用户名: 密码: 验证码:
首都圈地区现今地应力环境研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首都圈地区(北纬39°~41°,东经114°~119°)是我国政治、文化和经济中心,区域经济发达、人口稠密,然而,该区位于张家口-渤海构造带、华北平原和汾渭盆地交汇部位,地震活动强烈而频繁,其中1679年9月2日的三河-平谷Ms8级地震,1976年7月28日唐山Ms7.8级地震等,均给国家和人民造成了巨大的损失,地震灾害的破坏性和突发性严重威胁着首都圈地区社会稳定,制约了经济快速、平稳发展。
     地震等内动力地质灾害的发生与地壳应力有着密切的关系,大地震的孕育和发生是区域内应力长期积累、集中、加强的过程并在应力集中区最终导致岩体破坏应变能突然释放的结果,地壳物质的力学性质与地应力对地壳运动具有决定的意义。在充分认识首都圈及邻区地震地质、活动构造、深部地球物理等基础上,深入研究首都圈地区现今地应力环境及其演化规律,对于断裂活动性、地壳运动、构造活动的动力学机制及地震发生机理等研究具有重要的意义。
     本文在系统收集和分析区域地质、地壳岩石圈动力学特征、活动断裂与构造分区、区域构造应力场及地震活动等研究成果的基础上,首先重点分析了北京地区内平谷、西峰寺、密云和李四光纪念馆内4个深孔(600-1000m)水压致裂地应力测量结果,获得了北京地区地壳浅层现今地应力随深度变化规律。其次依据研究区地壳结构特征、构造分区及活动断裂分布特征,建立了首都圈地区三维地质模型,基于线弹性有限元模拟方法,运用ANSYS模拟软件,以实测地应力数据及震源机制解等资料作为应力目标约束条件,开展了首都圈地区现今三维构造应力场数值模拟研究。最后选取1年、20年、40年、60年、80年和100年时间尺度,模拟分析了首都圈地区在现今地壳水平运动作用下研究区内水平主应力大小变化、方位以及弹性应变能密度大小变化的演化规律;重点分析了北京地区在100年时间范围内水平主应力大小演化特征,拟合得到水平主应力大小随时间的变化梯度;通过应力叠加计算得到了北京地区近地表分别在2032年、2052年、2072年、2092年以及2112年水平主应力大小和最大水平剪应力及其随时间演化规律,进而探讨了首都圈地区现今水平运动作用方式对其构造应力环境的影响。
     通过本文的研究和分析,取得以下主要结论和认识:
     1、首都圈地区地壳浅层水平主应力随深度的增加基本呈线性增大的趋势,最大水平主应力随深度增加的梯度为0.031MPa/m,最小水平主应力随深度增加的梯度为0.0216MPa/m。3个主应力的关系关系表现为:在0-530m深度内为σH>σh>σv,为逆断型应力状态;在530m-1000m深度内为σH>σv>σh,为走滑型应力状态。相关应力特征参数随深度变化关系表现为:最大水平侧压系数σH/σv=55.7/H+1.37、最小水平侧压系数σh/σv=57.8/H+0.89、平均水平侧压系数(σh+σh)/2σv=61.2/H+1.12、最大和最小水平主应力的比值σH/σh=1.47-4.37/H、水平剪应力相对大小μm=0.19-2.33/H。首都圈地区现今最大水平主压应力优势方位为NE-NEE向,该结果与首都圈地壳深部震源机制解资料得到的P轴主压应力方位基本一致,与华北区域构造应力场主压应力方位以相符。
     2、在0-40km地壳深度内,首都圈地区最大水平主应力大小为10.59~1027.66MPa,最小水平主应力大小为6.37~1000.71MPa,垂向应力大小为5.04~1037.56MPa。3个主应力在0-30km深度内基本上随深度的增加而线性增大,而在30-40km深度内,主应力大小增加缓慢,有趋于稳定值的趋势,且曲线形态呈非线性。3个主应力之间的关系表现为:0~15km深度内为σH>6v≥σh,属于走滑型应力状态;15~35km深度内表现为σH>6v>σh,也为走滑型应力状态;35-40km深度,则转为σv>6H>σh,为正断型应力状态。相关应力特征参数随深度变化关系为:最小水平侧压系σh/σv=57.41/H+0.91,最大水平侧压系σH/σv=178.57H+1.16;最大、最小水平侧压系数在地壳浅层时最大,随深度的增加呈减小的趋势,最大水平侧压系数在25km深度左右趋于1.16,最小水平侧压系数在约10km深度左右趋于0.91,两个水平侧压系数平均为1.04,充分说明了在深部地壳应力环境处于静水压力状态。首都圈地壳深度内最大主压应力方位在地壳浅部和深部差异不大,除鲁东-渤海块体内大连及附近地区主压应力方位为NW~NWW向以外,其他构造单元内大部区域地壳现今主压应力优势方位为NE~NEE向。
     3、受各次级块体内地壳介质参数差异性以及边界断层弱化作用的影响,首都圈地区各次级构造单元主应力大小分布在纵向和横向上均表现出不连续性,且在边界断层位置多出现主应力集中现象;在较稳定的次级块体内部主应力大小分布也具有一定的相似性,表现为主应力大小在相同的深度范围内多位于一个稳定的应力范围;从地壳近表层至深部地壳首都圈地区各次级构造单元内弹性应变能密度总体呈增加的趋势,其中在华北地区各次级块体内,弹性应变能密度分布均匀,且数值较低,而在各活动块体或构造带边界断层内,弹性应变能密度从浅层到深部均最大,弹性应变能密度较高区域则更易于应力、应变积累和集中。
     4、在100年时间尺度内,首都圈地区在不同时间尺度累计位移载荷作用下,水平主应力大小变化均呈增加的趋势;受研究区内不同次级构造单元介质差异性以及断层的影响,水平主应力大小变化分布特征具有差异性和不均匀性,不同次级构造单元之间乃至同一构造单元内部也不同;各次级构造单元内水平主应力方位分布一致性较好,水平主压应力方位主要为N700-80°E,与华北地区现今构造应力场中最大主压应力方位基本一致,而水平主张应力方位主要表现为N10°-20°W,与华北地区最小主压应力优势方位基本一致;弹性应变能密度年变化量随着位移载荷的不断增大而增加,在次级块体边界或主要活动构造带边界断层内,弹性应变能密度变化值最大,而在次级活动块体和主要活动构造带内部,弹性应变能密度变化值分布较均匀。
     5、在100年时间尺度内,北京地区在不同时间尺度累计位移载荷作用下,水平主应力大小随着位移载荷的不断增加而逐渐增大,且具有线性增加的趋势,但是在不同深度内水平主应力大小随时间增加的梯度有所差别;在各个时间尺度内,水平主张应力大小变化量大于主压应力大小变化量,前者一般为后者的1.21-1.25倍;受地壳现今运动方式的影响,在不考虑地震等地质事件的影响下,随着时间的不断演化,北京地区最小水平主压应力作用方式在将来的某个时刻转为主张应力作用,而最大水平主压应力则不断增加,结果会导致最大水平剪应力的不断增大,进而可能会诱发研究区内大型走滑断层发失稳的危险性增强。
Capital Region (39°-41°N,114°-119°E) is the national center of politics, culture and economy with developed economy and dense population. Capital Region is located at the intersection of Zhangjiakou-Bohai Sea structral belt and Fenwei Basin, where there exist intense and frequent earthquake activities. Historical seismic materials have recorded a series of intense earthquakes in the area. Examples are Sanhe-Pinggu earthquake at a scale of Ms8on September2nd,1679and Tangshan earthquake at a scale of Ms7.8on July28th,1976, which caused significant losses to the country and the people. Destructive and sudden earthquakes of this kind posed a great threat to the social stability of Capital Region and limited the rapid and steady development of economy in the area.
