用户名: 密码: 验证码:
基于水动力箱式模型的长江口及邻近水域物质通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江口及邻近水域(30.5°N-32°N,122°E-123°30′E)是我国近海富营养化的典型水域,其物质通量研究具有重要意义。传统的“水-盐-营养盐”箱式模型是海岸带陆海相互作用研究计划(LOICZ)研究河口与近岸物质通量的一种稳态模式。该模式没有充分考虑研究区域的水动力因素,模式结果受箱体划分影响很大,只能估算盐度差异明显的界面之间的物质通量,对与海岸线平行以及流系复杂多变水域的物质通量估算无能为力。
     针对长江口及邻近水域流系复杂多变的特点,本研究尝试对传统箱式模型进行改进。本研究将物质输运过程正交分解为水平方向的物质输运和垂直方向的物质输运,水平与垂直方向的物质输运分别分为对流引起的物质输运和扩散引起的物质输运。以区域海洋模式系统(ROMS)为基础,通过Matlab编程,将水动力模型的流场数据准确匹配到箱式模型的箱体边界上,实现了水动力模型与箱式模型的联接,成功构建了基于水动力模型的改进的箱式模型(本研究简称为“水动力箱式模型”)。
     运用构建的水动力箱式模型,计算并阐释了研究区域的水平水通量、垂向水通量和边界水通量的空间分布与季节变化,探讨分析了研究区域水通量的动力因素与机制,以及研究区域水体交换与缺氧之间的关系,为该水域物质通量研究提供了准确的水量基础。在此基础上,利用2005年2月、5月、8月、11月4个航次的监测数据,计算并阐释了研究区域营养盐的水平通量、垂向通量和边界通量及其营养盐结构的空间分布与季节变化,探讨分析了研究区域营养盐通量的动力因素与机制。
     研究表明,表层水体水平水通量的季节排序为冬季>秋季>夏季>春季;底层水体水平水通量的季节排序为夏季>春季>冬季>秋季;秋、冬季底层水通量约比表层小1个数量级,夏季底层水通量约为表层的1/2,春季表、底层水通量差别最小。研究区域水通量整体受季风控制,季风使水体在南-北方向上季节性交替输运,台湾暖流对春、夏季底层水体向北输运具有重要作用,CDW、地形、向岸风等多种因素对水通量的时空分布态势具有重要作用。夏季上升流水通量为18.53m3/s,春季为12.55m3/s,冬季为13.07m3/s,秋季为14.25m3/s。西边界水通量方向全年向海。南、北边界的表层水通量与季风方向总体一致。东边界水通量方向规律不明显。南、北边界的水通量约大于西边界一个数量级。东边界水通量,除春、秋季以外,明显小于西边界。秋、冬季南、北边界的表层水通量约比底层水通量大1个数量级,春季约为底层水通量的1/2,夏季约为底层水通量的两倍。经东边界直接进入123.5°E以东外海水域的水通量极少(夏季5.41m3/s),且明显小于春、秋季经东边界自东部外海流入的水通量(12.45m3/s、27.75m3/s)。全年计算,约187.73m3/s的水通量自南边界流出研究区域,后经海洋环流系统间接入海。研究区域水体交换主要依赖季风方向、同层水体之间的的水平水通量。该水域底层水体缺氧的本质原因是跃层阻隔了表、底层水体之间的氧气交换。
     表层水体水平营养盐通量的季节排序为冬季>秋季>夏季>春季;底层水体水平营养盐通量的季节排序为夏季>春季>冬季>秋季;表层水体水平营养盐通量的空间差异与季节变化均显著大于底层水体。研究区域营养盐通量主要受物理作用控制,以生化作用为辅。与水通量相似,季风使营养盐在南-北方向上季节性交替输运,台湾暖流对春、夏季底层营养盐向北输运具有重要作用,是春、夏季长江径流影响范围向东扩展的重要限制因子,此外,垂向营养盐通量补给、外海水团入侵和初级生产消耗等多种因素对营养盐通量的时空分布态势具有重要作用。
     垂向DIP通量是DIP的重要来源。垂向营养盐通量的总体特征主要是由上升流通量的时空分布决定的。同一季节的上升流营养盐通量显著大于向上扩散的营养盐通量,且上升流营养盐通量与向上扩散的营养盐通量的产生区域基本重合。春、夏季的上升流营养盐通量和向上扩散的营养盐通量均显著大于秋、冬季。DIP上升流通量(5.83mol/s)和向上扩散通量(5.55mol/s)最大值均发生在夏季,但春季垂向通量对其影响最大。春季DIN、DSI垂向通量分别比水平通量少3-7倍、3-5倍,DIP垂向通量与水平通量接近相等;夏季DIN、DSI、DIP垂向通量分别比水平通量少3-6倍、5-10倍和5-8倍;秋、冬季,三种营养盐垂向通量均比水平通量小2个数量级。
     研究发现,同一季节流经南、北边界的营养盐通量均显著大于流经东、西边界的营养盐通量。四个边界中,经东边界与东部外海水体交换的营养盐通量最小,比经西边界流入的营养盐通量小大约1-2个数量级。西边界营养盐通量方向终年向海,南、北边界营养盐通量方向与季风方向基本一致,秋、冬季南向,春、夏季北向。但秋季为季风转换期,北边界表、底层营养盐通量方向相反,表层南向,底层北向。东边界营养盐通量方向规律不明显。研究区域扮演着营养盐从黄海向东海输送的“中转站”角色。来自西边界的营养盐通量主要被局限在122.5°E以西的近岸区域,被直接输送到123.5°E以东外海的极少。全年计算,约7149.82mol/s DIN,4097.97mol/s DSI,115.42mol/s DIP自南边界流出研究区域。
     相比传统箱式模型,水动力箱式模型弥补了传统箱式模型未能充分考虑水动力因素的缺陷,对复杂水动力环境下的营养盐通量估算具有明显优势,为河口物质通量研究提供方法借鉴。
A traditional box model is a stoichiometrically linked steady state model forwater-salt-nutrient budget to solve nutrient flux and budget among waters withdistinct salinity difference. However, a traditional model cannot cope appropriatelywith those without distinct salinity difference parallel to coastline or in a complexcurrent system, as the results are highly affected by box division in time and space,such as the Changjiang (Yangtze River) estuary (CE) and adjacent waters(30.5°N-32°N,122°E-123°30′E).
     Therefore, we tried to construct a coupled box model with a hydrodynamicmodel unit on the traditional model and the regional oceanic modeling system model(ROMS)(named as′′the hydrodynamic box model′′).The mass transport wasorthogonally decomposed to be the horizontal and the vertical fluxes, each dividedinto the advection and the diffusion one. The flow field data of the hydrodynamicmodel was matched to the boundary of the box model accurately, through which thehydrodynamic model and the box model was linked susccessfully through the Matlabprogramming.
