用户名: 密码: 验证码:
晶体结构关联性在锂离子电池电极材料的制备与性能提升中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
4G时代的来临和电动汽车的发展催生了对高能量密度锂离子电池电极新材料的迫切需求,掀起了高能新材料的研究热潮,其中快速、便捷和规模化的制备出新材料是关键。本论文发展了一种基于合成前驱体和目标产物的晶体结构关联性,通过对合成前驱体和反应体系的的合理化选择和对反应条件的优化,快速、便捷和有效地制备出了在传统方法上很难合成的高电压和高比能的新型锂离子电极材料的方法。系统地研究了反应过程中物相的晶体结构和形貌的变化,及其与电化学性能之间的关系。根据前驱体和目标产物在晶体结构上的关联性,尝试性的提出了可能的合成机理。同时,合理地将这种基于晶体结构关联性的合成方法加以适度的推广至其他化合物的制备。
     本论文的主要研究内容归纳如下:
     1.在先前报道的文献中,对高电压新材料AFeSO4F(A=Li, Na)的制备一直是个困难:首先,制备FeSO4·H2O的过程是不可或缺的;其次,反应所需的离子液体价格昂贵;最后,反应的时间过长,如30h。基于对前驱体FeSO4·7H2O和目标产物NaFeSO4F的晶体结构关联性的分析,我们以FeSO4·7H2O和NaF为反应原料,巧妙的选择苯为反应介质,用一步法苯-水共沸路线在极短时间(1min)、200℃条件下选择性制备出目标产物NaFeSO4F和NaFeSO4F·2H2O:NaFeSO4F可以在铁冒封闭的高温釜中通过苯热反应制得;当以铜冒更换封闭反应釜的铁冒时,所获得的产物为NaFeSO4F·2H2O。进一步的研究发现,将制备得到NaFeSO4F·2H2O的其他反应条件都不变,仅将反应时间从1min延长至40h,则NaFeSO4F·2H2O将会转变为NaFeSO4F。在机理的探索过程中,我们设计了一系列的控制实验,用以推测其合成机理,并提出了一种理想化的反应模型。最后,我们对所获得的的产物NaFeSO4F和NaFeSO4F·2H2O均作了电化学评估,发现NaFeSO4F存在3.5V (vs Li+/Li)的电压平台。在我们的反应体系中,二价铁被氧化为三价铁的趋势被有效的抑制和避免了。同时,这种一步苯-水共沸法可以推广到制备其他的水合氟代硫酸盐NaMSO4F·2H2O (M=Co, Ni)。相关工作发表在英国皇家化学会CrystEngComm上(CrystEngComm,2012,14,4251-4254)。审稿人评价此工作为"......a major breakthrough in the targeted synthesis of these compounds......"
     2.一维纳米结构对高比能氧化物的电化学性能提升尤为显著,然而具有层状结构的氧化物,如MoO3,V2O5和WO3等受晶体学特性所限,很难制备为一维纳米线。我们提出了一个制备MoO3,V2O5和WO3纳米线的新的概念,即在其水合氧化物脱水转变为氧化物的过程中,通过抑制或破坏水合氧化物和氧化物中共有的一维MO6八面体链在径向上的作用或连接来制备只允许在长度方向上生长的纳米线。我们基于对前驱体α-MoO3·H2O和目标产物α-MoO3的晶体结构关联性的分析,第一次报道了以单晶三斜一水合三氧化钼α-MoO3·H2O纳米棒为前驱体,通过拓扑转换路线制备了介孔的正交相MoO3纳米线束。其拓扑转换基于α-MoO3·H2O和α-M0O3晶体结构中共有的一维MoO6八面体双链和两物相在特殊晶体方向上的匹配,即[001]α-MoO3·H2O//[100]MoO3。在物相由α-MoO3·H2O转变为正交Mo03时,前驱体的纳米棒形貌得以保持。对其转换过程的研究表明,M003纳米线构筑的多孔纳米束是基于α-MoO3·H2O纳米棒的{001}晶面的丝化和外延生长。这种基于晶体结构关联性的真空拓扑路线提供了一种有效和实用的制备高度有序化多孔纳米材料的方法,诸如V2O5和WO3纳米线等等。在以锂片为对电极,电压为0.001-3.0V,电流密度为200mAg-1的恒电流测试中,纳米线束给出了高的、稳定的可逆比容量,954.8mA h g-1。α-MoO3纳米线束高的可逆比容量和好的循环稳定性归因于其特殊的纳米结构:(a)小尺寸由于短距离的扩散路径,促进电子和离子的传输,提高了其电化学倍率性能;(b)纳米线束是由大量的一维纳米线所构成,可以缓解氧化物在脱嵌锂过程中体积改变应力;(c)纳米线束是多孔的,其有利于电解液渗入到介孔中,促使电解液和电极材料的充分接触,同时,介孔亦可以容纳放电过程中体积的膨胀效应。这种介孔正交Mo03纳米线束,平均孔径为13nm,拥有高的比表面积,除了在锂离子电池中有好的性能表现,其在其他应用领域,诸如超级电容器和催化等,亦可能有好的表现。该工作发表在美国化学会The Journal of Physical Chemistry C上(J. Phys. Chem. C,2014,118,5091-5101)。审稿人评价此工作为‘'......The work is of creative and well done......This paper successfully shows the novelty with its effective and versatile synthesis approach......"
     3.我们利用油包水体系,通过两个化学反应的耦合,制备出了大量Sn02纳米晶分散在无定型M003的矩阵中的SnO2-(MoO3)特殊纳米复合结构。这种反应体系通过在两相间缓慢的释放反应原料成功的抑制了SnO2晶粒的生长。在电化学性能评估过程中,SnO2-(MoO3)纳米复合物获得了很高的电化学性能,可逆比容量高达2356mAh g-1。我们这种合成方法有可能推广至其他氧化物复合材料的合成上,如TiO2-(MoO3),以期获得高的物理化学性能。
The advent of the era of4G and the development of electric vehicles (EVs) have given rise to the urgent need of new lithium-ion batteries (LIBs) electrode materials with high energy density and set off a wave of new materials research. Quick, convenient and large-scale preparation of new materials is the key. We developed a fast, convenient and effective route to the preparation of new high-voltage and high-capacity LIBs electrode materials, which were too difficult to be synthesized by traditional methods, based on the structural affiliation between the precursor and the finally formed product by selecting the suitable precursor and the suitable reaction system, and optimizing the reaction conditions. The process of phase changes of crystal structure and morphologies, and the related electrochemical performance and were studied systematically. Based on the structural affiliation between the precursor and the finally formed product, the probable synthetic mechanisms were proposed. At the same time, the synthetic route based on the crystal structure affiliation was extended to the preparation of other compounds.