     The occurrence of endogenetic geological disasters, like earthquakes, is closely connected with the stress state of the crust. Major earthquakes' formation and occurrence is the long-term process of stress'cumulation, concentration and strenthening and the sudden burst of strain energy of rock mass failure at stress concentration points. Mechanical properties and geostress of the crust materials have crucial significance on crust movement. On the basis of a good understanding of Capital Region and its neighboring area's seismic geology, active structures and deep geophysics, it has quite important significance to deeply look into the Capital Region's current geostress environment and evolution pattern for the purpose of researching fault activity, crust movement, dynamic mechanism of structure activity and earthquake occurrence mechanism.
     This paper systematically collected and analysed research results of regional geology, crust lithosphere dynamic characterastics, active faults and structural division, regional structural stress field and earthquake activities. Firstly, we focused analysis on hydraulic fracturing geostress measurement results of4deep holes (600-1000m) in Pinggu, Xifeng Temple, Miyun and Li Siguang Memorial in Beijing and aquired the current geostress changes with depth in the shallow crust of Beijing. And then, according to the crust structural characters, structural division and distribution pattern of active faults of the research area, Capital Region's3D geological model was constructed based on linear elastic finite element method with ANSYS simulation software. A3D structural stress field numerical simulation research of current Capital Region was conducted with the measured geostress data and focal mechanism etc as stress target constraints. Finally, we chose1,20,40,60,80and100years as time scales for simulation analysis on the evolution patterns of horizontal principal stress' relative values, orientations and elastic strain energy density variation values, which focused on100years scale horizontal principal stress evolution in the Beijing area and aquired a fitting curve of horizontal principal stress variation gradient by time. The horizontal principal stress'value, the maxium horizontal shear stress and their evolution by time of Beijing near-surface in2032,2052,2072,2092and2112were achieved by superimposed stress calculation. Furthermore, we investigated the horizontal movement style of current Capital Region and its influence on structural stress environment.
     Based on the research and analysis, this paper arrived at the following conclusions and understandings.
     1. Shallow crustal horizontal principal stress in the Capital Region shows linearly increasing trend with depth:the maximum horizontal stress increases with depth with a gradient of0.031MPa/m, and the minimum horizontal stress increases with depth with a gradient of0.0216MPa/m. The relationship among the three principal stresses is as follows: in about0-530m depth, showing σH> σh> av, as against the off-type stress state; within about530m-1000m depth, showing σ> σv> σh, as strike-slip stress state. The changes of stress characteristic parameters with depth are as follows:maximum horizontal lateral pressure coefficient σH/av=55.7/H+1.37, the minimum horizontal lateral pressure coefficient σh/σv=57.8/H+0.89, the average horizontal lateral pressure coefficient (σH+σb)/2σv=61.2/H+1.12, the ratio of the maximum and minimum horizontal stress σH/σh=1.47-4.37/H, and the horizontal shear stress relative value μm=0.19-2.33/H. The maximum horizontal principal stress dominance orientation of current Capital Region is NE~NEE, which is basically consistent with the P-axis principal compressive stress orientation obtained from the Capital Region deep crust focal mechanism and with the regional structural stress field orientation of principal stress of North China.