     Horizontal, vertical and boundary water fluxes were calculated by thehydrodynamic box model. The characteristics, kinetic factors, mechanisms for waterflux and the relationship between water exchange and anoxia were discussed. Basedon the water flux and using data from four cruises in2005, horizontal, vertical andboundary nutrient fluxes were calculated, in which flux fields were depicted and themajor processes controlling the nutrient flux were discussed.
     It was found that horizontal water flux in upper layer in winter> that inautumn> that in summer> that in spring, while that in lower layer in summer> that in spring> that in winter> that in autumn. Horizontal water flux in lower layer wasabout one order of magnitude smller than that in upper layer in autumn and winter,and about1/2of that in upper layer in summer, with the smallest difference in springbetween the upper and lower layers. It was the monsoon that controlled the water fluxas a whole, making water being transported from north to south or from south to northseasonally; while it was the Taiwan Warm currents that played an important role in theprocess of lower waters being transported northwards in spring and summer,and theChangjiang diluted water(CDW), topography and the onshore wind all playedimportant roles in the spatial and temporal distribution of water flux. The upwellingwater flux was18.53m3/s in summer,12.55m3/s in spring,13.07m3/s in winter and14.25m3/s in aumtumn. The western boundary water flux flowed to the seathroughout the year, and the water flux across the southern and northern boundariesboth flowed with the monsoon on the whole.But there was no regulare pattern forwater flux across the eastern boundary. Water flux across the southern and northernboundaries was about one order of magnitude greater than that across the westernboundary. And water flux across the eastern boundary was obviously smaller than thatacross the western boundary. Water flux in upper layer across the southern andnorthern boudaries was about one magnitude greater than that in lower layer inautumn and winter, twice of that in lower layer in summer,and about1/2inspring.The Changjiang discharge was not dumped into the open seas east of123.5°Edirectly (5.41m3/s in summer), which was significantly smaller than water flux inacross the eastern boundary in spring and autumn(12.45m3/s、27.75m3/s).Water fluxwas transported out of the study area across the southern boundary first at the rate of187.73m3/s annually, and then to the open seas through the ocean current system.Under the strong monsoon, water exchange depended more on the horizontal waterflux in the monsoon direction, mainly in the same layer but not between the upper andlower layers. It was concluded that the ultimate cause of anoxia was the spring layerthat hindered the oxygen exchange between the upper and lower waters.
     Results showed that horizontal nutrient flux in upper layer in winter> that inautumn> that in summer> that in spring, and horizontal nutrient flux in lower layer in summer> in spring> in winter> in autumn. The spatical difference and seasonalchange of horizontal nutrient flux in upper layer was significantly greater than that inlower layer. Nutrient flux in the study area varied greatly in season and space,depending more on physical dilution than biochemical reactions. Similar to water flux,it was the monsoon that made nutrients being transported from north to south or fromsouth to north seasonally; while it was the Taiwan Warm currents that played animportant role in the process of nutrients in lower waters being transportednorthwards in spring and summer,being a limiting factor of the Changjiang dischargetransported eastwards to the open seas. Besides, vertical nutrient flux replenishment,open waters intrusion and primary production consumption all played important partsin the spatial and temporal distribution of nutrient flux.
     Upwelling flux outweighed upward diffusion flux in vertical direction.Upwelling flux and upward diffusion flux regions overlapped largely all the year.Vertical flux in spring and summer were much greater than that in autumn and winter.Vertical nutrient flux was a main source of DIP (dissolved inorganic phosphate). Themaximum vertical flux for DIP occurred in summer,but the most prominent affectfrom vertical flux was in spring. Vertical flux in spring was3-7times and3-5timessmaller than horizontal flux for DIN and DSI, respectively, while vertical flux for DIPcould match the horizontal flux. Vertical flux in summer was3-6times,5-10timesand5-8times smaller than horizontal flux for DIN, DSI and DSI, respectively. AndVertical fluxes in autumn and winter were both2orders of magnitude smaller thanhorizontal flux for DIN,DSI and DIP.
     Nutrient fluxes across the southern and northern boundaries were significantlygreater than those across the eastern and western boundaries in the same season.Nutrient flux across the eastern boundary was the smallest among the four boundaries,about1-2orders of magnitude smaller than that across the western boundary. Westernboundary nutrient flux flowes towards the sea throughout the year, and nutrient fluxesacross the southern and northern boundaries flowes with the monsoon on the whole,southward in autumn and winter and northword in spring and summer. But nutrientflux across the northern boundary in upper layer and lower layer in autumn was opposite, southward in upper layer and northward in lower layer. There was no regularpattern for eastern boundary nutrient flux.Nutrient flux from the western boundarywas mainly confined to coastal waters with little into the open seas east of123.5°E.The study area acted as a conveyer transferring nutrients from the Yellow Sea to theEast China Sea in the whole year at the rate of7149.82mol/s,4097.97mol/s and115.42mol/s for DIN, DSI and DIP respectively.
     Therefore, the hydrodynamic box model is superior to the traditional one inestimating nutrient fluxes in a complicated hydrodynamic current system and providesa modified box model approach to material flux research.
引文
Ahnert, F.,1970. Functional relationships between denudation, relief, and uplift inlarge, mid-latitude drainage basins. American Journal of Science268,243-263.
    Ariathurai, R., Krone, R.B.,1976. Finite element model for cohesive sedimenttransport. Journal of the Hydraulics Division102,323-338.
    Backhaus, J.O.,1984. Estimates of the variability of low frequency currents andflushing-times of the North Sea.
    Baird, D., Winter, P., Wendt, G.,1987. The flux of particulate material through awell-mixed estuary. Continental Shelf Research7,1399-1403.
    Baretta, J., Ebenh h, W., Ruardij, P.,1995. The European regional seas ecosystemmodel, a complex marine ecosystem model. Netherlands Journal of Sea Research33,233-246.
    Blackford, J.C., Radford, P.J.,1995. A structrue and methodology for marineecosysetem modelling. Netherlands Journal of Sea Research33,247-260.Bowden, K.,1963. The mixing processes in a tidal estuary. Air and water pollution7,343.
    Bowden, K.,1974. Oceanic and estuarine mixing processes. Chemical oceanography1,1-41.
    Buddemeier, R.,2002. The role of the coastal ocean in the disturbed and undisturbednutrient and carbon cycles. LOICZ International Project Office, Netherlands Institutefor Sea Research.
    Chai, C., Yu, Z., Shen, Z., Song, X., Cao, X., Yao, Y.,2009. Nutrient characteristicsin the Yangtze River Estuary and the adjacent East China Sea before and afterimpoundment of the Three Gorges Dam. Science of the Total Environment407,4687-4695.