     The main contents of the dissertation can be summarized as follows:
     1. In the previous reports, the synthesis of the new high-voltage materials AFeSO4F (A=Li, Na) was always difficult and complex, including the following points:(1) the preparation of the precursor FeSO4·H2O was unavoidable;(2) the reaction medium used in the reaction system was ion liquid, which is very expensive;(3) the reaction time was very long, such as30h. Based on the analysis of the crystal structure affiliation between the precursor FeSO4·7H2O and the final product NaFeSO4F, a novel benzene-water azeotrope route was designed to selectively prepare the NaFeSO4F and NaFeSO4F·2H2O using the FeSO4·7H2O and NaF as the raw materials and the benzene as the reaction medium. The reaction time was very short (1min) and the reaction temperature was200℃. The product in the autoclave with the iron-cap was NaFeSO4F; if the coppor-cap, the product was NaFeSO4F·2H2O. With the further studies, the NaFeSO4F·2H2O can be converted to be the dehydrate phase NaFeSO4F by prolonging the reaction time from1min to40h in the autoclave with the coppor-cap. An ideal reaction model was proposed to explain the reaction mechanism based on series of control experiments. Lastly, the electrochemical performances of the NaFeSO4F和NaFeSO4F·2H2O were valuated and the3.5V (vs Li+/Li) of the NaFeSO4F was detected. In our reaction system, the Fe2+can be avoided to oxide to Fe3+. At the same time, the benzene-water azeotrope route can be extended to NaMSO4F·2H2O (M=Co, Ni). This work has been published on the RSC journal CrystEngComm,2012,14,4251-4254. The comment of the reviewers is "......a major breakthrough in the targeted synthesis of these compounds......"
     2. One-dimensional nanostructure is of importance for the improvement of the electrochemical performance of the metal oxides. However, some layer structured metal oxides, such as MoO3, V2O5and WO3, are difficult to be one-dimensional nanostructure, such as nanowire et al because of the limitation of the crystal structure properties. We propose a new concept that preparing the MoO3, V2O5, and WO3nanowires by inhibiting and/or destroying the connecting of1-D MO6octahedra chains existed in their hydrated states in the radial direction based on the dehydration of their hydrated metal oxides, and for the first time, we report a vacuum topotactic transformation route to mesoporous orthorhombic MoO3highly textured nanowire bundles from single-crystal α-MoO3·H2O nanorods. The topotactic conversation is based on the1-D double chains of MO6octahedra sharing two common edges for the α-MoO3·H2O and MoO3and the structural matching of [001]α-MoO3·H2O//[100]MoO3. During the chemical and structural change from α-MoO3·H2O to MoO3, the nanorod morphology can be well maintained. Investigation of the transformation progress indicates MoO3nanowires constructing a porous nanobundle prefer textured and epitaxial growth from {001} plane of a single-crystal α-MoO3·H2O nanorod. The topotactic transition growth in vacuum based on the relationship of the crystal structures provides an effective and practical approach to synthesize highly organized porous nanomaterials, such as V2O5, and WO3nanowires, etc. The result of galvanostatic electrochemical testing in the voltage range of0.001-3.0V versus Li+/Li at200mA g-1give reversible capacities of954.8mA h g-1for the mesoporous orthorhombic MoO3nanowire bundles. The capacity can be comparable to the best recently reported data. The sample consisting of mesoporous MoO3nanowire bundles with an average pore size of13nm and high BET surface-area shows more stable reversibility and higher capacity than others, indicative of micro/nano-structure-enhanced performance, which can also be used in other application fields, such as supercapacitor and catalysis, etc. This work has been published on the ACS journal J. Phys. Chem. C,2014,118,5091-5101. The comment of the reviewers is "......The work is of creative and well done......This paper successfully shows the novelty with its effective and versatile synthesis approach......"
     3. We have designed a special nanocomposite SnO2-(MoO3), nanocrystalline SnO2(below3nm) distributing in amorphous MoO3matrix, to simultaneously solve the two problems to obtain a high-capacity and high cycle stability anode material. Because the nanocomposites have two advantages:Firstly, the nanocrystalline SnO2with critical size can insure good cycling stability. Secondly, the surrounding MoO3with small size not only sufficiently make the wasted Li2O yielded in irreversible process convert to Li+, but also prevent the nanocrystalline SnO2aggregating and forming larger particles during the cycling process to avoid the capacity fading. A facile two-phase method has been introduced to successfully prepare the designed nanocomposites in one-pot. In our water-in-oil system, we ingeniously combine the reactions of preparing SnO2and MoO3by intermediate product HC1. The assembly structure of the nanocomposites is affected by the reaction subsequence of the formation of SnO2and MoO3. As anode materials, the nanocomposites reveal much higher reversible capacity2356mAh g-1(approximate3times as high as the theoretical capacity of SnO2790mAh g-1) at200mA g-1. We also give the detailed analysis. A perhaps obvious appeal of our approach is that it can be extended to generate nanocomposites of other metal oxides, such as TiO2-(MoO3), for obtaining improved physical-chemical properties.
引文
[1]J. B. Goodenough, Energy Environ. Sci.2014,7,14-18.
    [2]黄可龙,王兆翔,刘素琴,锂离子电池原理与关键材料技术,化学工业出版社,2007.
    [3]G. Zhou, S. Pei, L. Li, D. W. Wang, S. Wang, K. Huang, L. C. Yin, F. Li, and H. M. Cheng, Adv. Mater.2014,26,625-631.
    [4]K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull.1980,15,783-789.
    [5]T. Ohzuku, A. Ueda, J. Electrochem. Soc.1994,141,2972-2977.
    [6]X. Q. Yang, X. Sun, J. McBreen, Electrochem. Commun.2000,2,100-103.
    [7]J. N. Reimers, J. R. Dahn, J. Electrochem. Soc.1992,139,2091-2097.
    [8]G. G. Amatucci, J. M. Tarascon, L. C. Klein, J. Electrochem. Soc.1996,143,1114-1123.
    [9]A. Van der Ven, M. K. Aydinol, G. Ceder, J. Electrochem. Soc.1998,145,2149-2155.
    [10]Z. H. Chen, Z. H. Lu, J. R. Dahn, J. Electrochem. Soc.2002,149, A1604-A1609.
    [11]H. F. Wang, Y. I. Jang, B. Y. Huang, D. R. Sadoway, Y. T. Chiang, J. Electrochem. Soc.1999,146, 473-480.
    [12]E. Endo, T. Yasuda, A. Kita, K. Yamaura, K. Sekai, J. Electrochem. Soc.2000,147,1291-1294.
    [13]K. Y. Chung, W. S. Yoon, J. McBreen, X. Q. Yang, S. H. Oh, H. C. Shin, W. Il Cho, B. W. Cho, J. Electrochem. Soc.2006,153, A2152-A2157.