     2. Within0-40km crustal depth, the maximum horizontal principal stress of Capital Region is10.59-1027.66MPa, the minimum horizontal principal stress is6.37-1000.71MPa, and the vertical stress is5.04-1037.56MPa. The three principal stresses within about0- 30km depth increase linearly with depth; within30-40km depth, the three principal stresses slowly increase, presenting a trend to be stable, and the curve shape is nonlinearity. The relationship between the three principal stresses is as follows:within about0-15km depth, showing σH>σv≥σh, as strike-slip stress state; within about15-35km depth, showing σH>σv σh, as strike-slip stress state; within about35-40km depth, the relationship turned to σv>σH> σh, and the stress state is normal faulting. The stress characteristic parameters variation with depth are as follows:the minimum horizontal lateral pressure ah/σv=57.41/H+0.91, the maximum horizontal lateral pressure σH/σv=178.57/H+1.16; the maximum and minimum horizontal lateral pressure coefficients reach the maximum value level in the shallow crust, but present a decreasing trend with increasing depth; the maximum horizontal lateral pressure of about25km in depth tends to1.16, and the minimum horizontal lateral pressure coefficient of about10km in depth tends to0.91. The average of both horizontal lateral pressure coefficients is1.04, clearly suggesting the deep crustal stress environment in hydrostatic pressure. The maxium principal stress orientations within the crust of Capital Region vary little in the shallow crust and deep crust. Except that the principal compressive stress orientations are NW-NWW in Dalian and nearby area in eastern Shandong-Bohai block, the principal compressive stress orientations in most area of other structural units are NE-NEE.
     3. As a result of the influence of crust medium parameters' differentiation in each sub-block and weakening effect of boundary faults, the principal stress of each secondary tectonic unit in Capital Region is discontinuously distributed both longitudinally and vertically, and-mainly concentrated in boundary faults. Whereas in more stable sub-blocks, the distribution of principal stress is also found to be somewhat similar this is reflected by stress in the same depth mostly keeping in a stable range. From the near-surface crust to the deep crust, it seems that each secondary tectonic unit in the Capital Region has an increasing trend in elastic strain energy density. Sub-blocks in North China show even distributions and relatively low values of elastic strain energy density and, elastic strain energy densities in active blocks or structural belt boundary faults are the largest from shallow to deep. Stress and strain accumulation and concentration occur more easily in an area of high elastic strain energy density.
     4. In a100-year time scale, the cumulative displacement of the Capital Region at different times makes the relative value of horizontal principal stress increase. Affected by the medium differentiation of tectonic units in the study area and the faults, horizontal principal stress is not consistently and evenly distributed among tectonic units of different and even the same structure. The horizontal principal stress in each level structural unit is consistentin orientations and the horizontal principal compressive stress orientation is N70°-80°E, which is basically consistent with the maximum principal compressive stress orientation of North China. While the horizontal principal tensile stress orientations advocated mainly as N10°-20°W, which is basically consistent with the minimum principal compressive stress orientation of Noth China. Elastic strain energy density annual variation increases with the increasing displacement load. The variation in sub-block boundaries or primary active structural belt boundary faults is the largest. But the variation distributes evenly within secondary active blocks and primary active structural belts.
     5. The horizontal principal stress annual variation of Beijing under current horizontal movement rate increases with increasing displacement load and has a linear trend, but its increasing gradients with time have differences between different depth. In various time scales, the horizontal principal tensile stress variation is greater than the value of the principal compressive stress; the former is generally1.21to1.25times of the latter. Without regard to the influence of earthquake and other geological events, the minimum horizontal principal compressive stress will turn into tensile stress with time due to the current crustal movement pattern. The maxium horizontal principal compressive stress will increases the time, making the maximum horizontal shear stress increase, which thereby might cause the danger of large scale strike-slip fault failure in the study area.