    Chai, C., Yu, Z., Song, X., Cao, X.,2006. The status and characteristics ofeutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East ChinaSea, China. Hydrobiologia563,313-328.
    Chang, P.H., Isobe, A.,2003. A numerical study on the Changjiang diluted water inthe Yellow and East China Seas. Journal of Geophysical Research-Oceans108,1-17.
    Chen, C., Xue, P., Ding, P., Beardsley, R.C., Xu, Q., Mao, X., Gao, G., Qi, J., Li, C.,Lin, H., Cowles, G., Shi, M.,2008. Physical mechanisms for the offshore detachmentof the Changjiang Diluted Water in the East China Sea. Journal of GeophysicalResearch-Oceans113.
    Chen, C.T.A.,1996. The Kuroshio intermediate water is the major source of nutrientson the East China Sea continental shelf. Oceanologica Acta19,523-527.Chen, C.T.A.,1998. Response to Liu's comments on "The Kuroshio IntermediateWater is the major source of nutrients on the East China Sea continental shelf" byChen (1996). Oceanologica Acta21,713-716.
    Chen, C.T.A., Ruo, R., Pai, S.C., Liu, C.T., Wong, G.T.F.,1995. Exchange of watermasses between the East-China-Sea and the Kuroshio off northeastern Taiwan.Continental Shelf Research15,19-39.
    Chen, C.T.A., Wang, S.L.,1999. Carbon, alkalinity and nutrient budgets on the EastChina Sea continental shelf. Journal of Geophysical Research-Oceans104,20675-20686.
    Chen, H., Yu, Z., Yao, Q., Mi, T., Liu, P.,2010. Nutrient concentrations and fluxes inthe Changjiang Estuary during summer. Acta Oceanologica Sinica29,107-119.
    Chen, Y.L.L., Chen, H.Y., Gong, G.C., Lin, Y.H., Jan, S., Takahashi, M.,2004.Phytoplankton production during a summer coastal upwelling in the East China Sea.Continental Shelf Research24,1321-1338.
    Cole, P., Miles, G.V.,1983. Two-dimensional model of mud transport. Journal ofHydraulic Engineering109,1-12.
    Crossland, C., van Raaphorst, W., Kremer, H.,2001. Special issue-Land-OceanInteractions in the Coastal Zone-Proceedings of the Fourth LOICZ Open ScienceMeeting held in Bahia Blanca, Argentina, November1999-Preface. Journal of SeaResearch46,85-86.
    Crossland, C.J., Baird, D., Ducrotoy, J.-P., Lindeboom, H., Buddemeier, R.W.,Dennison, W.C., Maxwell, B.A., Smith, S.V., Swaney, D.P.,2005. The coastalzone—a domain of global Interactions, Coastal Fluxes in the Anthropocene. Springer,pp.1-37.
    Deleersnijder, E., Campin, J.-M., Delhez, E.J.,2001. The concept of age in marinemodelling: I. Theory and preliminary model results. Journal of Marine Systems28,229-267.
    Douglas, I.,1967. Man, vegetation and the sediment yields of rivers.
    Duan, S., Liang, T., Zhang, S., Wang, L., Zhang, X., Chen, X.,2008. Seasonalchanges in nitrogen and phosphorus transport in the lower Changjiang River beforethe construction of the Three Gorges Dam. Estuarine Coastal and Shelf Science79,239-250.
    Dyer, K.,1974. The salt balance in stratified estuaries. Estuarine and Coastal MarineScience2,273-281.
    Dyer, K.R.,1978. The balance of suspended sediment in the Gironde and Thamesestuaries. Estuarine Transport Processes. Univ. South Carolina Press, Columbia,135-145.
    Eigenheer, A., Kuhn, W., Radach, G.,1996. On the sensitivity of ecosystem boxmodel simulations on mixed-layer depth estimates. Deep-Sea Research PartI-Oceanographic Research Papers43,1011-1027.
    Feng, S., Cheng, R.T., Pangen, X.,1986a. On tide‐induced lagrangian residualcurrent and residual transport:1. Lagrangian residual current. Water ResourcesResearch22,1623-1634.
    Feng, S., Cheng, R.T., Pangen, X.,1986b. On tide‐induced Lagrangian residualcurrent and residual transport:2. Residual transport with application in south SanFrancisco Bay, California. Water Resources Research22,1635-1646.Fischer, H.,1972. Mass transport mechanisms in partially stratified estuaries. Journalof fluid mechanics53,671-687.
    Fischer, H.B.,1976. Mixing and dispersion in estuaries. Annual Review of FluidMechanics8,107-133.
    Froelich, P.N.,1988. Kinetic control of dissolved phosphate in natural rivers andestuaries—a primer on the phosphate buffer mechamism.Limnology andOceanography33,649-668.
    Ganachaud, A., Wunsch, C.,2002. Oceanic nutrient and oxygen transports andbounds on export production during the World Ocean Circulation Experiment. GlobalBiogeochemical Cycles16.
    Gao, L., Li, D.-J., Ding, P.-X.,2008. Nutrient budgets averaged over tidal cycles offthe Changjiang (Yangtze River) Estuary. Estuarine Coastal and Shelf Science77,331-336.
    Gao, L., Li, D.-J., Ding, P.-X.,2009. Quasi-simultaneous observation of currents,salinity and nutrients in the Changjiang (Yangtze River) plume on the tidal timescale.Journal of Marine Systems75,265-279.
    Garrels, R.M., Mackenzie, F.T.,1971. Evolution of sedimentary rocks.
    Gong, G.C., Chang, J., Chiang, K.P., Hsiung, T.M., Hung, C.C., Duan, S.W.,
    Codispoti, L.A.,2006. Reduction of primary production and changing of nutrient ratioin the East China Sea: Effect of the Three Gorges Dam? Geophysical ResearchLetters33.
    Gong, G.C., Hung, C.C., Chang, J.,2007. Reply to comment by Jinchun Yuan et al.on "Reduction of primary production and changing of nutrient ratio in the East ChinaSea: Effect of the Three Gorges Dam?". Geophysical Research Letters34.
    Gordon, D.C., Boudreau, P., Mann, K., Ong, J., Silvert, W., Smith, S., Wattayakorn,G., Wulff, F., Yanagi, T.,1996. LOICZ biogeochemical modelling guidelines. LOICZCore Project, Netherlands Institute for Sea Research.
    Gross, E.S.,1998. Numerical modeling of hydrodynamics and scalar transport in anestuary. Stanford University.
    Guo, Q., Lordi, G.P.,2000. Method for quantifying freshwater input and flushing timein estuaries. Journal of environmental engineering126,675-683.
    Guo, X., Miyazawa, Y., Yamagata, T.,2006. The Kuroshio onshore intrusion alongthe shelf break of the East China Sea: The origin of the Tsushima Warm Current.Journal of Physical Oceanography36,2205-2231.