    [14]G. G. Amatucci, J. M. Tarascon, L. C. Klein, Solid State Ionics1996,83,167-173.
    [15]W. B. Luo, J. R. Dahn, Electrochim. Acta2009,54,4655-4661.
    [16]Y. I. Jang, B. Y. Huang, H. F. Wang, D. R. Sadoway, G. Ceder, Y. M. Chiang, H. Liu, H. Tamura, J. Electrochem. Soc.1999,146,862-868.
    [17]C. D. W. Jones, E. Rossen, J. R. Dahn, Solid State Ionics 1994,68,65-69.
    [18]J. Cho, Y. J. Kim, T. J. Kim, B. Park, Angew. Chem., Int. Ed.2001,40,3367+.
    [19]J. Cho, Y. W. Kim, B. Kim, J. G. Lee, B. Park, Angew. Chem., Int. Ed.2003,42,1618-1621.
    [20]Z. H. Chen, J. R. Dahn, Electrochem. Solid-State Lett.2004,7, A11-A14.
    [21]Z. H. Chen, J. R. Dahn, Electrochim. Acta 2004,49,1079-1090.
    [22]J. R. Dahn, U. Vonsacken, C. A. Michal, Solid State Ionics 1990,44,87-97.
    [23]A. Rougier, P. Gravereau, C. Delmas, J. Electrochem. Soc.1996,143,1168-1175.
    [24]C. Pouillerie, E. Suard, C. Delmas, J. Solid State Chem.2001,158,187-197.
    [25]C. Pouillerie, L. Croguennec, P. Biensan, P. Willmann, C. Delmas, J. Electrochem. Soc.2000,147, 2061-2069.
    [26]R. V. Chebiam, F. Prado, A. Manthiram, J. Electrochem. Soc.2001,148, A49-A53.
    [27]A. R. Naghash, J. Y. Lee, Electrochim. Acta 2001,46,2293-2304.
    [28]S. H. Park, Y. K. Sun, K. S. Park, K. S. Nahm, Y. S. Lee, M. Yoshio, Electrochim. Acta 2002,47, 1721-1726.
    [29]S. K. Mishra, G. Ceder, Phys. Rev. B1999,59,6120-6130.
    [30]A. R. Armstrong, P. G. Bruce, Nature1996,381,499-500.
    [31]F. Capitaine, P. Gravereau, C. Delmas, Solid State Ionics1996,89,197-202.
    [32]G. Vitins, K. West, J. Electrochem. Soc.1997,144,2587-2592.
    [33]J. M. Paulsen, C. L. Thomas, J. R. Dahn, J. Electrochem. Soc.1999,146,3560-3565.
    [34]E. Rossen, C. D. W. Jones, J. R. Dahn, Solid State Ionics1992,57,311-318.
    [35]T. Ohzuku, Y. Makimura, Chem. Lett.2001,744-745.
    [36]Z. H. Lu, D. D. MacNeil, J. R. Dahn, Electrochem. Solid-State Lett.2001,4, A191-A194.
    [37]Y. Makimura, T. Ohzuku, J. Power Sources 2003,119,156-160.
    [38]Y. Makimura, T. Ohzuku, J. Power Sources2003,119,156-160.
    [39]F. Zhou, X. M. Zhao, Z. H. Lu, J. W. Jiang, J. R. Dahn, Electrochem. Solid-State Lett.2008,11, A155-A157.
    [40]M. E. Spahr, P. Novak, B. Schnyder, O. Haas, R. Nesper, J. Electrochem. Soc.1998,145, 1113-1121.
    [41]B. Ammundsen, J. Paulsen, Adv. Mater.2001,13,943.
    [42]W. S. Yoon, Y. Paik, X. Q. Yang, M. Balasubramanian, J. McBreen, C. P. Grey, Electrochem. Solid-State Lett.2002,5, A263-A266.
    [43]J. Reed, G. Ceder, Electrochem. Solid-State Lett.2002,5, A145-A148.
    [44]M. S. Islam, R. A. Davies, J. D. Gale, Chem. Mater.2003,15,4280-4286.
    [45]K. S. Kang,; Y. S. Meng, J. Breger, C. P. Grey, G. Ceder, Science 2006,311,977-980.
    [46]E. J. Wu, P. D. Tepesch, G. Ceder, Philos. Mag., B 1998,77,1039-1047.
    [47]J. Breger, Y. S. Meng, Y. Hinuma, S. Kumar, K. Kang, Y. ShaoHorn, G. Ceder, C. P. Grey, Chem. Mater.2006,18,4768-4781.
    [48]Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, T. Ohzuku, J. Power Sources 2003,119, 644-648.
    [49]B. J. Hwang, Y. W. Tsai, D. Carlier, G. Ceder, Chem. Mater.2003,15,3676-3682.
    [50]S. C. Yin, Y. H. Rho, I. Swainson, L. F. Nazar, Chem. Mater.2006,18,1901-1910.
    [51]J. Choi, A. Manthiram, J. Electrochem. Soc.2005,152, A1714-A1718.
    [52]N. Yabuuchi, T. Ohzuku, J. Power Sources 2003,119,171-174.
    [53]Y. D. Wang, J. W. Jiang, J. R. Dahn, Electrochem. Commun.2007,9,2534-2540.
    [54]W. S. Yoon, M. Balasubramanian, K. Y. Chung, X. Q. Yang, J. McBreen, C. P. Grey, D. A. Fischer, J. Am. Chem. Soc.2005,127,17479-17487.
    [55]Y. W. Tsai, B. J. Hwang, G. Ceder, H. S. Sheu, D. G. Liu, J. F. Lee, Chem. Mater.2005,17, 3191-3199.
    [56]S. Miao, M. Kocher, P. Rez, B. Fultz, Y. Ozawa, R. Yazami, C. C. Ahn, J. Phys. Chem. B 2005, 109,23473-23479.
    [57]S. C. Yin, Y. H. Rho, I. Swainson, L. F. Nazar, Chem. Mater.2006,18,1901-1910.
    [58]N. Yabuuchi, Y. Makimura, T. Ohzuku, J. Electrochem. Soc.2007,154, A314-A321.
    [59]J. M. Kim, H. T. Chung, Electrochim. Acta 2004,49,937-944.
    [60]J. M. Tarascon, D. Guyomard, G. L. Baker, J. Power Sources1993,44,689-700.
    [61]J. M. Tarascon, D. Guyomard, Electrochim. Acta 1993,38,1221-1231.
    [62]M. M. Thackeray, Y. Shao-Horn, A. J. Kahaian, K. D. Kepler, J. T. Vaughey, S. A. Hackney, Electrochem. Solid-State Lett.1998,1,7-9.
    [63]D. H. Jang, Y. J. Shin, S. M. Oh, J. Electrochem. Soc.1996,143,2204-2211.
