用户名: 密码: 验证码:
太阳风扰动的地磁响应与空间环境应用模式集成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳风扰动会引起地球磁场和电流体系的剧烈变化,进而触发磁暴、亚暴等扰动现象,能够诱发多种灾害性空间环境事件,是空间环境预报的重要内容和观测要素。本论文在此领域开展了两方面的工作,一方面,利用卫星观测数据分析研究了不同性质的太阳风扰动对极光电急流和环电流指数的影响以及极光电急流爆发事件与磁层亚暴活动的相关性,对由于太阳风与地球磁层的相互作用而引发的典型磁层亚暴事件进行了深入探讨;另一方面,对空间环境模式集成进行了研究,提出了一套满足空间环境预报业务需求的模式计算框架,并选择与地磁活动相关的若干模式进行了应用验证。
     首先,论文介绍了太阳风的基本概念及其观测特性,对可能引发地球磁层扰动的源如太阳耀斑、日冕物质抛射(CME)和各类行星际扰动如ICME、共转相互作用区及行星际激波等空间物理过程的特征进行了总结,对受太阳风控制的地球磁层结构、磁层电流系的基本结构和太阳风扰动触发的各类地磁扰动及其表征指数(磁情指数Kp、磁暴环电流指数Dst、极光电急流指数AU/AL/和磁暴指数SYM-H)的计算方法进行了归纳。
     其次,作者利用WIND卫星的观测数据和地磁活动指数,分析研究了西向极光电急流AL指数和东向极光电急流AU指数以及环电流指数SYM-H对不同性质的太阳风动压变化的关联响应,发现太阳风动压脉冲的地磁效应不仅与太阳风动压脉冲大小和持续时间有关,还与磁层本身储能状态有关。太阳风动压增长和减少能够同步或延迟地引起AL,AU和SYM-H指数的变化,而指数变化方向和缓急却随着太阳风性质的不同而有所不同。
     进而作者利用LANL卫星的观测数据、极光电急流指数和地磁台站观测数据,分析研究了不同性质的极光电急流爆发事件与亚暴之间的关系。发现虽然大部分极光电急流爆发都对应着亚暴,但也有极光电急流爆发与亚暴无关,对其相关性进行了分类归纳。认为极光电急流爆发事件可以分为三种类型:第一类是东向电急流和西向电急流事件同时爆发同时消失,这类极光电急流爆发事件一般都伴随着同步轨道能量粒子注入和地面Pi2地磁脉动,是典型的亚暴过程;第二类是西向电急流爆发,东向电急流不变,这类极光电急流爆发事件也都伴随着同步轨道能量粒子注入和地面Pi2地磁脉动,可以认为是亚暴过程;第三类是东向电急流爆发,西向电急流不变,这类极光电急流爆发事件有的伴随着同步轨道能量粒子注入和地面Pi2地磁脉动,可能也是亚暴过程,而有的却没有伴随着同步轨道能量粒子注入和地面Pi2地磁脉动,则可认为没有伴随亚暴过程。本论文的研究结果对于利用极光电急流指数的变化特征研究和监测亚暴具有重要参考意义。
     最后,作者对空间环境模式集成进行了研究与探索,形成了一套合理、高效的空间环境模式集成框架,在云计算环境下开展了模式计算与空间环境预报业务的应用验证,具体实现了包括预报太阳风暴到达地球时间和强度的智能化业务预报模式,预报CME在日地空间传播时间的CME冰激凌-锥模式,预报地球轨道附近的太阳风和磁场值预报的运动学模式,预报未来1-3天的F107指数的定量预报模式,预报磁层的等离子体和电磁场特性的磁层状态模式,预报地球弓激波和磁层顶位置和形状的弓激波/磁层顶模式,预报外磁层等离子体和电磁场特性的太阳风传输模式,预报辐射带南大西洋异常区等离子体(高能粒子通量)分布特性的通量模式,预报辐射带边界变化以及内外辐射带最大辐射通量的L值位置的辐射带边界演化模式,预报地球辐射带槽区高能粒子环境参数的地球中低轨道航天器高能带电粒子环境诊断和预警模式,预报地磁扰动的模式等多个模式的集成计算,范围覆盖日地系统五大空间区域——太阳/行星际、太阳风/磁层、内磁层、电离层、中高层大气区域,是国内在空间环境模式集成研究方面的一例有益探索。
This thesis describes a study about the effect of solar wind disturbances on auroral electrojet and ring current indices, the correlation between auroral electrojet bursts and magnetospheric substorms, and a framework of forecast model computing to meet the demand of space environment forecasting operation.