    Guo, X., Zhu, X.-H., Wu, Q.-S., Huang, D.,2012. The Kuroshio nutrient stream andits temporal variation in the East China Sea. Journal of Geophysical Research-Oceans117.Han, A., Dai, M., Kao, S.-J., Gan, J., Li, Q., Wang, L., Zhai, W., Wang, L.,2012.
    Nutrient dynamics and biological consumption in a large continental shelf systemunder the influence of both a river plume and coastal upwelling. Limnology andOceanography57,486-502.
    Hansen, D.V.,1967. Salt balance and circulation in partially mixed estuaries.Huang, Q., Shen, H., Wang, Z., Liu, X., Fu, R.,2006. Influences of natural andanthropogenic processes on the nitrogen and phosphorus fluxes of the YangtzeEstuary, China. Regional Environmental Change6,125-131.
    Humborg, C., Fennel, K., Pastuszak, M., Fennel, W.,2000. A box model approach fora long-term assessment of estuarine eutrophication, Szczecin Lagoon, southern Baltic.Journal of Marine Systems25,387-403.
    Jansen, I., Painter, R.,1974. Predicting sediment yield from climate and topography.Journal of Hydrology21,371-380.
    Jay, D., Uncles, R., Largeir, J., Geyer, W., Vallino, J., Boynton, W.,1997. A reviewof recent developments in estuarine scalar flux estimation. Estuaries20,262-280.
    Jianrong, Z., Dingman, Q., Chengyou, X.,2004. Simulated circulations off theChangjiang (Yangtze) River mouth in spring and autumn. Chinese Journal ofOceanology and Limnology22,286-291.
    Kondratyev, K.Y., Pozdnyakov, D.V.,1996. Land-ocean interactions in the coastalzone: The LOICZ project. Nuovo Cimento Della Societa Italiana Di FisicaC-Geophysics and Space Physics19,339-354.
    Kraufvelin, P., Sinisalo, B., Lepp koski, E., Mattila, J., Bonsdorff, E.,2001. Changesin zoobenthic community structure after pollution abatement from fish farms in theArchipelago Sea (N. Baltic Sea). Marine Environmental Research51,229-245.
    Kuhn, W., Paetsch, J., Thomas, H., Borges, A.V., Schiettecatte, L.-S., Bozec, Y.,Prowe, A.E.F.,2010. Nitrogen and carbon cycling in the North Sea and exchangewith the North Atlantic-A model study, Part II: Carbon budget and fluxes. ContinentalShelf Research30,1701-1716.
    Lenhart, H.J., Pohlmann, T.,1997. The ICES-boxes approach in relation to results ofa North Sea circulation model. Tellus Series a-Dynamic Meteorology andOceanography49,139-160.
    Lenhart, H.J., Radach, G., Backhaus, J.O., Pohlmann, T.,1995a. Simulations of theNorth-Sea circluation, its variability, and its implementation as hydrodynamicalforcing in ERSEM. Netherlands Journal of Sea Research33,271-299.
    Lenhart, H.J., Radach, G., Backhaus, J.O., Pohlmann, T.,1995b. Simulations of theNorth Sea circulation, its variability, and its implementation as hydrodynamicalforcing in ERSEM. Netherlands Journal of Sea Research33,271-299.
    Li, M., Xu, K., Watanabe, M., Chen, Z.,2007. Long-term variations in dissolvedsilicate, nitrogen, and phosphorus flux from the Yangtze River into the East ChinaSea and impacts on estuarine ecosystem. Estuarine Coastal and Shelf Science71,3-12.
    Li, X.a., Yu, Z., Song, X., Cao, X., Yuan, Y.,2011. Nitrogen and phosphorus budgetsof the Changjiang River estuary. Chinese Journal of Oceanology and Limnology29,762-774.
    Lie, H.J., Cho, C.H., Lee, J.H., Lee, S.,2003. Structure and eastward extension of theChangjiang River plume in the East China Sea. Journal of GeophysicalResearch-Oceans108.
    Lin, B., Falconer, R.A.,1996. Numerical modelling of three-dimensional suspendedsediment for estuarine and coastal waters. Journal of Hydraulic Research34,435-456.
    Liu, K.K., Tang, T.Y., Gong, G.C., Chen, L.Y., Shiah, F.K.,2000. Cross-shelf andalong-shelf nutrient fluxes derived from flow fields and chemical hydrographyobserved in the southern East China Sea off northern Taiwan. Continental ShelfResearch20,493-523.
    Liu, S.M., Hong, G.H., Zhang, J., Ye, X.W., Jiang, X.L.,2009. Nutrient budgets forlarge Chinese estuaries. Biogeosciences6,2245-2263.
    Liu, X., Shen, H.,2001a. Estimation of dissolved inorganic nutrients fluxes from theChangjiang River into estuary. Science in China Series B: Chemistry44,135-141.
    Liu, X.C., Shen, H.T.,2001b. Estimation of dissolved inorganic nutrients fluxes fromthe Changjiang River into estuary. Science in China Series B-Chemistry44,135-141.
    Liu, X.Q., Yin, B.S., Hou, Y.J.,2008. The dynamic of circulation andtemperature-salinity structure in the Changjiang mouth and its adjacent marine area II.Major characteristics of the circulation. Oceanologia Et Limnologia Sinica,312-320.
    Ludwig, W., Probst, J.-L.,1998. River sediment discharge to the oceans; present-daycontrols and global budgets. American Journal of Science298,265-295.
    Lv, X., Qiao, F., Xia, C., Yuan, Y.,2007. Tidally induced upwelling off YangtzeRiver estuary and in Zhejiang coastal waters in summer. Science in China SeriesD-Earth Sciences50,462-473.
    Lv, X., Qiao, F., Xia, C., Zhu, J., Yuan, Y.,2006. Upwelling off Yangtze Riverestuary in summer. Journal of Geophysical Research-Oceans111.
    Ménesguen, A., Cugier, P., Loyer, S., Vanhoutte-Brunier, A., Hoch, T., Guillaud,J.-F., Gohin, F.,2007. Two-or three-layered box-models versus fine3D models forcoastal ecological modelling? A comparative study in the English Channel (WesternEurope). Journal of Marine Systems64,47-65.
    Ma, C.F.,2010. Optimization method and the Matlab programming. Beijing: sciencepress.
    Milliman, J.D., Farnsworth, K.L.,2011. River discharge to the coastal ocean: a globalsynthesis.
    Milliman, J.D., Qinchun, X., Zuosheng, Y.,1984. Transfer of particulate organiccarbon and nitrogen from the Yangtze River to the ocean. American Journal ofScience284,824-834.