    [64]H. Huang, C. A. Vincent, P. G. Bruce, J. Electrochem. Soc.1999,146,3649-3654.
    [65]Y. J. Shin, A. Manthiram, J. Electrochem. Soc.2004,151, A204-A208.
    [66]B. H. Deng, H. Nakamura, M. Yoshio, J. Power Sources 2008,180,864-868.
    [67]J. C. Hunter, J. Solid State Chem.1981,39,142-147.
    [68]R. Benedek, M. M. Thackeray, Electrochem. Solid-State Lett.2006,9, A265-A267.
    [69]Y. S. Lee, M. Yoshio, Electrochem. Solid-State Lett.2001,4, A155-A158.
    [70]A. Manthiram, W. Choi, Electrochem. Solid-State Lett.2007,10, A228-A231.
    [71]D. K. Kim, P. Muralidharan, H. W. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins, Y. Cui, Nano Lett.2008,8,3948-3952.
    [72]M. Wakihara, Electrochemistry 2005,73,328-335.
    [73]M. Imazaki, K. Ariyoshi, T. Ohzuku, J. Electrochem. Soc.2009,156, A780-A786.
    [74]D. Liu, J. Trottier, P. Charest, J. Frechette, A. Guerfi, A. Mauger, C. M. Julien, K. Zaghib J. Power Sources 2012,204,127-132.
    [75]K. S. Nanjundaswamy, A. K. Padhi, J. B. Goodenough, S. Okada, H. Ohtsuka, H. Arai, J. Yamaki, Solid State Ionics 1996,92,1-10.
    [76]A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough, J. Electrochem. Soc.1997,144,1609-1613.
    [77]S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nat. Mater.2002,1,123-128.
    [78]P. S. Herle, B. Ellis, N. Coombs, L. F. Nazar, Nat. Mater.2004,3,147-152.
    [79]B. Kang, G. Ceder, Nature 2009,458,190-193.
    [80]Zaghib, K.; Goodenough, J. B.; Mauger, A.; Julien, C. J. Power Sources 2009, in press.
    [81]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc.1997,144, 1188-1194.
    [82]T. Drezen, N. H. Kwon, P. Bowen, I. Teerlinck, M. Isono, Exnar, I. J. Power Sources 2007,174, 949-953.
    [83]D. Y. Wang, H. Buqa, M. Crouzet, G. Deghenghi, T. Drezen, I. Exnar, N. H. Kwon, J. H. Miners, L. Poletto, M. Graetzel, J. Power Sources 2009,189,624-628.
    [84]B. Ellis, P. S. Herle, Y. H. Rho, L. F. Nazar, R. Dunlap, L. K. Perry, D. H. Ryan, Faraday Discuss. 2007,134,119-141.
    [85]T. Shiratsuchi, S. Okada, T. Doi, J. Yamaki, Electrochim. Acta 2009,54,3145-3151.
    [86]G. Y. Chen, J. D. Wilcox, T. J. Richardson, Electrochem. Solid-State Lett.2008,11, A190-A194.
    [87]C. Keffer, A. Mighell, F. Mauer, H. Swanson, S. Block, Inorg. Chem.1967,6,119-125.
    [88]Zemann, J. Acta Crystallogr.1960,13,863-867.
    [89]A. Nyten, A. Abouimrane, M. Armand, T. Gustafsson, J. O. Thomas, Electrochem. Commun. 2005,7,156-160.
    [90]A. Kokalj, R. Dominko, G. Mali, A. Meden, M. Gaberscek, J. Jamnik, Chem. Mater.2007,19, 3633-3640.
    [91]R. Dominko, M. Bele, M. Gaberscek, A. Meden, M. Remskar,
    J. Jamnik, Electrochem. Commun.2006,8,217-222.
    [92]R. Dominko, J. Power Sources 2008,184,462-4168.
    [93]A. R. West, F. P. Glasser, J. Solid State Chem.1972,4,20-&.
    [94]C. Lyness, B. Delobel, A. R. Armstrong, P. G. Bruce, Chem. Commun.2007,4890-4892.
    [95]J. Barker, M. Y. Saidi, J. L. Swoyer, J. Electrochem. Soc.2003,150, A1394-A1398.
    [96]J. L. Pizarro-Sanz, J. M. Dance, G. Villeneuve, M. I. Arriortua-Marcaida, Mater. Lett.1994,18, 327-330.
    [97]B. L. Ellis, W. R. M. Makahnouk, Y. Makimura, K. Toghill, L. F. Nazar, Nat. Mater.2007,6, 749-753.
    [98]N. Recham, J.-N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand and J.-M. Tarascon, Nat. Mater.,2010,9,68-74.
    [99]A. C. Dillon, Chem. Rev.,2010,110,6856.
    [100]J. Y. Eom, H. S. Kwon, J. Liu and O. Zhou, Carbon,2004,42,2589.
    [101]R. Lv, L. Zou, X. Gui, F. Kang, Y. Zhu, H. Zhu, J. Wei, J. Gu, K. Wang and D. Wu, Chem. Commun.,2008,2046.
    [102]J. S. Zhou, H. H. Song, B. C. Fu, B. Wu and X. H. Chen, J. Mater. Chem.,2010,20,2794.
    [103]D. Deng and J. Y. Lee, Chem. Mater.,2007,19,4198.
    [104]C. Kim, K. S. Yang, M. Kojima, K. Yoshida, Y. J. Kim, Y. A. Kim and M. Endo, Adv. Funct. Mater.,2006,16,2393.
    [105]L. W. Ji, Y. F. Yao, O. Toprakci, Z. Lin, Y. Z. Liang, Q. Shi, A. J. Medford, C. R. Millns and X. W. Zhang, J. Power Sources,2010,195,2050.
    [106]D. Chen, L. H. Tang and J. H. Li, Chem. Soc. Rev.,2010,39,3157.
    [107]P. Guo, H. H. Song and X. H. Chen, Electrochem. Commun.,2009,11,1320.
    [108]S. M. Paek, E. Yoo and I. Honma, Nano Lett.,2009,9,72.
    [109]F. Cheng, Z. Tao, J. Liang and J. Chen, Chem. Mater.,2008,20,667.
    [110]F. B. Su, X. S. Zhao, Y. Wang, J. H. Zeng, Z. C. Zhou and J. Y. Lee, J. Phys. Chem. B,2005, 109,20200.
    [111]H. S. Zhou, S. M. Zhu, M. Hibino, I. Honma and M. Ichihara, Adv. Mater.,2003,15,2107.
    [112]C. M. Park, J. H. Kim, H. Kim and H. J. Sohn, Chem. Soc. Rev.,2010,39,3115.