     First, we investigate the influence of solar wind dynamic pressure changes on the westward auroral electrojet index AL, the eastward auroral electrojet index AU and the ring current index SYM-H using WIND satellite data. It is found that the geomagnetic response to a solar wind pressure pulse is not only related to the strength and duration of the solar wind pressure pulse, but also depends on the energy storage state of the magnetosphere. An increase or decrease in the solar wind dynamic pressure may result in changes of AL, AU and SYM-H synchronously or with time delay. Moreover, the direction and response time of the changes may vary with the properties of the solar wind.
     Second, we use LANL satellite data and ground magnetic field data to study the relationship between auroral electrojet bursts and substorms. By analyzing the correlation between auroral electrojet bursts and substorms, we divide the auroral electrojet bursts into three categories. In the first category of events, eastward and westward electrojets burst and disappear simultaneously. This kind of auroral electrojet bursts is certainly accompanied by injection of synchronous orbit energetic particles and Pi2magnetic pulsations, which are typical signatures of a substorm. In the second category of events, westward electrojet burst but eastward electrojet remain unchanged, also accompanied by above signatures of a substorm process. The last category of event is characterized by burst of eastward electrojet and unchanged westward electrojet. While some of these events are accompanied by substorms, some are not. These results are important to study and monitor substorms using auroral electrojet indices.
     Finally, we propose a reasonable and efficient model computing framework on component-based architecture, and some geomagnetic activity related models covering five space regions in solar-terrestrial system are selected for application testing in a cloud computing environment. These models include an intelligent operation forecast model that can forecast the arriving time and strength of solar storm, a kinematic model that can forecast the values of solar wind and magnetic field near the Earth orbit, a magnetospheric state model that can forecast the characteristics of magnetospheric plasma and electromagnetic field, a bow shock/magnetopause configuration model, a solar wind transfer model that can forecast the characteristics of plasma and electromagnetic field in outer magnetosphere, a geomagnetic disturbance forecast model, etc. The framework has a great application value in the space environment forecasting operation in China.
引文
[1]Parker E N.1958. Dynamics of the interplanetary gas and magnetic fields[J]. Astrophysical Journal,128:664-676.
    [2]Parker E N.1963. Interplanetary dynamical processes[M]. New York:Interscience Division of John Wiley and Sons.
    [3]Parker EN.1965. Dynamical theory of the solar wind[J]. Space Science Reviews,4(5-6): 666-708.
    [4]Hundhausen A J.1972. Coronal expansion and solar wind[G]. Physics and Chemistry in Space Volume 5. New York:Springer Berlin Heidelberg.
    [5]Smith E J.1976. The August 1972 solar-terrestrial events:Interplanetary magnetic field observations[J]. Space Science Reviews,19(4-5):661-686.
    [6]Pizzo V J.1978. A three-dimensional model of corotating streams in the solar wind-I. Theoretical foundations[J]. Journal of Geophysical Research,83:5563-5572.
    [7]Zhao X P, Hoeksema J T, Schrrer P H.1999. Changes of the boot-shaped coronal hole boundary during Whole Sun Month near sunspot minimum[J]. Journal of Geophysical Research,104:9735-9751.
    [8]佟亚男.2009.行星际扰动对地磁暴发展的影响研究[D]:[博士].北京:中国科学院研究生院.
    [9]Pizzo V J.1994a. Global, quasi-steady dynamics of the distant solar wind-I. Origins of NorthSouth flows in the outer heliosphere[J]. Journal of Geophysical Research,99: 4173-4183.
    [10]Pizzo V J.1994b. Global, quasi-steady dynamics of the distant solar wind-II. Deformation of the heliospheric current sheet[J]. Journal of Geophysical Research,99:4185-4191.
    [11]Pizzo V J, Gosling J T.1994. Three-dimensional simulation of high-latitude interaction regions:Comparison with Ulysses results[J]. Geophysical Research Letters,21(18): 2063-2066.
    [12]Tsurutani B T, Ho C M, Smith E J, et al.1994. The relationship between interplanetary discontinuities and Alfven waves:Ulysses observations[J]. Geophysical Research Letters, 21(21):2267-2270.