    Milliman, J.D., Syvitski, J.P.,1992. Geomorphic/tectonic control of sedimentdischarge to the ocean: the importance of small mountainous rivers. The Journal ofGeology,525-544.
    Moll, A., Radach, G.,2003. Review of three-dimensional ecological modellingrelated to the North Sea shelf system-Part1: models and their results. Progress inOceanography57,175-217.
    O’Connor, B., Nicholson, J.,1988. Mud transport modelling, Physical Processes inEstuaries. Springer, pp.532-544.
    Oey, L.-Y., Mellor, G.L., Hires, R.I.,1985a. A three-dimensional simulation of theHudson-Raritan estuary. Part I: Description of the model and model simulations.Journal of Physical Oceanography15,1676-1692.
    Oey, L.-Y., Mellor, G.L., Hires, R.I.,1985b. A three-dimensional simulation of theHudson-Raritan estuary. Part II: Comparison with observation. Journal of PhysicalOceanography15,1693-1709.
    Oey, L.-Y., Mellor, G.L., Hires, R.I.,1985c. A three-dimensional simulation of theHudson-Raritan estuary. Part III: Salt flux analyses. Journal of physical oceanography15,1711-1720.
    Officer, C.B.,1980. Box models revisited, Estuarine and wetland processes. Springer,pp.65-114.
    Onishi, Y.,1981. Sediment-contaminant transport model. Journal of the HydraulicsDivision107,1089-1107.
    Padedda, B.M., Luglie, A., Ceccherelli, G., Trebini, F., Sechi, N.,2010. Nutrient-fluxevaluation by the LOICZ Biogeochemical Model in Mediterranean lagoons: the caseof Cabras Lagoon (Central-Western Sardinia). Chemistry and Ecology26,147-162.
    Paetsch, J., Kuehn, W.,2008. Nitrogen and carbon cycling in the North Sea andexchange with the North Atlantic-A model study. Part I. Nitrogen budget and fluxes.Continental Shelf Research28,767-787.
    Pape, O.L., Menesguen, A.,1997. Hydrodynamic prevention of eutrophication in theBay of Brest (France), a modelling approach. Journal of Marine Systems12,171-186.
    Parker, D.S., Norris, D.P., Nelson, A.W.,1972. Tidal exchange at golden gate.Journal of the Sanitary Engineering Division98,305-323.
    Pei, S., Shen, Z., Laws, E.A.,2009. Nutrient dynamics in the upwelling area ofChangjiang (Yangtze River) Estuary. Journal of Coastal Research,569-580.
    Perillo, G.M., Piccolo, M.C.,1998. Importance of grid-cell area in the estimation ofestuarine residual fluxes. Estuaries21,14-28.
    Perillo, G.M., Santamarina, P.,1994. Residual fluxes in a cross-section of theValdivia river estuary, Chile. Estuarine, Coastal and Shelf Science38,491-505.
    Pernetta, J., Milliman, J.,1995. LOICZ Implementation Plan. IGBP, Stockholm.Probst, J.-L., Suchet, P.A.,1992. Fluvial suspended sediment transport andmechanical erosionin the Maghreb (North Africa). Hydrological Sciences Journal37,621-637.
    Qiao, F., Yang, Y., Lv, X., Xia, C., Chen, X., Wang, B., Yuan, Y.,2006. Coastalupwelling in the East China Sea in winter. Journal of Geophysical Research-Oceans111.
    Radach, G., Lenhart, H.J.,1995. Nutrient dynamics in the North Sea Fluxes andbudgets in the water column derirved from ERSEM. Netherlands Journal of SeaResearch33,301-335.
    Radach, G., Moll, A.,2006. Review of three-dimensional ecological modellingrelated to the North Sea shelf system. Part II: Model validation and data needs, in:Gibson, R.N., Atkinson, R.J.A., Gordon, J.D.M.(Eds.), Oceanography and MarineBiology-an Annual Review, Vol44, pp.1-60.
    Rosenberg, R.,1990. Negative oxygen trends in Swedish coastal bottom waters.Marine Pollution Bulletin21,335-339.
    Roson, G., AlvarezSalgado, X.A., Perez, F.F.,1997. A non-stationary box model todetermine residual fluxes in a partially mixed estuary, based on both thermohalineproperties: Application to the Ria de Arousa (NW Spain). Estuarine Coastal and ShelfScience44,249-262.
    Schrum, C., Alekseeva, I., St John, M.,2006a. Development of a coupledphysical-biological ecosystem model ECOSMO-Part I: Model description andvalidation for the North Sea. Journal of Marine Systems61,79-99.
    Schrum, C., St John, M., Alekseeva, I.,2006b. ECOSMO, a coupled ecosystem modelof the North Sea and Baltic Sea: Part II. Spatial-seasonal characteristics in the NorthSea as revealed by EOF analysis. Journal of Marine Systems61,100-113.
    Shchepetkin, A.F., McWilliams, J.C.,2005. The regional oceanic modeling system(ROMS): a split-explicit, free-surface, topography-following-coordinate oceanicmodel. Ocean Modelling9,347-404.
    Shi, J.Z., Lu, L.-F.,2011. A short note on the dispersion, mixing, stratification andcirculation within the plume of the partially-mixed Changjiang River estuary, China.Journal of Hydro-Environment Research5,111-126.
    Shiller, A.M.,1996. The effect of recycling traps and upwelling on estuarine chemicalflux estimates. Geochimica et cosmochimica acta60,3177-3185.
    Shizuo, F.,1986. A three-dimensional weakly nonlinear dynamics on tide-inducedLagrangian residual current and mass-transport. Chinese Journal of Oceanology andLimnology4,139-158.
    Signell, R.P., Butman, B.,1992. Modeling tidal exchange and dispersion in BostonHarbor. Journal of Geophysical Research: Oceans (1978–2012)97,15591-15606.
    Simpson, J.H., Rippeth, T.P.,1998. Non-conservative nutrient fluxes from budgets forthe Irish Sea. Estuarine Coastal and Shelf Science47,707-714.
    Skogen, M.D., Moll, A.,2005. Importance of ocean circulation in ecologicalmodeling: An example from the North Sea. Journal of Marine Systems57,289-300.
    Summerfield, M., Hulton, N.,1994. Natural controls of fluvial denudation rates inmajor world drainage basins. Journal of Geophysical Research: Solid Earth(1978–2012)99,13871-13883.
    Tian, R.C., Hu, F.X., Saliot, A.,1993. Biogeochemical processes controlling nutrientsat the turbidity maximum and the plume water fronts in the Changjiang estuary.Biogeochemistry19,83-102.
    Uncles, R., Elliott, R., Weston, S.,1985a. Dispersion of salt and suspended sedimentin a partly mixed estuary. Estuaries8,256-269.