    [113]Y. Kwon, H. Kim, S. G. Doo and J. H. Cho, Chem. Mater.,2007,19,982.
    [114]N. A. Kaskhedikar and J. Maier, Adv. Mater.,2009,21,2664.
    [115]H. C. Shin and M. L. Liu, Adv. Funct. Mater.,2005,15,582.
    [116]H. Kim, M. Seo, M. H. Park and J. Cho, Angew. Chem., Int. Ed.,2010,49,2146.
    [117]U. Kasavajjula, C. S. Wang and A. J. Appleby, J. Power Sources,2007,163,1003.
    [118]H. Kim and J. Cho, Nano Lett.,2008,8,3688.
    [119]L. W. Ji, K. H. Jung, A. J. Medford and X. W. Zhang, J. Mater. Chem.,2009,19,4992.
    [120]K. T. Lee, Y. S. Jung and S. M. Oh, J. Am. Chem. Soc.,2003,125,5652.
    [121]D. C. S. Souza, V. Pralong, A. J. Jacobson and L. F. Nazar, Science,2002,296,2012.
    [122]C. M. Park, J. H. Kim, H. Kim and H. J. Sohn, Chem. Soc. Rev.,2010,39,3115
    [123]J. Cabana, L. Monconduit, D. Larcher and M. R. Palacin, Adv. Mater.,2010,22, E170.
    [124]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. Tarascon, Nature,2000,407,496.
    [125]M. S. Park, Y. M. Kang, G. X. Wang, S. X. Dou and H. K. Liu, Adv. Funct. Mater.,2008,18, 455.
    [126]Y. L. Zhang, Y. Liu and M. L. Liu, Chem. Mater.,2006,18,4643.
    [127]D. Deng and J. Y. Lee, Chem. Mater.,2008,20,1841.
    [128]Z. P. Guo, G. D. Du, Y. Nuli, M. F. Hassan and H. K. Liu, J. Mater. Chem.,2009,19,3253.
    [129]H. Kim and J. Cho, J. Mater. Chem.,2008,18,771.
    [130]X. W. Lou, J. S. Chen, P. Chen and L. A. Archer, Chem. Mater.,2009,21,2868
    [131]X. M. Sun, J. F. Liu and Y. D. Li, Chem. Mater.,2006,18,3486.
    [132]H. X. Zhang, C. Feng, Y. C. Zhai, K. L. Jiang, Q. Q. Li and S. S. Fan, Adv. Mater.,2009,21, 2299.
    [133]X. W. Lou, C. M. Li and L. A. Archer, Adv. Mater.,2009,21,2536.
    [134]Y. Wang, H. C. Zeng and J. Y. Lee, Adv. Mater.,2006,18,645.
    [135]L. Ji, Z. Lin, B. Guo, A. J. Medford and X. Zhang, Chem.-Eur. J.,2010,16,11543.
    [136]C. M. Park, J. H. Kim, H. Kim and H. J. Sohn, Chem. Soc. Rev.,2010,39,3115.
    [137]Y. G. Guo, Y. S. Hu and J. Maier, Chem. Commun.,2006,2783.
    [138]K. Saravanan, K. Ananthanarayanan and P. Balaya, Energy Environ. Sci.,2010,3,939.
    [139]Y. G. Guo, Y. S. Hu, W. Sigle and J. Maier, Adv. Mater.,2007,19,2087.
    [140]K. X. Wang, M. D. Wei, M. A. Morris, H. S. Zhou and J. D. Holmes, Adv. Mater.,2007,19, 3016.
    [141]P. Adelhelm, Y. S. Hu, M. Antonietti, J. Maier and B. M. Smarsly, J. Mater. Chem.,2009,19, 1616.
    [142]W. J. Zhang, J. Power Sources,2011,196,13.
    [143]J. P. Liu, Y. Y. Li, X. T. Huang, R. M. Ding, Y. Y. Hu, J. Jiang and L. Liao, J. Mater. Chem., 2009,19,1859.
    [144]C. Liu, F. Li, L. P. Ma and H. M. Cheng, Adv. Mater.,2010,22, E28.
    [145]X. J. Liu, H. Yasuda and M. Yamachi, J. Power Sources,2005,146,510.
    [146]D. Pasero, N. Reeves and A. R. West, J. Power Sources,2005,141,156.
    [147]P. Poizot, S. Laruelle, S. Grugeon and J. M. Tarascon, J. Electrochem. Soc.,2002,149, A1212.
    [148]X. Q. Yu, Y. He, J. P. Sun, K. Tang, H. Li, L. Q. Chen and X. J. Huang, Electrochem. Commun., 2009,11,791.
    [149]Q. Fan, P. J. Chupas and M. S. Whittingham, Electrochem. Solid State Lett.,2007,10, A274.
    [150]M. S. Wu, P. C. J. Chiang, J. T. Lee and J. C. Lin, J. Phys. Chem. B,2005,109,23279.
    [151]Y. Y. Yang, Y. Q. Zhao, L. F. Xiao and L. Z. Zhang, Electrochem. Commun.,2008,10,1117.
    [152]L. Ji, A. J. Medford and X. Zhang, J. Mater. Chem.,2009,19,5593.
    [153]Z. Lin, L. W. Ji, M. D. Woodroof and X. W. Zhang, J. Power Sources,2010,195,5025.
    [154]X. L. Ji, S. Herle, Y. H. Rho and L. F. Nazar, Chem. Mater.,2007,19,374.
    [155]H. Li, P. Balaya and J. Maier, J. Electrochem. Soc.,2004,151, A1878.
    [156]F. Leroux, G. R. Goward, W. P. Power and L. F. Nazar, Electrochem. Solid-State Lett.,1998,1, 255.
    [157]F. Leroux and L. F. Nazar, Solid State Ionics,2000,133,37.
    [158]Y. F. Shi, B. K. Guo, S. A. Corr, Q. H. Shi, Y. S. Hu, K. R. Heier, L. Q. Chen, R. Seshadri and G. D. Stucky, Nano Lett.,2009,9,4215.
    [159]P. Balaya, H. Li, L. Kienle and J. Maier, Adv. Funct. Mater.,2003,13,621.
    [160]H. B. Wang, Q. M. Pan, H. W. Zhao, G. P. Yin and P. J. Zuo, J. Power Sources,2007,167,206.
    [161]J. C. Park, J. Kim, H. Kwon and H. Song, Adv. Mater.,2009,21,803.
    [162]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. Tarascon, Nature,2000,407,496.
    [163]L. Fu, J. Gao, T. Zhang, Q. Cao, L. C. Yang, Y. P. Wu and R. Holze, J. Power Sources,2007, 171,904.
    [164]A. Debart, L. Dupont, P. Poizot, J. B. Leriche and J. M. Tarascon, J. Electrochem. Soc.,2001, 148, A1266.
