructure geometry on NO2gas-sensing characteristics of SnO2nanostructuressynthesized via a thermal evaporation method[J]. Sen. Actuators B,2011,153:11-16.
    [136] Y. H. Xu, H. Chen, R. Zeng, Z. X. Lei. Investigation on mechanism ofphotocatalytic activity enhancement of nanometer cerium-doped titania[J].Appl. Surf. Sci.,2006,252(24):8565-8570.
    [137] H. Li, G. F. Wang, F. Zhang, Y. Cai, Y. D. Wang, I. Djerdj. Surfactant-assistedsynthesis of CeO2nanoparticles and their application in wastewater treatment[J].RSC Advances,2012,2(32):12413-12423.
    [138] D. R. Kauffman and A. Star. Carbon nanotube gas and vapor sensors[J]. Angew.Chem. Int. Ed.,2008,47,6550-6570.
    [139] L. S. Zhou, F. P. Shen, X. K. Tian, D. H Wang, T. Zhang and W Chen. StableCu2O nanocrystals grown on functionalized graphene sheets and roomtemperature H2S gas sensing with ultrahigh sensitivity[J]. Nanoscale,2013,5,1564-1569.
    [140] F. N. Meng, X. P. Di, H. W. Dong, Y. Zhang, C. L. Zhu, C. Y. Li, Y. J. Chen. PpbH2S gas sensing characteristics of Cu2O/CuO sub-microspheres atlow-temperature[J]. Sen. Actuators, B,2013,182,197-204.
    [141] Y. W. Zhu, S.Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai, P. J. Ferreira, A.Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S.Ruoff1. Carbon-based supercapacitors produced by activation of graphene[J].Science,2011,332,1537-1541.
    [142] L. L. Zhang, X. Zhao, M. D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales,B. Clevenger, R. S. Ruoff. Highly conductive and porous activated reducedgraphene oxide films for high-power supercapacitors[J]. Nano. Lett.,2012,12(4):1806-1812.
    [143] A. Katsifaras, N. Spanos. Effect of inorganic phosphate ions on the spontaneousprecipitation of vaterite and on the transformation of vaterite to calcite[J]. J. Cryst.Growth,1999,204(1):183-190.
    [144] J. Khanderi, C. Contiu, J. Engstler, R. C. Hoffmann, J. J. Schneider,A. Drochner,H. Vogel. Binary [Cu2O/MWCNT] and ternary [Cu2O/ZnO/MWCNT]nanocomposites: formation, characterization and catalytic performance in partialethanol oxidation[J]. Nanoscale,2011,3(3):1102-1112.
    [145] Q. Huang, F. Kang, H. Liu, Q. Li, X. D. Xiao. Highly aligned Cu2O/CuO/TiO2core/shell nanowire arrays as photocathodes for water photoelectrolysis[J]. J.Mater. Chem. A,2013,1(7):2418-2425.
    [146] M. Deo, S. Mujawar, O. Game, A. Yengantiwar, A. Banpurkar, S. Kulkarni, J.Jog, S. Ogale. Strong photo-response in a flip-chip nanowire p-Cu2O/n-ZnOjunction[J]. Nanoscale,2011,3(11):4706-4712.
    [147] P. Wang, Y. H. Ng, R. Amal. Embedment of anodized p-type Cu2O thin filmswith CuO nanowires for improvement in photoelectrochemical stability[J].Nanoscale,2013,5(7):2952-2958.
    [148] B. J. Jiang, C. G. Tian, Q. J. Pan, Z. Jiang, J. Q. Wang, W. S. Yan, H. G. Fu.Enhanced photocatalytic activity and electron transfer mechanisms ofgraphene/TiO2with exposed {001} facets[J]. J. Phys. Chem. C,2011,115(48):23718-23725.
    [149] Q. Zhang, C. G. Tian, A. P. Wu, T. X. Tan, L. Sun, L. Wang, H. G. Fu. J. Afacileone-pot route for the controllable growth of small sized and well-dispersed ZnOparticles on GO-derived graphene[J]. J. Mater. Chem.,2012,22(23):11778-11784.
    [150] H. G. Yu, J. G. Yu, S. W. Liu, S. Mann. Template-free hydrothermalsynthesis of CuO/Cu2O composite hollow microspheres[J]. Chem. Mater.,2007,19(17):4327-4334.
    [151] L. X. Yang, L. Li, Y. Yang, G. Zhang, L. H. Gong, L. Q. Jing, H. G. Fu, K.Y.Shi. Facile synthesis of Cu/CuO nanoarchitectures with adjustable phasecomposition for effective NOxgas sensor at room temperature[J]. Mater. Res.Bull.,2013,48(10):3657-3665.
    [152] X. J. Zhang, T. Y. Ma, Z. Y. Yuan. Titania–phosphonate hybrid porous materials:preparation, photocatalytic activity and heavy metal ion adsorption[J]. J. Mater.Chem.,2008,18(17):2003-2010.
    [153] T. Y. Ma, X. J. Zhang, G. S. Shao, J. L. Cao, Z. Y. Yuan. Ordered macroporoustitanium phosphonate materials: synthesis, photocatalytic activity, and heavymetal ion adsorption[J]. J. Phys. Chem. C2008,112(8):3090-3096.
    [154] S. Gao, S. Yang, J. Shu, S. Zhang, Z. Li, K. Jiang. Green fabrication ofhierarchical CuO hollow micro/nanostructures and enhanced performance aselectrode materials for lithium-ion batteries[J]. J. Phys. Chem. C,2008,112(49):19324-19328.
    [155] G. Korotcenkov. The role of morphology and crystallographic structure of metaloxides in response of conductometric-type gas sensors[J]. Mater. Sci. Eng., R,2008,61(1):1-39.2008,61,1.
    [156] H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. J. Zhang, D. P. Wilkinsonc.Nano-architecture and material designs for water splitting photoelectrodes[J].Chem. Soc. Rev.,2012,41(17):5654-5671.
    [157] Q. Qi, T. Zhang, X. Zheng, H. Fan, L. Liu, R. Wang, Y. Zeng. Electricalresponse of Sm2O3-doped SnO2to C2H2and effect of humidity interference[J].Sen.. Actuators, B,2008,134(1):36-42.
    [158] J. Gong, Q. Chen,M. Lian, N. Liu, R. G. Stevenson, F. Adamic.Micromachined nanocrystalline silver doped SnO2H2S sensor[J]. Sen. Actuators,B,2006,114(1):32-39.
    [159] M. J. Madou, S. R. Morrison. Chemical sensing with Solid State Devices[J],Academic Press, New York,1989,101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700