    Uncles, R., Elliott, R., Weston, S.,1985b. Observed fluxes of water, salt andsuspended sediment in a partly mixed estuary. Estuarine, Coastal and Shelf Science20,147-167.
    van Rijn, L.C., van Rossum, H., Termes, P.,1990. Field verification of2-D and3-Dsuspended-sediment models. Journal of Hydraulic Engineering116,1270-1288.
    Wang, B.,2006. Cultural eutrophication in the Changjiang (Yangtze River) plume:History and perspective. Estuarine Coastal and Shelf Science69,471-477.
    Wang, B., Wang, X.,2007. Chemical hydrography of coastal upwelling in the EastChina Sea. Chinese Journal of Oceanology and Limnology25,16-26.
    Wang, B.D., Wang, X.L., Zhan, R.,2003. Nutrient conditions in the Yellow Sea andthe East China Sea. Estuarine Coastal and Shelf Science58,127-136.
    Wang, X., Wang, B., Zhang, C., Shi, X., Zhu, C., Xie, L., Han, X., Xin, Y., Wang, J.,2008. Nutrient composition and distributions in coastal waters impacted by theChangjiang plume. Acta Oceanologica Sinica27,111-125.
    Webster, I.T., Smith, S.V., Parslow, J.S.,2000. Implications of spatial and temporalvariation for biogeochemical budgets of estuaries. Estuaries23,341-350.
    Wilson, L.,1973. Variations in mean annual sediment yield as a function of meanannual precipitation. American Journal of Science273,335-349.
    Wong, G.T., Chao, S.-Y., Li, Y.-H., Shiah, F.-K.,2000a. The Kuroshio edgeexchange processes (KEEP) study—an introduction to hypotheses and highlights.Continental Shelf Research20,335-347.
    Wong, G.T., Li, Y.-H., Chao, S.-Y., Chung, Y.-C.,2000b. Kuroshio Edge ExchangeProcesses (KEEP)-Interactions between the East China Sea and the Kuroshio.Continental Shelf Research20,4-5.
    Xu, Z.,1995. A transport approach to the convolution method for numericalmodelling of linearized3D circulation in shallow seas. International journal fornumerical methods in fluids20,363-391.
    Yan, X.-H., Jo, Y.-H., Jiang, L., Wan, Z., Liu, W.T., Li, Y., Zhan, J., Du, T.,2008.Impact of the Three Gorges Dam water storage on the Yangtze River outflow into theEast China Sea. Geophysical Research Letters35.
    Yanagi T. Seasonal variation of Sea water exchange in Osaka Bay. Bulletin on CoastalOceanography.1986,24,72-77.
    Zhang, J., Liu, S.M., Ren, J.L., Wu, Y., Zhang, G.L.,2007. Nutrient gradients fromthe eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio watersand re-evaluation of budgets for the East China Sea Shelf. Progress in Oceanography74,449-478.
    Zhang, Y., Zhao, J.P.,2007. The estimationof vertical turbulent diffusivity in thesurface layer in the Canada basin. Periodical of Ocean University of China,695-703.
    Zhao, L., Guo, X.,2011. Influence of cross-shelf water transport on nutrients andphytoplankton in the East China Sea: a model study (vol7, pg27,2010). OceanScience7,111-111.
    Zhu, C.C., Kong, Y.Y., Ding, P.X.,2008. Experimental study of vertical sedimentmixing coefficients in2D uniform flow. Journal of East China Normal University(Natural Science),112-118.
    Zhu, C.C., Kong, Y.Y., Ding, P.X.,2009. Vertical diffusion coefficient of suspendedsediment inflows. Journal of Sediment Research,43-47.
    Zhu, J., Ding, P., Zhang, L., Wu, H., Cao, H.,2006. Influence of the deep waterwayproject on the Changjiang Estuary. Environment in Asia Pacific Harbours,79-92.
    RogerB.Hanson,2001.全球海洋通量联合研究(JGOFS)介绍. AMBIO-人类环境杂志,3.
    白虹,王凡,2010.台湾暖流水和长江冲淡水在32°N断面和PN断面上的分布及其变化.海洋科学集刊,11-22.
    白涛,2008.夏季长江口外海区域上升流的数值研究.中国科学院研究生院(海洋研究所)硕士学位论文.
    白涛,杨德周,尹宝树,2009.夏季长江口外海区域上升流现象的数值研究.海洋科学,65-72.
    蔡树群,刘海龙,李薇,2002.南海与邻近海洋的水通量交换.海洋科学进展,29-34.
    曹婧,张传松,王江涛,2009.2006年春季东海近海海域赤潮高发区溶解态营养盐的时空分布.海洋环境科学,643-647.
    柴超,俞志明,葛蔚,2008.河口海岸带地区营养盐收支及模型研究.海洋科学,65-69.
    陈水土,阮五崎,1996.台湾海峡上升流区氮、磷、硅的化学特性及输送通量估算.海洋学报(中文版),36-44.
    程天文,赵楚年,1984.我国沿岸入海河川径流量与输沙量的估算.地理学报,418-427.
    程天文,赵楚年,1985.我国主要河流入海径流量、输沙量及对沿岸的影响.海洋学报(中文版),460-471.
    董慧,2012.河口区沉积物—水界面营养盐交换通量研究.中国海洋大学硕士学位论文.
    董慧,郑西来,张健,2012.河口沉积物孔隙水营养盐分布特征及扩散通量.水科学进展,815-821.
    董礼先,苏纪兰,1999a.象山港水交换数值研究Ⅱ.模型应用和水交换研究.海洋与湖沼,465-470.
    董礼先,苏纪兰,1999b.象山港水交换数值研究──Ⅰ.对流-扩散型的水交换模式.海洋与湖沼,410-415.
    窦希萍,陈西庆,严以新,2011.三峡水库水沙调节对长江口的影响浅析,第十五届中国海洋(岸)工程学术讨论会,中国山西太原,4.
    杜伊,2005.罗源湾海水交换三维数值模拟研究.中国海洋大学硕士学位论文.
    段水旺,章申,陈喜保,张秀梅,王立军,晏维金,2000.长江下游氮、磷含量变化及其输送量的估计.环境科学,53-56.
    范明元,李福林,仕玉治,陈华伟,2012.黄河下游利津站入海水沙通量时序变化特征识别.水资源保护,5-8+28.
    方倩,2008.东海主要化学污染物来源和近30年排海通量变化规律研究.中国海洋大学硕士学位论文.
    冯士筰,鹿有余,1993.浅海Lagrange余流和长期输运过程的研究——一种三维空间弱非线性理论.自然科学进展,126-132.
    府仁寿,齐梅兰,方红卫,陈西庆,2006.长江上游工程对宜昌来水来沙变化的影响.水力发电学报,103-110+118.