    [165]Y. G. Li, B. Tan and Y. Y. Wu, Chem. Mater.,2008,20,2602.
    [166]F. S. Ke, L. Huang, G. Z. Wei, L. J. Xue, J. T. Li, B. Zhang, S. R. Chen, X. Y. Fan and S. G. Sun, Electrochim. Acta,2009,54,5825.
    [167]L. B. Chen, N. Lu, C. M. Xu, H. C. Yu and T. H. Wang, Electrochim. Acta,2009,54,4198.
    [168]X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu and D. Y. Song, J. Phys. Chem. B,2004,108,5547.
    [169]J. Y. Xiang, J. P. Tu, Y. F. Yuan, X. L. Wang, X. H. Huang and Z. Y. Zeng, Electrochim. Acta, 2009,54,1160.
    [170]H. Huang, E. M. Kelder and J. Schoonman, J. Power Sources,2001,97-98,114.
    [171]K. M. Shaju, F. Jiao, A. Debart and P. G. Bruce, Phys. Chem. Chem. Phys.,2007,9,1837.
    [172]F. M. Zhan, B. Y. Geng and Y. J. Guo, Chem.-Eur. J.,2009,15,6169.
    [173]Y. G. Li, B. Tan and Y. Y. Wu, Nano Lett.,2008,8,265.
    [174]X. W. Lou, D. Deng, J. Y. Lee, J. Feng and L. A. Archer, Adv. Mater.,2008,20,258.
    [175]Y. Shan and L. Gao, Chem. Lett.,2004,33,1560.
    [176]W. Y. Li, L. N. Xu and J. Chen, Adv. Funct. Mater.,2005,15,851.
    [177]H. Qiao, L. F. Xiao, Z. Zheng, H. W. Liu, F. L. Jia and L. Z. Zhang, J. Power Sources,2008,185, 486.
    [178]D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J. B. Leriche and J. M. Tarascon, J. Electrochem. Soc.,2003,150, A133.
    [179]M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. T. Lim, G. V. S. Rao and B. V. R. Chowdari, Adv. Funct. Mater.,2007,17,2792.
    [180]J. Morales, L. Sanchez, F. Martin, F. Berry and X. L. Ren, J. Electrochem. Soc.,2005,152, A1748.
    [181]J. Chen, L. N. Xu, W. Y. Li and X. L. Gou, Adv. Mater.,2005,17,582.
    [182]S. L. Liu, L. N. Zhang, J. P. Zhou, J. F. Xiang, J. T. Sun and J. G. Guan, Chem. Mater.,2008,20, 3623.
    [183]Z. M. Cui, L. Y. Hang, W. G. Song and Y. G. Guo, Chem. Mater.,2009,21,1162.
    [184]W. M. Zhang, X. L. Wu, J. S. Hu, Y. G. Guo and L. J. Wan, Adv. Funct. Mater.,2008,18,3941.
    [185]T. Ohzuku, Y. Makimura, Chem. Lett.2001,7,642-643.
    [186]M. M. Thackeray, W. I. F. David, P. G. Bruce, J. B. Goodenough, Mater. Res. Bull.1983,18, 461-472.
    [187]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc.1997,144(4), 1188-1194.
    [188]A. Manthiram, J. B. Goodenough, J. Power Sources1989,26(3-4),403-408.
    [189]K. S. Nanjundaswamy, A. K. Padhi, J. B. Goodenough, S. Okada, H. Ohtsuka, H. Arai, J. Yamaki, Solid State Ionics1996,92(1-2),1-10.
    [190]A. K. Padhi, V. Manivannan, J. B. Goodenough, J. Electrochem. Soc.1998,145(5),1518-1520.
    [191]V. Legagneur, Y. An, A. Mosbah, R. Portal, A. L. La Salle, A. Verbaere, D. Guyomard, Y. Piffard, Solid State Ionics 2001,139(1-2),37-46.
    [192]A. Nyten, A. Abouimrane, M. Armand, T. Gustafsson, J. O. Thomas, Electrochem. Commun. 2005,7(2),156-160.
    [193]N. Recham, J. N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, J. M. Tarascon, Nat. Mater.2010,9(1),68-74.
    [194]P. Barpanda, N. Recham, J. N. Chotard, K. Djellab, W. Walker, M. Armand, J. M. Tarascon, J. Mater. Chem.2010,20(9),1659-1668.
    [195]N. Recham, G. Rousse, M. T. Sougrati, J. N. Chotard, C. Frayret, M. Sathiya, B. C. Melot, J. C. Jumas, J. M. Tarascon, Chem. Mater.2012,24(22),4363-4370.
    [196]P. Barpanda, M. Ati, B. C. Melot, G. Rousse, J. N. Chotard, M. L. Doublet, M. T. Sougrati, S. A. Corr, J. C. Jumas, J. M. Tarascon, Nat. Mater.2011,10 (10),772-779.
    [197]R. Tripathi, G. Popov, B. L. Ellis, A. Huq, L. F. Nazar, Energy Environ. Sci.2012,5(3), 6238-6246.
    [198]M. Ati, W. T. Walker, K. Djellab, M. Armand, N. Recham, J. M. Tarascon, Electrochem. Solid-State Lett.2010,13(11), A150-A153.
    [199]M. Ati, M. T. Sougrati, N. Recham, P. Barpanda, J. B. Leriche, M. Courty, M. Armand,; J. C. Jumas, J. M. Tarascon, J. Electrochem. Soc.2010,157(9), A1007-A1015.
    [200]L. Liu, B. Zhang, X. J. Huang, Prog. Nat. Sci.-Mater. Int.2011,21(3),211-215.
    [201]M. Ati, M. Sathiya, S. Boulineau, M. Reynaud, A. Abakumov, G. Rousse, B. Melot, G. Van Tendeloo, J.-M. Tarascon, J. Am. Chem. Soc.2012,134(44),18380-18387.
    [202]R. Tripathi, T. N. Ramesh, B. L. Ellis, L. F. Nazar, Angew. Chem., Int. Ed.2010,49(46), 8738-8742.
    [203]M. Ati, L. Dupont, N. Recham, J. N. Chotard, W. T. Walker, C. Davoisne, P. Barpanda, V. Sarou-Kanian, M. Armand, J. M. Tarascon, Chem. Mater.2010,22(13),4062-4068.
    [204]L.Y. Beaulieu, K.W. Eberman, R. L. Turner, L. J. Krause, J.R. Dahn, Electrochem. Solid State Lett.4 (2001) A137-A140.
    [205]H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L.B. Hu, Y. Cui, Nat. Nanotechnol.7 (2012)309-314.
    [206]J.W. Choi, J. McDonough, S. Jeong, J. S. Yoo, C.K. Chan, Y. Cui, Nano Lett.10 (2010) 1409-1413.