    [13]Tsurutani B T, Smith E J, Ho C M, et al.1995a. Interplanetary discontinuities and Alfven waves[M]//Marsden R G. The High Latitude Heliosphere. Dordrecht:Springer Netherlands, 205-210.
    [14]Tsurutani B T, Gonzalez W D.1987. The cause of high-intensity long-duration continuous AE activity (HILDCAAs):Interplanetary Alfven wave trains[J], Planetary and Space Science, 35(4):405-412.
    [15]Paulikas G A, Blake J B.1979. Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit[C]. Geophysical Monograph Series. Washington D C:American Geophysical Union, vol.21:180-202.
    [16]Hudson H S, Lemen J R, Cyr O C, et al.1998. X-ray coronal changes during CMEs[J]. Geophysical Research Letters,25(14):2481-2484.
    [17]Howard R A, Michels D J, Sheeley N R, et al.1982. The observation of a coronal transient directed at Earth[J]. The Astrophysical Journal,263:101-104.
    [18]Lara A, Borgazzi A, Mendes O J, et al.2008. Short-period fluctuations in coronal mass ejection activity during solar cycle 23[J]. Solar Physics,248(1):155-156.
    [19]Yashiro S, Gopalswamy N, Michalek G, et al.2004. A catalog of white light coronal mass ejections observed by the SOHO spacecraft[J]. Journal of Geophysical Research,109: A07105.
    [20]Gopalswamy N, Nunes S, Yashiro S, et al.2004. Variability of solar eruptions during cycle 23[J]. Advances in Space Research,34:391-396.
    [21]Webb D F, Howard R A.1994. The solar cycle variation of coronal mass ejections and the solar wind flux[J]. Journal of Geophysical Research,99:4201-4220.
    [22]Wang Y M, Ye P Z, Wang S, et al.2002. A statistical study on the geoeff ectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000[J]. Journal of Geophysical Research,107:A111340.
    [23]杜丹.2007.行星际日冕物质抛射在行星际空间的传播和演化规律[D]:[博士].北京:中国科学院研究生院.
    [24]Richardson J D, Paularena K I, Wang C, et al.2002. The life of a CME and the development of a MIR:from the Sun to 58 AU[J]. Journal of Geophysical Research,107:A41041.
    [25]Richardson J D, Wang C, Kasper J C, et al.2005. Propagation of the October/November 2003 CMEs through the heliosphere[J]. Journal of Geophysical Research,32:L03S03.
    [26]Cyr O C, Webb D F.1991. Activity associated with coronal mass ejections at solar minimum: SMM observations from 1984-1986[J]. Solar Physics,136:379-394.
    [27]Kivelson M G,Russell C T主编.曹晋滨,李磊,吴季等译.2001.太空物理学导论[M].北京:科学出版社.
    [28]Webb D F, Hundhausen A J.1987. Activity associaten with the solar origin of coronal mass ejections[J]. Solar Physics,108:383-401.
    [29]lyemori T, Araki T, Kamei T, et al.1992. Mid-latitude geomagnetic indices ASY and SYM (provisional) [J]. Technical Report 1, Data Analysis Center for Geomagnetism and Space Magnetism.
    [30]Crooker N C, Siscoe G L.1971. A study of the geomagnetic disturbance field asymmetry[J]. Radio Sci,6:495-501.
    [31]Clauer C R, McPberron R L, Searls C.1983. Solar wind control of the low-latitude asymmetric magnetic disturbance field[J]. Journal of Geophysical Research,88:2123-2130.
    [32]徐文耀.2003.国际参考地磁场模型中高阶球谐项对地磁场长期变化的影响[J].地球物理学报,46(4):476-481.
    [33]刘振兴.2005.太空物理学[M].哈尔滨工业大学出版社.
    [34]赵新华.2007.日地扰动事件的统计分析及相关预报方法的综合研究[D]:[博士].北京:中国科学院研究生院.
    [35]解妍琼.2007.太阳风暴的综合研究[D]:[博士].北京:中国科学院研究生院.
    [36]何兆海.2007.磁层等离子体注入现象研究[D]:[博士].北京:中国科学院研究生院.
    [37]罗冰显.2012.磁层中能量电子分析与建模[D]:[博士].北京:中国科学院研究生院.