    盖明举,1998.海岸带海陆相互作用(LOICZ)研究计划与NODC.海洋信息,32-33.
    高抒,谢钦春,1991.狭长形海湾与外海水体交换的一个物理模型.海洋通报,1-9.
    巩瑶,2012.黄河下游利津站营养盐输送规律及影响因素研究.中国海洋大学博士学位论文.
    韩舞鹰,林洪瑛,1992.珠江口的碳通量和碳循环.海洋学报(中文版),56-63.
    韩舞鹰,马克美,1991.大亚湾海水混合交换特征.海洋科学,64-67.
    贺宝根,2004.长江口潮滩水动力过程、泥沙输移与冲淤变化.华东师范大学博士学位论文.
    胡敦欣,1996.我国的海洋通量研究.地球科学进展,227-229.
    胡辉,胡方西,1995.长江口的水系和锋面.中国水产科学,81-90.
    胡嘉镗,李适宇,2009.珠江三角洲河网与河口区水沙年通量及其收支,中国环境科学学会2009年学术年会,中国湖北武汉,8.
    黄广,2007.长江口、杭州湾水沙交换与输移特征研究.华东师范大学硕士学位论文.
    黄尚高,杨嘉东,暨卫东,杨绪琳,陈国祥,1986.长江口水体活性硅、氮、磷含量的时空变化及相互关系.台湾海峡,114-123.
    江涛,2009.长江口水域富营养化的形成、演变与特点研究.中国科学院研究生院(海洋研究所)博士学位论文.
    孔俊,2005.长江口、杭州湾水沙交换特性初步研究.河海大学硕士学位论文.
    孔令双,戚定满,顾峰峰,2013.长江口北槽断面水通量计算统计与分析,第十六届中国海洋(岸)工程学术讨论会,中国辽宁大连,5.
    匡国瑞,1986.海湾水交换的研究—海水交换率的计算方法.海洋环境科学,45-48.
    匡国瑞,王学冒,张彦臣,赵可胜,孙长青,1984.烟台芝罘西湾水质污染预测的初步探讨.海洋环境科学,16-25.
    匡国瑞,杨殿荣,喻祖祥,潘若琰,张玉林,方胜民,周德坚,1987.海湾水交换的研究——乳山东湾环境容量初步探讨.海洋环境科学,13-23.
    李凡,1996.海岸带陆海相互作用(LOICZ)研究及我们的策略.地球科学进展,19-23.
    李茂田,程和琴,2001.近50年来长江入海溶解硅通量变化及其影响.中国环境科学,2-6.
    李玫,李道季,丁平兴,李云,2009.长江口及其邻近海域营养盐与DSi余流通量的分布和季节变化.海洋环境科学,601-606.
    李祥安,2010.长江口富营养化水域营养盐输送通量与低氧区形成特征研究.中国科学院研究生院(海洋研究所)博士学位论文.
    李新艳,王芳,杨丽标,晏维金,2009.河流输送泥沙和颗粒态生源要素通量研究进展.地理科学进展,558-566.
    李新艳,杨丽标,晏维金,2011.长江输出溶解态无机磷的通量模型灵敏度分析及情景预测.湖泊科学,163-173.
    李悦,1997.渤海现代物质通量研究.青岛大学学报(自然科学版),46-49.
    刘桂平,徐华,王珏,2013.长江口北支河段全潮水文测验水通量平衡计算方法.河海大学学报(自然科学版),405-409.
    刘瑞玉,胡敦欣,1997.中国的海岸带陆海相互作用(LOICZ)研究.地学前缘,198.
    刘新成,卢永金,潘丽红,吴继伟,2006.长江口和杭州湾潮流数值模拟及水体交换的定量研究.水动力学研究与进展(A辑),171-180.
    刘新成,沈焕庭,黄清辉,2002.长江入河口区生源要素的浓度变化及通量估算.海洋与湖沼,332-340.
    刘哲,2004.胶州湾水体交换与营养盐收支过程数值模型研究.中国海洋大学博士学位论文.
    刘卓,郭冬建,朱江,曾庆存,1999a.长江口水流和泥沙冲淤的数值模拟的初步研究——Ⅰ.自适应网格的构造和水流计算.自然科学进展,68-74.
    刘卓,郭冬建,朱江,曾庆存,1999b.长江口自适应网格的构造与水流和泥沙冲淤的数值模拟的初步研究.海洋学报(中文版),96-105.
    鹿有余,1991.论浅海的长期输运过程.海洋与湖沼,279-284.
    吕新刚,赵昌,夏长水,乔方利,2010.胶州湾水交换及湾口潮余流特征的数值研究.海洋学报(中文版),20-30.
    吕迎雪,2009.海湾水交换数值模拟方法的研究及其应用.天津大学硕士学位论文.
    毛汉礼,甘子钧,蓝淑芳,1963.长江冲淡水及其混合问题的初步探讨.海洋与湖沼,183-206.
    孟宪伟,刘焱光,王湘芹,2005.河流入海物质通量对海、陆环境变化的响应.海洋科学进展,391-397.
    潘伟然,1992.湄洲湾海水交换率和半更换期的计算.厦门大学学报(自然科学版),65-68.
    潘玉球,黄树生,1997.长江冲淡水输运和扩散途径的分析.东海海洋,26-30+32-35.
    裴绍峰,2007.长江口上升流区营养盐动力学.中国科学院研究生院(海洋研究所)硕士学位论文.
    裴绍峰,沈志良,2008.长江口上升流区营养盐的分布及其通量的初步估算.海洋科学,64-70+75.
    彭晓彤,周怀阳,2002.海岸带营养盐生物地球化学研究评述.海洋通报,69-77.
    戚定满,2001.长江口水体环境数值研究.华东师范大学博士学位论文.
    秦曾灏,1998.《长江冲淡水扩展机制》.海洋与湖沼,671.
    沈焕庭.长江河口物质通量.北京:海洋出版社,2001, pp.176.
    沈焕庭,张超,茅志昌,2000.长江入河口区水沙通量变化规律.海洋与湖沼,288-294.
    沈焕庭,朱建荣,1999.论我国海岸带陆海相互作用研究.海洋通报,11-17.
    沈健,沈焕庭,潘定安,肖成猷,1995.长江河口最大浑浊带水沙输运机制分析.地理学报,411-420.
    沈志良,1991.三峡工程对长江口海区营养盐分布变化影响的研究.海洋与湖沼,540-546.
    沈志良,1997.长江干流营养盐通量的初步研究.海洋与湖沼,522-528.
    沈志良,2000.长江和长江口氮的生物地球化学研究——关于长江口氮的输出通量.海洋科学,57.
    沈志良,2004.长江氮的输送通量.水科学进展,752-759.
    沈志良,2006.长江磷和硅的输送通量.地理学报,741-751.