    [1]S. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima and A. Yamada, Nat. Mater., 2008,7,707-711.
    [2]K. Kang, Y. S. Meng, J. Breger, C. P. Grey and G. Ceder, Science,2006,311,977-980.
    [3]H. S. Fang, L. P. Li, Y. Yang, G. F. Yan and G. S. Li, Chem. Commun.,2008,1118-1120.
    [4]M. S. Whittingham, Science,1976,192,1126-1127.
    [5]S. Y. Chung, J. T. Bloking and Y. M. Chiang, Nat. Mater.,2002,1,123-128.
    [6]L. Laffont, C. Delacourt, P. Gibot, M. Y. Wu, P. Kooyman, C. Masquelier and J. M. Tarascon, Chem. Mater.,2006,18,5520-5529.
    [7]H. Gwon, D.-H. Seo, S.-W. Kim, J. Kim and K. Kang, Adv. Funct. Mater.,2009,19,3285.
    [8]Jongsoon Kim, Dong-Hwa Seo, Sung-Wook Kim, Young-Uk Park and Kisuk Kang, Chem. Commun.,2010,46,1305-1307.
    [9]N. Recham, J.-N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand and J.-M. Tarascon, Nat. Mater.,2010,9,68-74.
    [10]A. K. Pahdi, M. Manivannan and J. B. Goodenough, J. Electrochem. Soc.,1998,145,1518-1520.
    [11]A. K. Pahdi, K. S. Nanjundasvamy, C. Masquelier and J. B. Goodenough, J. Electrochem. Soc., 1997,144,2581-2586.
    [12]M. Ati, L. Dupont, N. Recham, J. N. Chotard, W. T. Walker, C. Davoisne, P. Barpanda, V. Sarou-Kanian, M. Armand and J. M. Tarascon, Chem. Mater.,2010,22,4062-4068.
    [13]Prabeer Barpanda, Jean-No Jel Chotard, Nadir Recham, Charles Delacourt, Mohamed Ati, Loic Dupont, Michel Armand and JeanMarie Tarascon, Inorg. Chem.,2010,49,7401-7413.
    [14]Rajesh Tripathi, T. N. Ramesh, Brian L. Ellis and Linda F. Nazar, Angew. Chem., Int. Ed.,2010, 49,8738-8742.
    [15]Prabeer Barpanda, Jean- Noel Chotard, Michael Deschamps and JeanMarie Tarascon, Angew. Chem.,2011,123,2574-2579.
    [1]K. Hosono, L. Matsubara, N. Murayama, S. Woosuck, N. Izu, Chem. Mater.2005,17,349-354.
    [2]J. Meyer, S. Hamwi, M. Kroger, W. Kowalsky, T. Riedl, A. Kahn, Adv. Mater.2012,24, 5408-5427.
    [3]P. G. Dickens, M. S. Whittingham, Q. Rev. Chem. Soc.1968,22,30-44.
    [4]P. G. Dickens, R. M. P. Quilliam, M. S. Whittingham, Mater. Res. Bull.1968,3,941-949.
    [5]S. K. Deb, Appl. Opt. Suppl.1969,3,192-195.
    [6]L. Zheng, Y. Xu, D. Jin, Y. Xie, Chem. Mater.2009,21,5681-5690.
    [7]X. Rui, Z. Lu, H. Yu, D. Yang, H. H. Hng, T. M. Lim, Q. Yan, Nanoscale 2013,5,556-560.
    [8]S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. B. Zhang, A. C. Dillon, Adv. Mater.2008,20,3627-3632.
    [9]Z. Wang, S. Madhavi, X. W. Lou, J. Phys. Chem. C 2012,116,12508-12513.
    [10]L. Cai, P. M. Rao, X. Zheng, Nano Lett.2011,11,872-877.
    [11]C. O Dwyer, G. Gannon, D. McNulty, D. N. Buckley, D. Thompson, Chem. Mater.2012,24, 3981-3992.
    [12]K. Wang, P. Zeng, J. Zhai, Q. Liu, Electrochem. Commun.2013,26,5-9.
    [13]X. W. Lou, H. C. Zeng, J. Am. Chem. Soc.2003,125,2697-2704.
    [14]N. A. Chernova, M. Roppolo, A. C. Dillon, M. S. Whittingham, J. Mater. Chem.2009,19, 2526-2552.
    [15]A. Michailovski, G. R. Patzke, Chem. Eur. J.2006,12,9122-913.
    [16]M. P. Zach, H. Ng Kwok, M. P. Reginald, Science 2000,290,2120-2123.
    [17]B. C. Satishkumar, A. Govindaraj, M. Nath, C. N. Rao, J. Mater. Chem.2000,10,2115-2119.
    [18]H. R. Oswald, J. R. Gunter, D. Dubler, J. Solid State Chem.1975,13,330-338.
    [19]L. Tian, et al. Adv. Funct. Mater.2010,20,617-623.
    [20]K. Segawa, K. Ooga, Y. Kurusu, Bull. Chem. Soc. Jpn.1984,57,2721-2724.
    [21]Z. Yuan, L. Si, J. Mater. Chem. A 2013,1,15247-15251.
    [22]L. Seguin, M. Figlarz, R. Cavagnat, J. C. Lassegues, Spectrochim. Acta Part A 1995,51, 1323-1344.
    [23]T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, Nat. Mater.2010,9,146-151.
    [24]M. S. Whittingham, J. Electrochem. Soc.1976,123,315-320.
    [25]C. Pacholski, A. Kornowski, H. Weller, Angew. Chem., Int. Ed.2002,41,1188-1191.
    [26]N. A. Dhas, A. Gedanken, Chem. Mater.1997,9,3144-3154.
    [27]T. Tao, A. M. Glushenkov, C. F. Zhang, H. Z. Zhang, D. Zhou, Z. P. Guo, H. K. Liu, Q. Y. Chen, H. P. Hu, Y. Chen, J. Mater. Chem.2011,21,9350-9355.
    [28]K. Kalantar-zadeh, J. Tang, M. Wang, K. L. Wang, A. Shailos, K. Galatsis, R. Kojima, V. Strong, A. Lech, W. Wlodarski, et al. Nanoscale 2010,2,429-433.
    [29]Z. Yuan, Y. Wang, Y. Qian, RSC Adv.2012,2,8602-8605.
    [30]L. Q. Mai, F. Yang, Y. L. Zhao, X. Xu, L. Xu, B. Hu, Y. Z. Luo, H. Y. Liu, Mater. Today 2011, 14,346-353.
    [31]M. F. Hassan, Z. P. Guo, Z. Chen, H. K. Liu, J. Power Sources 2010,195,2372-2376.
    [32]W. Li, F. Cheng, Z. Tao, J. Chen, J. Phys. Chem. B 2006,110,119-124.