引文
[1]李腊月,邢成起,武安绪等.首都圈断层活动及其与地震关系探讨[J].中国地震,2012,28(2):167-178
    [2]马文涛,徐锡伟,于贵华等.首都圈地区的地震活动性与断裂的关系[J].地震地质,2004,26(2):293~304
    [3]李四光.论地震[M].北京:地质出版社,1977
    [4]丰成君,陈群策,谭成轩等.汶川Ms8.0级地震对龙门山断裂带附近地应力环境影响初探—以北川、江油地区为例[J].地震学报,2013,35(2):137~150
    [5]黄相宁,康仲远,张超等.地应力变化与地震预报[J].中国地质科学院地质力学研究所所刊,1982,3:153~169
    [6]赵文津.就汶川地震失报探讨地震预报的科学思路—再论李四光地震预报思想[J].中国工程科学,2009,11(6):4~15
    [7]LIAO Chun-ting, ZHANG Chun-san and WU Man-lu et al.Stress change near the Kunlun fault before and after the Ms8.1 Kunlun earthquake[J].Geophysical Research Letters,2003,30(20):2027-2030
    [8]郭兽良,王成虎,马洪生等.汶川Ms8.0级大震前后的水压致裂原地应力测量[J].地球物理学报,2009,52(5):1~7
    [9]李方全,王连捷.华北地区地应力测量[J].地球物理学报,1979,22(1):1-8
    [10]李方全,孙世宗,李立球等.华北及郯庐断裂带地应力测量[J].岩石力学与工程学报,1982,1(1):74-86
    [11]Tanaka Y, Oka Y.Generation mechanism of rock bursts and water-induced earthquake under the tectonic stress field[J]. Rock Mechanics in Japan,1979,3(2):183-191
    [12]Keisuke Yoshida, Akira Hasegawa, Tomomi Okada et al. Stress before and after the 2011 great Tohoku-oki earthquake and induced earthquakes in inland of eastern Japan[J]. Geophysical Research Letters,2012,39(3):1-6
    [13]Hast N. The measurement of rock pressure in mine. Sveriges Geol. Undersokn. Arsbok, Ser.C, Avhandl.Uppsat,195852(3):183
    [14]Hast N.The state of stress in the upper part of the earth's crust.Tectonophysics[J],1969,8(3):169-211
    [15]Rummel F, Alheid H J.Hydraulic fracturing stress measurements in SE-Germany and tectoics stress pattern in Central Europe.Proc.Int.Res.Conf.on Intra-Continental Earthquakes[J],1979,33-65
    [16]Haimson B.C.Crustal stress in the continental United States as derived from hydrofractruing tests.In the earth's crust,Geophysical Monograph 20(Edited by J.C Heacock) [M].Washington, D.C:Am Geophys Union,1977
    [17]Zoback M.D, Healy J.H and Roller J.C.Preliminary stress measurements in central California using the hydraulic fracturing technique[J].Pure Appl.Geophys,1977,115:135-152
    [18]Zoback M.L and Zoback M.D.State of stress in the conterminous United States[J]. Journal of Geophysical Research,1980,85(B11):6113-6156
    [19]田中丰.日本近东北部的地壳应力状态及其变化[J].京都大学防灾研究所年报,1993,36(B1):279~290
    [20]Zoback M.L and Zoback M.D.First and second order patterns of stress in the lithosphere:The world stress map proect[J]. Journal of Geophysical Research,1992,97:11703-11728
    [21]Takatoshi Ito and Zoback M.D.Fracture premeability and in situ stress to 7km depth in the KTB scientific drillhole[J]. Geophysical Research Letters,2000,27(7):1045-1048
    [22]陈群侧,李宏,廖椿庭等.地应力测量与监测技术实验研究—SinoProbe-06项目介绍[J].地球学报,2011,32(增刊):113~124
    [23]董树文,李廷栋,陈宣华等.我国深部探测技术与实验研究进展综述[J].地球物理学报,2012,55(12):3884~3901
    [24]黄相宁.我所经历的地应力分析预测地震之发展[C]//地壳构造应力与地壳应力.北京:地震出版社,2006,2:26~36
    [25]李方全,刘光勋.我国现今地应力状态及有关问题[J].地震学报,1986,8(2):156~171
    [26]LI Fangquan, ZHAI Qingshan and ZHANG Jun,et al.Hydraulic fracturing in situ stress measurements and study of tectonic stress state in Xiaguan region[J].Journal of Seismology Research,1987, 10(6):731-742
    [27]廖椿庭,施兆贤.金川矿区原岩应力实测及在矿山设计中的应用[J].岩石力学与工程学报,1983,2(1):103~112
    [28]吴珍汉,周春景,王薇等.青藏铁路沿线构造活动性评价和工程稳定性区划[J].地质通报,2005,24(5):401~410
    [29]谢富仁,崔效锋,赵建涛等.中国大陆及邻区现代构造应力场分区[J].地球物理学报,2004,47(4):654-662