    石晓勇,陆茸,张传松,王修林,2006.长江口邻近海域溶解氧分布特征及主要影响因素.中国海洋大学学报(自然科学版),287-290+294.
    时俊,刘鹏霞,2009.三峡蓄水前后长江口水域营养盐浓度变化特征和通量估算.海洋环境科学,16-20.
    时伟荣,李九发,1993.长江河口南北槽输沙机制及浑浊带发育分析.海洋通报,69-76.
    苏育嵩,李凤岐,王凤钦,1996.渤、黄、东海水型分布与水系划分.海洋学报(中文版),1-7.
    孙秉一,于圣睿,1984.河口区水体中元素的平衡——一个简单的数学模式.海洋学报(中文版),25-32.
    孙成权,张志强,1994.国际全球变化研究计划综览.地球科学进展,53-70.
    孙健,2007.海湾、近岸海域水交换研究的关联矩阵方法及应用.天津大学博士学位论文.
    孙娇,袁德奎,冯桓,陶建华,2012.沉积物-水界面营养盐交换通量的研究进展.海洋环境科学,933-938.
    孙文心,1987.浅海运动过程的初步探讨.海洋学报(中文版),153-161.
    孙文心,奚盘根,宋丽娜,1989.渤海三维潮余流的数值计算(英文).青岛海洋大学学报,27-36.
    孙英兰,张越美,2003.丁字湾物质输运及水交换能力研究.青岛海洋大学学报(自然科学版),1-6.
    仝龄,1994.欧洲区域性海洋生态系模式(ERSEM)研究初步结果.国外水产,8-11.
    汪亚平,潘少明, H.V.Wang,高建华,杨旸,王爱军,李占海,吴中,2006.长江口水沙入海通量的观测与分析.地理学报,35-46.
    王保栋,1998.长江冲淡水的扩展及其营养盐的输运.黄渤海海洋学报,42-48.
    王保栋,战闰,藏家业,2002.长江口及其邻近海域营养盐的分布特征和输送途径.海洋学报(中文版),53-58.
    王芳,康建成,周尚哲,郑琰明,徐韧,孙瑞文,吴涛,2006.春秋季长江口及其邻近海域营养盐污染研究.生态环境,276-283.
    王辉,冯士筰,1995.河口Si输运过程研究.海洋与湖沼,161-168.
    王辉,苏志清,冯士筰,孙文心,1993.渤海三维风生-热盐-潮致Lagrange余流数值计算.海洋学报(中文版),9-21.
    王康墡,苏纪兰,1987.长江口南港环流及悬移物质输运的计算分析.海洋学报(中文版),627-637.
    王丽莎,石晓勇,祝陈坚,韩秀荣,王修林,2008.春季长江口邻近海域营养盐分布特征及污染状况研究.海洋环境科学,466-469.
    王世俊,李春初,唐兆民,2004.河口冲刷时间的研究进展与问题.台湾海峡,116-122.
    王修林,孙霞,韩秀荣,祝陈坚,张传松,辛宇,石晓勇,2004.2002年春、夏季东海赤潮高发区营养盐结构及分布特征的比较.海洋与湖沼,323-331.
    王亚,2011.长江河口水流输运时间的研究.华东师范大学博士学位论文.
    韦钦胜,葛人峰,李艳,范士亮,傅明珠,2012.夏季江苏近海水文化学要素特征及其对沿岸水东北向扩展的指示.海洋学报(中文版),197-204.
    韦钦胜,于志刚,冉祥滨,臧家业,2011.黄海西部沿岸流系特征分析及其对物质输运的影响.地球科学进展,145-156.
    魏皓,田恬,周锋,赵亮,2002.渤海水交换的数值研究-水质模型对半交换时间的模拟.青岛海洋大学学报(自然科学版),519-525.
    吴华林,2001.器测时期以来长江河口泥沙冲淤及其入海通量研究.华东师范大学博士学位论文.
    吴华林,沈焕庭,朱建荣,2001.河口泥沙通量研究综述.泥沙研究,73-79.
    严军,叶春生,曹辉,李虎成,2009.人工神经网络在黄河口水沙通量研究的应用,
    第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会,中国四川成都, p.7.
    颜廷壮,1991.中国沿岸上升流成因类型的初步划分.海洋通报,1-6.
    杨德周,尹宝树,俞志明,白涛,刘兴泉,2009.长江口叶绿素分布特征和营养盐来源数值模拟研究.海洋学报(中文版),10-19.
    杨红,王春峰,2008.长江口海域营养盐通量的估算.上海水产大学学报,700-706.
    伊飞,张训华,胡克,2011.海岸带陆海相互作用研究综述.海洋地质前沿,28-34.
    于圣睿,孙秉一,1988.河口区水体中元素的平衡(Ⅱ)——元素的平衡、转移和非保守元素的有效通量.山东海洋学院学报,33-42.
    张辉,2009.黄东海沉积物中营养盐分布及交换通量研究.中国海洋大学硕士学位论文.
    张素香,2007.长江口溶解氧(DO)分布特征研究,第二十届全国水动力学研讨会,中国北京,5.
    张莹莹,张经,吴莹,朱卓毅,2007.长江口溶解氧的分布特征及影响因素研究.环境科学,1649-1654.
    张勇,2008.基于GIS的长江口及邻近海域环境时空多维分析.中国海洋大学博士学位论文.
    赵保仁,李徽翡,杨玉玲,2003.长江口海区上升流现象的数值模拟.海洋科学集刊,64-76.
    赵保仁,任广法,曹德明,杨玉玲,2001.长江口上升流海区的生态环境特征.海洋与湖沼,327-333.
    赵亮,魏皓,赵建中,2002.胶州湾水交换的数值研究.海洋与湖沼,23-29.
    赵卫红,王江涛,2007.大气湿沉降对营养盐向长江口输入及水域富营养化的影响.海洋环境科学,208-210+216.
    周济福,王涛,李家春,刘青泉,1999.径流与潮流对长江口泥沙输运的影响.水动力学研究与进展(A辑),92-102.
    周淑青,沈志良,李峥,姚云,2007.长江口最大浑浊带及邻近水域营养盐的分布特征.海洋科学,34-42.
    朱建荣,丁平兴,胡敦欣,2003.2000年8月长江口外海区冲淡水和羽状锋的观测.海洋与湖沼,249-255.
    朱建荣,肖成猷,沈焕庭,1998.夏季长江冲淡水扩展的数值模拟.海洋学报(中文版),13-22.
    朱玉梅,刘素美,2011.东海大气湿沉降中营养盐的研究.环境科学,2724-2731.
    诸大宇,郑丙辉,雷坤,王丽婧,秦延文,邓义祥,陈玉成,2008.基于营养盐分布特征的长江口附近海域分区研究.环境科学学报,1233-1240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700