    [33]L. Mai, B. Hu, W. Chen, Y. Qi, C. Lao, R. Yang, Y. Dai, Z. L. Wang, Adv. Mater.2007,19, 3712-3716.
    [34]J. Maier, Nat. Mater.2005,4,805-815.
    [35]M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou, I. Honma, J. Am. Chem. Soc.2007,129,7444-7452.
    [36]J. J. Auborn, Y. L. Barberio, J. Electrochem.Soc.1987,134,638-641.
    [37]J. R. Dahn, W. R. McKinnon, Solid State Ionics 1987,23,1-7.
    [38]Z. Y. Wang, D. Y. Luan, S. Madhavi, Y. Hu, X. W. Lou, Energy Environ. Sci.2012,5, 5252-5256.
    [39]L. A. Riley, S.-H. Lee, L. Gedvilias, A. C. Dillon, J. Power Sources 2010,195,588-592.
    [40]Y. S. Jung, S. Lee, D. Ahn, A. C. Dillon, S.-H. Lee, J. Power Sources 2009,188,286-291.
    [41]Q. Xia, H. Zhao, Z. Du, J. Wang, T. Zhang, J. Wang, P. Lv, J. Power Sources 2013,226,107-111.
    [42]C. Feng, H. Gao, C. Zhang, Z. Guo, H. Liu, Electrochim. Acta 2013,93,101-106.
    [43]X. L. Wang, Y. Q. Han, H. Chen, J. Bai, T. A. Tyson, X. Q. Yu, X. J. Wang, X. Q. Yang, J. Am. Chem. Soc.2011,133,20692-20695.
    [44]S. M. Paek, E. J. Yoo, I. Honma, Nano Lett.2009,9,72-75.
    [45]D. H. Wang, R. Kou, D. Choi, Z. G. Yang, Z. Nie, J. Li, L. V. Saraf, D. H. Hu, J. G. Zhang, G. L. Graff, et al. ACS Nano 2010,4,1587-1595.
    [46]J. J. Zhu, Z. H. Lu, S. T. Aruna, D. Aurbach, A. Gedanken, Chem. Mater.2000,12,2557-2566.
    [47]M. M. Rahman, J. Z. Wang, X. L. Deng, Y. Li, H. K. Liu, Electrochim. Acta 2009,55,504-510.
    [1]M. Armand and J. M. Tarascon, Nature 2008,451,652-657.
    [2]E. Frackowiak and F. Beguin, Carbon 2002,10,1775-1787.
    [3]Y. Yu, L. Gu, C. B. Zhu, S. Tsukimoto, P. A. Aken and V. Maier, Adv. Mater.2010,22,1-4.
    [4]Z. Q. Yuan, Y. Wang and Y. T. Qian, RSC Adv.2012,2,8602-8605.
    [5]M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou and H. K. Liu, Angew. Chem. Int. Ed. 2007,5,750-753.
    [6]Z. Y. Wang, S. Madhavi and X. W. Lou, J. Phys. Chem. C 2012,116,12508-12513.
    [7]J. Liu, Y. Li, X. Huang, R. Ding, Y. Hu, J. Jiang and L. Liao, J. Mater. Chem.2009,19,1859-1864.
    [8]C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang and J. Jiang, J. Am. Chem. Soc.2010,132,46-48.
    [9]S. Han, B. Jang, T. Kim, S. M. Oh and T. Hyeon, Adv. Funct. Mater.2005,15,1845-1850.
    [10]X. Y. Wang, X. Zhou, K. Yao, J. Zhang and Z. Liu, Carbon 2011,49,133-139.
    [11]D. H. Wang, R. Kou, D. Choi, Z. G. Yang, Z. Nie, J. Li, L. V. Saraf, D. H. Hu, J. G. Zhang, G. L. Graff, J. Liu, M. A. Pope and A. Aksay, ACS Nano 2010,4,1587-1595.
    [12]Z. Ying, Q. Wan, H. Cao, Z. T. Song and S. L. Feng, Appl. Phys. Lett.2005,87,113108.
    [13]S. M. Paek, E. J. Yoo and I. Honma, Nano Lett.2009,9,72-75.
    [14]C. Kim, M. Noh, M. Choi, J. Cho and B. Park, Chem. Mater.2005,17,3297-3301.
    [15]M. S. Whittingham, J. Electrochem. Soc.1976,123,315-320.
    [16]L. A. Riley, S. H. Lee, L. Gedvilias and A. C. Dillon, J. Power Sources 2010,195,588-592.
    [17]S. H. Lee, Y. H. Kim, R. Deshpande, P. A. Parilla, E. Whitney, D. T. Gillaspie, K. M. Jones, A. H. Mahan, S. B. Zhang and A. C. Dillon, Adv. Mater.2008,20,3627-3632.
    [18]G. R. Patzke, Y. Zhou, R. Kontic and F. Conrad, Angew. Chem. Int. Ed.2011,50,826-859.
    [19]S. H. Elder, F. M. Cot, Y. Su, S. M. Heald, A. M. Tyryshkin, M. K. Bowman, Y. Gao, A. G. Joly, M. L. Balmer, Ana C. Kolwaite, K. A. Magrini and D. M. Blake, J. Am. Chem. Soc.2000, 122,5138-5146.
    [20]V. I. Nefedov, M. N. Firsov and I. S. Shaplygin, J. Electron Spectrosc. Relat. Phenom.1982,26, 65-78.
    [21]P. Wu, N. Du, H. Zhang, J. Yu, Y. Qi and D. Yang, Nanoscale 2011,3,746-750.
    [22]B. Liu, Z. P. Guo, G. Du, Y. N. Nuli, M. F. Hassan and D. Jia, J. Power Sources 2010,195, 5382-5386.
    [23]S. M. Paek, J. H. Kang, H. Jung, S. J. Hwang and J. H. Choy, Chem. Comm.2009,7536-7538.
    [24]X. Y. Xue, Z. H. Chen, L. L. Xing, S. Yuan and Y. J. Chen, Chem. Comm.2011,47,5205-5207.
    [25]X. L. Wang, Y. Q. Han, H. Chen, J. Bai, T. A. Tyson, X. Q. Yu, X. J. Wang and X. Q. Yang, J. Am. Chem. Soc.2011,133,20692-20695.
    [26]M. Winter and J. O. Besenhard, Electrochim. Acta.1999,45,31-50.
    [27]J. Zhu, Z. Lu, M. O. Oo, H. H. Hng, J. Ma, H. Zhang and Q. Yan, J. Mater. Chem.2011,21, 12770-12776.
    [28]W. X. Zhang, M. Li, Q. Wang, G. Chen, M. Kong, Z. Yang and S. Mann, Adv. Funct. Mater.2011, 21,3416-3523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700