    [30]陈群策,丰成君,孟文等.5.12汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J].地球物理学报,2012,55(12):3923-3932
    [31]丰成君,陈群策,谭成轩等.龙门山断裂带东北段现今地应力环境研究[J].地球物理学进展,2013(3):1109-1121
    [32]崔军文,李宗凡,王连捷等.汶川地震断裂带科学钻探1号井(WFSD-1)非弹性应变恢复法(ASR法)三维地应力测试与“5.12”汶川地震的形成机制[J].岩石学报,2013,29(6):2033~2047
    [33]王连捷,李朋武,崔军文等.中国大陆科学钻探主孔声发射法现今地应力状态的确定[J].中国地质,2005,32(2):259-264
    [34]国际岩石力学学会试验方法委员会.确定岩石应力的建议方法[J].岩石力学与工程学报,1988,7(4):357~388
    [35]Haimson B.C and Cornet F.H. ISRM Suggested Methods for rock stress estimation-Part 3:hydraulic-fracturing(HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J].International Journal of Rock Mechanics & Mining Sciences,2003,40:1011-1020
    [36]毛吉震,陈群策,王成虎.超声波钻孔电视在地应力测量研究中的应用[J].岩土工程学报,2008,30(1):46-50
    [37]许忠淮.联邦德国等国利用水压致裂和钻孔崩落研究地应力的近况[J].国际地震动态,1986,6:002
    [38]李利峰,邹正盛,张庆.声发射Kaiser效应在地应力测量中的应用现状[J].煤田地质与勘探,2011,39(001):41~45
    [39]康红普,林健,张晓.深部矿井地应力测量方法研究与应用[J].岩石力学与工程学报,2007,26(5):929~933
    [40]蔡美峰,乔兰,于劲波.空心包体应变计测量精度问题[J].岩土工程学报,1994,16(6):15-20
    [41]蔡美峰,乔兰,于波等.金川二矿区深部地应力测量及其分布规律研究[J].岩石力学与工程学报,1999,18(4):414-418
    [42]吴满路,马宇,廖椿庭等.金川二矿深部1000m中段地应力测量及应力状态研究[J].岩石力学与工程学报,2008,27(增2):414-418
    [43]王连捷,孙东生,林为人等.地应力测量的非弹性应变恢复法及应用实例[J].地球物理学报,2012,55(5):1674-1681
    [44]LIN Weiren.A core-based method to determine three-dimensional in -situ stress in deep drillingwells:Anelastic state recovery technique[J].Chinese Journal of Rock Mechanics and Engineering, 2008,27(12):1674-1681
    [45]Gay N.C.In situ stress measurements in Southeren Africa[J].Tectonophysics,1975,29:447-459
    [46]Worotniki G, Denham D.The state stress in the upper part of the Earth's crust in Australia according to measurements in tunnels and mines and from seismci observation[C]//Investigation of stress in Rock-Advances in stress measurement,Int.Soc.Rock Mech.Symp.Sydney,Australia:[s,n],1976:71-82
    [47]Haimson B.C.Near surface and deep hydrofracturing stress measurements in the Waterloo Quartzite[J].Int.J.Rock.Mech.Min.Sci & Geomech.Abstr,1990,17:81-88
    [48]Brown E.T, Hoek E.Technical note trends in relations between measured in -situ stress and depth[J].Int.J.Rock.Mech.Min.Sci & Geomech.Abstr,1978,15(4):211-215
    [49]Sheorey P R. A theory for in-situ stresses in isotropic and transverseley isotropic rock[C]//International journal of rock mechanics and mining sciences & geomechanics abstracts. Pergamon, 1994,31(1):23-34
    [50]Stacey T R,Wesseloo J. In situ stresses in mining areas in South Africa[J].Journal South African institute of ming and metallurgy,1998,98:365-368
    [51]Haimson B C, Lee M Y, Song I. Shallow hydraulic fracturing measurements in Korea support tectonic and seismic indicators of regional stress[J].International Journal of Rock Mechanics and Mining Sciences,2003,40(7):1243-1256
    [52]Smith R.B. Intraplate tectonics of the western North American plate[J]. Tectonophysics,1977, 37:323-336
    [53]Reynolds S D, Coblentz D D, Hillis R R.Tectonic forces controlling the regional intraplate stress field in continental Australia:Results from new finite element modeling[J].Journal of Geophysical Research:Solid Earth (1978-2012),2002,107(B7):ETG 1-1~ETG 1-15
    [54]Stephansson O, Sarkka P, Myrvang A. State of stress in Fennoscandia[C]//ISRM International Symposium. International Society for Rock Mechanics,1986,9:1-3