    [38]Zou Ziming, Cao Jinbin, Li Yi.2010. Auroral electrojet event associated with magnetospheric substorms[J]. Chinese Journal of Space Science,30(4):349-355.
    [39]邹自明,曹晋滨,李毅.2012.太阳风扰动对极光电急流和环电流指数的影响[J].空间科学学报,32(1):14-19.
    [40]SzaboA, Wilson III LB. WIND2010 Senior Review Proposal[EB/OL]. Http://wind.nasa.gov.
    [41]Rostoker G, Akasofu S I, BaumjohannW, et al.1987. The roles of direct input of energy from the solar wind and unloading of stored magnetotail energy in driving magnetospheric substorms[J]. Space Science Reviews,46:93-111.
    [42]Pu Z Y, Kang K B, Korth A, et al.1999. Ballooning instability in the presence of a plasma flow:A synthesis of tail reconnection and current disruption models for the initiation of substorms[J]. Journal of Geophysical Research,104:10,235-10,248.
    [43]Pu Z Y, Korth A, Chen Z X, et al.2001. A global synthesis model of depolarization at substorm expansion onset[J]. Journal of Atmospheric and Solar-Terrestrial Physics,63(7): 671-681.
    [44]Gonzalez W D, Tsurutani B T, GonzalezA L.1999. Interplanetary origin of geomagnetic storms[J]. Space Science Reviews,88:529-562.
    [45]Tsurutani B T, Gonzalez W D.1995b. The future of geomagnetic storm predictions:implications from recent solar and interplanetary observations[J]. Advances in Space Research,57:1369-1384.
    [46]Cane H V, Richardson I G, Wibberenz G.1997. Helios 1 and 2 observations of particle decreases, ejecta, and magnetic clouds[J]. Journal of Geophysical Research,102:7075-7086.
    [47]Kataoka R, Pulkkinen A.2008. Geomagnetically induced currents during intense storms driven bycoronal mass ejections and corotating interacting regions[J]. Journal of Geophysical Research,113:A03S12.
    [48]Kataoka R, Miyoshi Y.2006. Flux enhancement of radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions[J]. Space Weather,4:S09004.
    [49]Tsurutani B T, Gonzalez W D, GonzalezA L.1995c. Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle[J]. Journal of Geophysical Research,100: 21717-21733.
    [50]Boyd T J M, Sanderson J J.1969. Plasma dynamics. London, Nelson, Series:Applications of mathematics series, ISBN:177616113.
    [51]Desai M I, Mason G M, Dwyer J R, et al.2003. Evidence for a suprathermal seed population of heavy ions accelerated by interplanetary shocks near 1 AU[J]. The Astrophysical Journal, 588:1149-1162.
    [52]Kress B T, Hudson M K, Mazur J E.2005. Modeled Solar Energetic Particle Trapping in the Earth's Radiation Belts During Geomagnetic Storms and Comparison With Observed Energy Spectra. American Geophysical Union, Fall Meeting 2005, abstract:SA21A-0285.
    [53]Webb D F, Cliver E W, Crooker N U, et al.2000. Relationship of halo coronal mass ejections, magnetic clouds, and magnetic storms [J]. Journal of Geophysical Research:Space Physics (1978-2012),105(A4):7491-7508.
    [54]Cane H V, Richardson I G, Cyr O C St.2000. Coronal mass ejections, interplanetary ejecta and geomagnetic storms[J]. Geophysical research letters,27(21):3591-3594.
    [55]Gopalswamy N, Lara A, Lepping R P, et al.2000. Interplanetary acceleration of coronal mass ejections[J], Geophysical research letters,27(2):145-148.
    [56]汪毓明,叶品中,王水.2003.行星际磁云研究新进展[J].天文学进展,21(4):301-315.
    [57]涂传诒.1988.日地空间物理学:行星际与磁层(上册)[M].北京:科学出版社.
    [58]Kamide Y, Baumjohann W, Daglis I A, et al.1998. Current understanding of magnetic storms: Storm-substorm relationships[J]. Journal of Geophysical Research,103(A8):17,705-17,728.
    [59]Liou K, Newell P T, Meng C I, et al.2004. On the relationship between shock-induced polar magnetic bays and solar wind parameters [J]. Journal of geophysical research,109(A6): A06306.