    [55]Frohlich C. Triangle diagrams:ternary graphs to display similarity and diversity of earthquake focal mechanisms[J]. Physics of the Earth and Planetary Interiors,1992,75(1):193-198
    [56]Montone P, Amato A, Pondrelli S. Active stress map of Italy [J]. Journal of Geophysical Research: Solid Earth (1978-2012),1999,104(B11):25595-25610
    [57]李方全,祁英男.地壳应力随深度的变化规律[J].岩石力学与工程学报,1988,7(4):301~309
    [58]陈家庚,高龙生.原地应力,层原地强度及中国大陆之应力场[J].地震学报,1989,11(2):142~152
    [59]朱焕春,陶振宇.不同岩石中地应力分布[J].地震学报,1994,16(1):49~63
    [60]赵德安,陈志敏,蔡小林等.中国地应力场分布规律统计分析[J].岩石力学与工程学报,2007,26(6):1265~1271
    [61]景锋,盛谦,张勇慧等.中国大陆浅层地壳实测地应力分布规律研究[J].岩石力学与工程学报,2007,26(10):2056-2062
    [62]王艳华,崔效锋,胡幸平等.基于原地应力测量数据的中国大陆地壳上部应力状态研究[J].地球物理学报,2012,55(9):3016-3027
    [63]鄢家全,时振梁,汪素云等.中国及邻区现代构造应力场的区域特征[J].地震学报,1979,1(1):9-24
    [64]汪素云,许忠淮.中国东部大陆的地震构造应力场[J].地震学报,1985,7(1):17~32
    [65]许忠谁,汪素云.由大量的地震资料推断的我国大陆构造应力场[J].地球物理学报,1989,32(6):636-647
    [66]谢富仁,陈群策,崔效锋等.中国大陆地壳应力环境研究[M].地质出版社,2003
    [67]Otsuki K. Plate tectonics of Eastern Eurasia[J].Tohoku Univ,Sci.Rep,1985,55(5):141-251
    [68]Coblentz D.D, Zhou S, Hillis R.R, et al. Topography, boundary force, and the Indo-Australianintraplate stress field[J]. J.Geophys.Res,1992,97(B8):11805-11820
    [69]Gronthal G, Stromeyer D. The recent crustal stress field in central Europe:Trajectories and finite element modeling[J].J.Geophys.Res,1998,103(B1):919-931
    [70]Mian Liu and Youqing Yang. Constrasting seismicity between the north China and south China blocks:Kinematics and geodynamics[J]. Geophysical Research Letters,2005,32(L12310):1-4
    [71]Qingsong Li and Mian Liu. Geometrical impact of the San Andreas Fault on stress and Seismicity in California[J]. Geophysical Research Letters,2006,33(L08302):1-4
    [72]罗焕炎.有限单元法在地质力学中的应用[J].地质科学,1974,1:81~100
    [73]王仁,何国琦,殷有泉等.华北地区地震迁移的数学模拟[J].地震学报,1980,2:32-42
    [74]汪素云,陈培善.中国及邻区现代构造应力场的数值模拟[J].地球物理学报,1980,23(1):35~45
    [75]王仁,黄杰藩,孙荀英等.华北地震构造应力场的模拟[J].中国科学,1982,B4:337-344
    [76]石耀霖.运用平面弹性有限单元法分析帚状构造应力场[J].地质力学学报,1982,3(3):21-29
    [77]许寿椿,朱正.从应力解除资料反演中国东部郯庐断裂带区域应力场方向[J].地震学报,1983,5(4):412-417
    [78]梁海华.汾渭断陷带构造特征的数学模拟[J].地震地质,1987,9(3):29-37
    [79]强祖基,谢富仁.临汾裂谷现代构造应力场特征及其数值模拟[J].地球物理学报,1988,1(5):72-81
    [80]许忠淮,汪素云,俞言祥.根据观测的应力方向利用有限单元方法反演板块边界作用力[J].地震学报,1992,14(4):446-455
    [81]汪素云,张琳.中国及其邻区周围板块作用力的研究[J].地球物理学报,1996,39(6):764-771
    [82]安美建,石耀霖,李方全.用遗传有限单元反演法研究东亚部分地区现今构造应力场的力源和影响因素[J].地震学报,1998,20(3):225~231
    [83]蔡永恩,何涛,王仁.1976年唐山地震震源动力过程的数值模拟[J].地震学报,1999,21(5):469~477
    [84]张东宁,许忠淮.中国大陆岩石层动力学数值模型的边界条件[J].地震学报,1999,21(2):133~139
    [85]梁海华,侯建军.中国构造应力场与大震复发周期关系的数值模拟[J].地震地质,1999,21(1):51-57
    [86]石耀霖.巴西构造应力场的遗传有限单元法反演[J].地球物理学报,2000,43(2):166-174
    [87]陈连旺,陆远忠,刘杰.1966年邢台地震引起的华北地区应力场动态演化过程的三维粘弹性模拟[J].地震学报,2001,23(5):480~491
    [88]陈连旺,杨树新,谢富仁等.中国大陆构造应力应变场现今年变化特征的数值模拟[J].中国地震,2006,21(3):341~349
    [89]朱守彪,石耀霖.中国大陆及邻区构造应力场成因的研究[J].中国科学:D辑,2007,36(12):1077~1083
    [90]章纯.中国东部地区地震活动与构造应力场关系的有限元数值模拟[J].西北地震学报,2007,29(3):230~234
    [91]范桃园,龙长兴,杨振宇等.中国大陆现今地应力场黏弹性球壳数值模拟综合研究[J].地球物理学报,2012,55(4):1249~1260
    [92]梁海庆,翟青山,李方全.北京房山花岗闪长岩体及其附近现今应力状态分析[J].地震地质,1987,9(4):32~40
    [93]李群芳,张云柱,高忠宁.首都圈地区现今断层活动的数学模拟及地震危险性讨论[J].地壳形变与地震,1995,15(1):52~61
    [94]曹建玲,张晶,王辉等.首都圈现今断层活动方式的数值模拟[J].地震,2013,33(3):116-123
    [95]柳畅,石耀霖,郑亮等.三维黏弹性数值模拟华北盆地地震空间分布与构造应力积累关系[J].地球物理学报,2013,55(12):3942~3957
    [96]徐锡伟,吴卫民,张先康等.首都圈地区地壳最新构造运动与地震[M].北京:科学出版社,2002
    [97]高文学,马瑾.首都圈地震地质环境与地震灾害[M].北京:地震出版社,1993
    [98]马杏垣.中国岩石圈动力学图集[M].北京:中国地图出版社,2012
    [99]马杏垣.中国岩石圈动力学概要[J].地质学报,1987,2:113~125
    [100]李廷栋.中国岩石圈构造单元[J].中国地质,2006,33(4):700~709
    [101]张文佑,张抗,赵永贵等.华北断块区中、新生代地质构造特征及岩石圈动力学模型[J].地质学报,1983,1:33-42
    [102]吴智平,侯旭波,李伟.华北东部地区中生代盆地格局及演化过程探讨[J].大地构造与成矿学,2007,31(4):385~399
    [103]李三忠,周立宏,刘建忠等.华北板块东部新生代断裂构造特征与盆地成因[J].海洋地质与第四纪地质,2004,24(3):57-66
    [104]邓起东,王克鲁,汪一鹏等.山西隆起区断陷地震带地震地质条件及地震发展趋势概述[J].地质科学,19732,1:37-47
    [105]徐锡伟,邓起东.晋北张性区盆岭构造及其形成的力学机制[J].中国地震,1988,4(2):19~27
    [106]嘉世旭,张成科,赵金仁等.华北东北部裂陷盆地与燕山隆起地壳结构[J].地球物理学报,2009,52(1):99~110
    [107]孙加林,武慧聪.近年来阴山-燕山地震带地震活动的某些特征[J].华北地震科学,1984,2(1):6-14
    [108]吕作勇.华北地区地震层析成像研究[D].中国地震局,2009
    [109]邢集善,叶志光,孙振国等.山西板内构造及其演化特征初探[J].山西地质,1991,6(1):3-15
    [110]孙继源,邢集善,叶志光等.华北地区板内构造及深部过程初探[J].地质科技情报,1992,11(1):4-13
    [111]邢作云,赵斌,涂美义等.汾渭裂谷系与造山带耦合关系及其形成机制研究[J].地学前缘,2005,12(2):247~262
    [112]邓起东,尤惠川.鄂尔多斯周缘断陷盆地带的构造活动特征及其形成机制.现代地壳运动研究[M].北京:地震出版社,1985
    [113]Tapponnier P, Peltzer G, Le Dain A.Y, et al. Propagating extrusion tectonics in Asia new insights from sinple expriment with plastine[J].Geology,1982,10:611-616
    [114]Tian Z Y, Han P, Xu K D. The Mesozoic-Cenozoic east China rift system[J]. Tectonophysics, 1992,208:341-363
    [115]Zhang Y, Ma Y, Yang N, et al. Cenozoic extensional stress evolution in North China[J].Journal of Geodynamics,2003,36:591-613
    [116]张岳桥,廖昌珍,施炜等.鄂尔多斯盆地周边地带新构造演化及其区域动力学背景[J].高校地质学报,2006,12(3):285-297
    [117]邵学钟,张家茹.邢台地震区深部构造背景的地震转换波探测和研究[J].地球物理学报,1993, 36(5):609~620
    [118]葛粲,郑勇,熊熊.华北地区地壳厚度与泊松比研究[J].地球物理学报,2011,54(10):2538~2548
    [119]刘琼林,王椿镛,姚志祥等.华北克拉通中西部地区地壳厚度与波速比研究[J].地球物理学报,2011,54(9):2213~2224
    [120]武岩,丁志峰,朱露培.利用远震接收函数的共转换点叠加方法研究华北克拉通上地幔过渡带结构[J].CT理论与应用研究,2012,20(4):485-494
    [121]王兴臣.接收函数方法与华北克拉通北部岩石圈结构的研究[D].中国地震局,2013
    [122]嘉世旭,张先康.华北不同构造块体地壳结构及其对比研究[J].地球物理学报,2005,48(3):611~620
    [123]陈立华,宋仲和.华北地区地壳上地幔P波速度结构[J].地球物理学报,1990,33(5):540~546
    [124]于湘伟,陈运泰,王培德.京津唐地区中上地壳三维P波速度结构[J].地震学报,2003,25(1):1~14
    [125]于湘伟,陈运泰,张怀.京津唐地区地壳三维P波速度结构与地震活动性分析[J].地球物理学报,2010,53(8):1817~1828
    [126]魏文博,叶高峰,金胜等.华北地区地壳P波三维速度结构[J].地球科学:中国地质大学学报,2007,32(4):441-452
    [127]Christensen N I, Fountain D M. Constitution of the lower continental crust based on experimental studies of seismic velocities in granulite[J]. Geol.Soc.Am.Bull,1975,86:462-465
    [128]Fountain D M, Christensen N I. Composotion of the continental crust and upper mantle:a review in geophysica framework of the continental United States[J].Mem.Geol.Soc.Am,1989,172:711-742
    [129]王峻,刘启元,陈九辉等.首都圈地区的地壳厚度及泊松比[J].地球物理学报,2009,52(1):57~66
    [130]邓起东.中国的活动活动断裂[M]//中国活动断裂.北京:地震出版社,1982
    [131]马延著,黄佩玉.京津唐地区活动断裂带现代构造运动特征[M]//中国活动断裂.北京:地震出版社,1982
    [132]辛永信.宝坻断裂带危险性的初步分析[J].地震学刊,1990,1:76-78
    [133]王春华,钱瑞华,孙君秀.汾渭断陷带形成机制及其地震活动性的实验研究[M]//中国活动断裂.北京:地震出版社,1982
    [134]强祖基,张立人.唐山地震与第四纪活动断裂[M]//中国活动断裂.北京:地震出版社,1982
    [135]徐杰,牛娈芳,王春华等.唐山-河间-磁县新生构造地震带[J].地震地质,1996,18(3):193-198
    [136]向宏发,王学潮,郝书俭等.聊城-兰考隐伏断裂的第四纪活动性-中国东部平原区一条重要的隐伏活动断裂[J].中国地震,2004,16(4):307~315