    [60]Shue J H, Kamide Y, Newell P T.2005. A systematic study of effects of solar wind density on auroral electrojets[J]. Geophysical research letters,32(14):L14112.
    [61]Brittnacher M, Wilber M, Fillingim M, et al.2000. Global auroral response to a solar wind pressure pulse[J]. Advances in Space Research,25(7):1377-1385.
    [62]Wang C B, Chao J K, Lin C H.2003. Influence of the solar wind dynamic pressure on the decay and injection of the ring current[J]. Journal of Geophysical Research:Space Physics (1978-2012),108(A9).
    [63]Borodkova N L, Liu J B, Huang Z H, et al.2008. Geosynchronous magnetic field response to the large and fast solar wind dynamic pressure change[J]. Advances in Space Research,41(8): 1220-1225.
    [64]Boudouridis A, Zesta E, Lyons R.2003. Effect of solar wind pressure pulses on the size and strength of the auroral oval[J]. Journal of Geophysical Research:Space Physics (1978-2012), 108(A4).
    [65]Akasofu S I.1979. Interplanetary energy flux associated with magnetospheric substorms[J]. PlanetSpace Sci,27:425-431.
    [66]Angelopoulos V, Kennel C, Coroniti F V, et al.1994. Statistical characteristics of bursty bulk flow events[J]. Journal of Geophysical Research:Space Physics (1978-2012),99(A11): 21257-21280.
    [67]Baumjohann W.2002. Modes of convection in the magnetotail[J], Physics Plasma,9: 3665-3667.
    [68]Cao J B, Ma Y D, Parks G, et al.2006. Joint observations by Cluster satellites of bursty bulk flows in the magnetotail[J]. Journal of Geophysical Research,111:A04206.
    [69]Cao J B.2008. Characteristics of mid-low latitude Pi2 excited by Bursty Bulk Flows[J]. Journal of Geophysical Research,112:A07S15.
    [70]Lui A T Y.2004. Potential plasma instabilities for substorm expansion onsets[J]. Space Science Reviews,113(1):127-206.
    [71]Ma Y D, Cao J B, Nakamura R, et al.2009. Statistical analysis of earthward flow bursts in the inner plasma sheet during substorms[J]. Journal of Geophysical Research:Space Physics (1978-2012),114:A07215.
    [72]McPherron R L.1991. Physical processes producing magnetospheric substorms and magnetic storms[J]. In Geomagnetism,4:593-739.
    [73]Pu Z Y, Kang K B, Korth A, et al.1999. Ballooning instability in the presence of a plasma flow:a synthesis of tail reconnection and current disruption models for the initiation of substorms[J]. Journal of Geophysical Research:Space Physics (1978-2012),104(A5): 10235-10248.
    [74]Shiokawa K, Baumjohamm W, Haerendel G, et al.1998. High-speed ion flow, substorm current wedge, and multiple Pi2 pulsations[J]. Journal of Geophysical Research,103(A3): 4491-4507.
    [75]Xu W Y.2008. Uncertainty in magnetic activity indices[J]. Science in China Series E: Technological Sciences,51(10):1659-1664.
    [76]Meng C I, Liou K.2004. Substorm timings and timescales:A new aspect[J]. Space science reviews,113(1-2):41-75.
    [77]Cao X, Pu Z Y, Zhang H, et al.2008. Multispacecraft and ground-based observations of substorm timing and activations:Two case studies[J]. Journal of Geophysical Research, 113(A7):A07S25.
    [78]CISM-the Center for Integrated Space Weather Modeling.http://www.bu.edu/cism.
    [79]CCMC-Community Coordinated Modeling Center.http://ccmc.gsfc.nasa.gov.
    [80]SWMF-Space Weather Modeling Framework.http://csem.engin.umich.edu/tools/swmf.
    [81]CSEM-The Center For Space Environment Modeling.http://csem.engin.umich.edu.
    [82]SPENVIS-The Space Environment Information System.http://www.spenvis.oma.be.
    [83]李姗姗,王群.2008.分布式高性能空间天气建模框架的研究[J].计算机应用研究,25(6):1731-1735.
    [84]邹自明,高文健,张效信,佟继周.2013.空间天气定量化预报系统的设计与实现[J].科技导报,31(10):18-23.
    [85]邹自明,马文臻.2013.空间科学数据应用环境研究[J].中国计算机学会通讯,9(9):12-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700