    [137]高战,武徐杰,宋长青等.华北沧东断裂的构造特征[J].地震地质,2000,22(4):395~404
    [138]施炜,张岳桥.郯庐断裂带中段第四纪活动及其分段特征[J].地球学报,2003,24(1):11-18
    [139]陈连旺,陆远忠,张杰等.华北地区三维构造应力场[J].地震学报,1999,21(2):140-149
    [140]陈连旺,詹自敏.华北地区构造应力场年动态变化特征的数值模拟[J].大地测量与地球动力学,2011,31(6):1-5
    [141]丰成君,张鹏,孙炜锋等.日本Mw9.0级地震对中国华北-东北大陆主要活动断裂带的影响及地震危险性初步探讨[J].地学前缘,2013,20(6):123-140
    [142]黄禄渊.华北地区现今地壳应力场的数值模拟及若干地震事件的库仑应力变化计算[D].中国地震局,2013
    [143]韩竹军,徐杰,冉勇康等.华北地区活动地块与强震活动[J].中国科学:D辑,2003,33(B04):108-118
    [144]国家地震局鄂尔多斯周缘活动断裂系课题组.鄂尔多斯周缘活动断裂系[M].北京:地震出版社,1988
    [145]徐杰,宋长青.张家口-蓬莱断裂带地震构造特征的初步探讨[J].地震地质,1998,20(2):146-154
    [146]傅征祥,刘杰,刘桂萍.张家口-蓬莱断裂带的中长期强地震危险性研究[J].中国地震,2004,16(4):334-341
    [147]刘少峰,张国伟.东秦岭-大别山及邻区盆山系统演化与动力学[J].地质通报,2008,27(12):1943~1960
    [148]苏宗正.山西断陷带地震活动的新构造背景[J].山西地震,1988,4:2-6
    [149]邓起东,徐锡伟.山西断陷盆地带的活动断裂和分段性研究[M]//现代地壳运动研究(6).北京:地震出版社,1995
    [150]吴大铭,张裕明,方仲景等.论中国郯庐断裂带的活动[J].地震地质,1981,3(4):15-24
    [151]朱光,王道轩,刘国生等.郯庐断裂带的演化及其对西太平洋板块运动的响应[J].地质科学,2004,39(1):36-49
    [152]张鹏,王良书,石火生等.郯庐断裂带山东段的中新生代构造演化特征[J].地质学报,2010,84(9):1316-1323
    [153]黄禄渊,杨树新,崔效锋等.华北地区实测应力特征与断层稳定性分析[J].岩土力学,2013,34(增刊
    1):204-213
    [154]江娃利,聂宗笙.太行山山前断裂带活动特征及地震危险性讨论[J].华北地震科学,1984,2(3):21~27
    [155]国家地震局.中国地震烈度区划工作报告[M].北京:地震出版社,1981
    [156]李铁明,沈正康,徐杰等.华北地区Ms≥6.5级地震震源断层参数的研究[J].地球物理学进 展,2007,22(1):95~103
    [157]李钦祖,靳雅敏,于新昌.华北地区强震前的地震活动图像[J].地震学报,1982,4(4):373~379
    [158]孙叶,谭成轩,苗培实等.地震地质与地震预报[M].北京:地质出版社,2010
    [159]葛洪魁,林英松.油田地应力的分布规律[J].断块油气田,1998,5(5):1-5
    [160]高建理,丁健民,梁国平等.华北地区盆地内地壳应力随深度的变化[J].中国地震,1987,3(4):82~89
    [161]李钦祖.华北地壳应力场的基本特征[J].地球物理学报,1980,23(4):376~388
    [162]魏光兴,周翠英,赵兴兰.华北地区中小地震应力场的优势方向[J].地球物理学报,1982,25(4):333~343
    [163]黄福明,马廷.华北北部构造应力场[J].中国地震,1995,11(2):121~132
    [164]许向彤,陈运泰.怀来盆地的构造应力场[J].地震地磁观测与研究,1997,18(1):1-8
    [165]崔效锋,谢富仁.1976年唐山地震前后华北地区现代构造应力场的时空变化特征[J].中国地震,2001,17(3):280~288
    [166]陈国光,徐杰,马宗晋等.渤海盆地现代构造应力场与强震活动[J].地震学报,2004,26(4):396-403
    [167]李瑞莎,崔效锋,刁桂苓等.华北北部地区现今应力场时空变化特征研究[J].地震学报,2008,30(6):570~580
    [168]崔效锋,谢富仁,李瑞莎等.华北地区构造应力场非均匀特征与煤田深部应力状态[J].岩石力学与工程学报,2010,29(增1):2755~2761
    [169]武敏捷,林向东,徐平.华北北部地区震源机制解及构造应力场特征分析[J].大地测量与地球动力学,2011,31(5):39-43
    [170]丰成君,陈群策,吴满路等.水压致裂应力测量数据分析-对瞬时关闭压力Ps的常用判读方法讨论[J].岩土力学,2012,33(7):2149~2159
    [172]王成虎,宋成科,郭兽良等.利用原地应力实测资料分析芦山地震震前浅部地壳应力积累[J].地球物理学报,2014,57(1):102~114
    [173]姜礼尚,庞之垣.有限元法及其理论基础[M].北京:人民教育出版社,1980
    [174]王仁.有限单元等数值方法在我国地球科学中的应用和发展[J].地球物理学报,2014,37(增1):128~139
    [175]丰成君.龙门山断裂带东北段现今地应力状态研究[D].中国地质科学院,2011[176]1212132
    [177]周永胜,何昌荣.地壳主要岩石流变参数及华北地壳流变性质研究[J].地震地质,2003,25(1):109~122
    [178]Byerlee J. Friction of rocks[J].Pure Appl Seophys,1978,161:615-626
    [179]石耀霖,曹建玲.中国大陆岩石圈等效粘滞系数的计算和讨论[J].地学前缘,2008,15(3):82-95
    [180]安美建,石耀霖.中国大陆地壳和上地幔三维温度场[J].中国科学:D辑,2007,37(6):736-745
    [181]张培震,邓起东,张国民等.中国大陆的强震活动与活动地块[J].中国科学:D辑,2003,33(增刊):12-20
    [182]朱日祥,陈凌,吴福元等.华北克拉通破坏的时间、范围与机制[J].中国科学:地球科学,2011,41(5):583~592
    [183]马宗晋,陈鑫连,叶叔华等.中国大陆区现今地壳运动的GPS研究[J]..科学通报,2011,46(13):1118-1121
    [184]杨国华,谢觉民.华北主要构造单元及边界带现今水平形变与运动机制[J].地球物理学报,2001,44(5):645-653
    [185]江在森,张希,陈兵等.华北地区近期地壳水平运动与应力应变场特征[J].地球物理学报,2000,43(5):657-665
    [186]王琪,张培震,牛之俊等.中国大陆现今地壳运动和构造变形[J].中国科学:D辑,200,31(7):529~536
    [187]牛之俊,王敏,孙汉荣等.中国大陆现今地壳运动速度场的最新观测结果.科学通报,2005,50(8):快讯

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700