用户名: 密码: 验证码:
华北板块北缘东段延边地区中生代构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
延边地区处于华北板块北缘东段,地处兴蒙造山带与龙岗地块的交接部位,是研究古亚洲洋构造域和古太平洋构造域转换的理想地区。目前关于延边地区中生代的构造演化存在较大的争议,主要是对于古亚洲洋在延边地区最终闭合时间和位置以及古太平洋构造域开始对吉黑东部作用的时间没有统一的认识。这些存在的问题限制了对延边地区中生代以来构造演化的认识。因此本文对延边和龙地区中生代岩浆岩和青龙村群新东村组变质岩进行详细的岩相学、年代学和岩石地球化学研究,同时对出露在研究区内中生代岩体中的韧性剪切带进行了应力分析。综合区域上岩浆岩分布特点和色洛河群分布特征,探讨延边地区中生代期间的构造演化。
     LA-ICP-MS锆石U-Pb结果表明延边和龙地区岩浆活动主要集中在以下三个时间段:早三叠世(智新岩体、勇新岩体)、早-中侏罗世(石国水库岩体、月山洞岩体、沙松顶岩体、高岭岩体)和早白垩世(柳洞岩体和泉水村组火山岩)。
     早三叠世岩浆岩主要分布在古洞河断裂东北侧,呈北西向展布,其主要由智新角闪辉长岩体和勇新花岗质岩体组成,两者构成了类双峰式岩石组合。智新岩体角闪辉长岩锆石U-Pb年龄为251.05±0.95Ma。岩石具有低硅富镁的特点,同时富集大离子亲石元素和轻稀土元素,亏损Nb、Ta等高场强元素,具有俯冲环境下形成的基性岩浆岩特点;其具有低Isr值和正εNd值特点表明其岩浆源区为受俯冲流体交代作用的亏损地幔楔。勇新花岗质岩石以含石榴石二长花岗岩和黑云母二长花岗岩为主,岩体遭受了韧性变形作用;二长花岗岩锆石U-Pb年龄为238.5±2.8Ma和243.2±1.1Ma;样品含有少量的石榴石,岩石地球化学特征上具有高硅高铝的特点,同时富集大离子亲石元素(Cs、Rb、K)和高场强元素Zr,亏损Ba、Sr等大离子亲石元素和Nb、Ta、P和Ti等高场强元素,具有壳源花岗岩的特征;其Al2O3、CaO、MgO、P2O5、FeOt和TiO2与SiO2含量呈明显的负相关,表明其岩浆演化过程中经历了分离结晶的作用;二长花岗岩具有相对较高的Isr值和变化的εNd值,表明岩浆应起源于中-新元古代新增生的基性下地壳的部分熔融,同时岩浆源区应受到了俯冲流体交代的作用。早三叠世类双峰式岩浆岩组合可能形成于古亚洲洋俯冲闭合过程中板片断离引起的伸展环境下。
     早-中侏罗世岩浆岩在研究区大面积分布,岩性包括花岗闪长岩、二长花岗岩、黑云母闪长岩和橄榄辉长岩。早侏罗世石国水库花岗闪长岩的锆石U-Pb年龄为193.06±0.8Ma,具有高硅富铝低镁的特点,且富集大离子亲石元素(Cs、K、Th),亏损高场强元素(Nb、Ta、P、Ti),具有活动大陆边缘岩浆岩的特点;所有样品的Al2O3、FeOt、MgO、TiO2、P2O5、和CaO与SiO2呈较好的线性关系,暗示原始岩浆经历了明显的分离结晶作用;同时样品具有与大陆下地壳一致的Isr值和负的εNd值,表明石国水库岩体岩浆起源于地壳物质的部分熔融,并受到了古老地壳物质的混染作用。
     高岭岩体主要由似斑状花岗闪长岩和似斑状二长花岗岩组成,锆石U-Pb年龄结果为180.47±0.741Ma、172.25±0.97Ma和170.9±0.68Ma。高岭岩体花岗质岩石与埃达克岩类似,具有较高的SiO2含量、Al2O3含量、Sr含量和较低的Y和Yb含量,并强烈富集轻稀土元素,亏损重稀土元素,同时富集大离子亲石元素和亏损高场强元素Nb、Ta。多数样品具有较低的Isr值和负的εNd值,表明高岭岩体原始岩浆起源于加厚下地壳基性物质的部分熔融,并受到了古老地壳物质的混染。
     早侏罗世沙松顶橄榄辉长岩和月山洞黑云母闪长岩锆石U-Pb年龄分别为175.6±1.1Ma和178.4±1.2Ma。两者均具有较低的SiO2含量和较高的MgO含量,两者的Rb/Sr比值和Nb/Ta比值与地幔平均值一致,暗示其幔源岩浆的特点。同时两者均富集大离子亲石元素,亏损Nb、Ta高场强元素,且P2O5和TiO2含量较低,因此具有拉斑玄武岩特征的橄榄辉长岩和具有钙碱性特征的黑云母闪长岩形成于俯冲流体交代作用下的地幔楔的部分熔融。
     早白垩世柳洞岩体二长花岗岩锆石U-Pb年龄为118.58±0.87Ma和118.52±0.67Ma。所有样品富硅、富碱、富铝和低钛,稀土元素总量相对较低,轻重稀土元素分异较强,富集Ba、Rb、U、K等大离子亲石元素,相对亏损Nb、Ta、P、Ti等元素,与壳源形成的花岗岩类似。Isr值和εNd(118Ma)值分别为0.7041~0.70596和2.0~2.7,其Isr在下地壳Isr的范围内,原始岩浆应起源于新元古代增生的亏损下地壳基性物质的熔融。
     早白垩世泉水村组流纹质火山岩具有钙碱性火山岩的特点,形成于活动大陆边缘的环境下。样品富硅、富铝、低镁、低钛,强烈亏损高场强元素、富集大离子亲石元素,同时具有较低的Sc、Ni、V和Co,表明该火山岩原始岩浆起源于地壳部分的熔融。
     研究区内早三叠世岩浆活动与古亚洲洋的俯冲有关,而早侏罗-早白垩世岩浆活动则形成于古太平洋板块俯冲的构造环境下。此外,所有岩浆岩均具有与兴蒙造山带一致的Sr-Nd特征,表明在中-新元古代期间,研究区内存在地壳增生事件。
     新东村组浅变质主要由大理岩、二云母片岩和少量火山岩组成,其岩石组合与海相地层特点类似。岩石地球化学特征上也表现出了浅海盆环境下海相地层的特点,其最年轻的碎屑锆石年龄为242Ma,与邻区同时期的海相地层共同形成于中三叠世之前的残留海盆环境中。新东村组变质岩的存在说明242Ma之前古亚洲洋在延边地区并没有完全闭合。
     研究区内韧性剪切带形成于中-晚三叠世期间,对其进行应力作用分析表明该韧性剪切带受到了来自北北东向应力挤压作用,可能与古亚洲洋的闭合有关。
     在上述研究的基础上,本文总结了延边-绥芬河地区的岩浆活动规律:晚二叠世-早三叠世岩浆活动主要分布在汪清-珲春一线附近及其南侧,华北板块北缘处于古亚洲洋持续俯冲闭合的构造环境中;中三叠世晚期-晚三叠世进入了陆-陆碰撞向伸展垮塌的转换阶段,并发育了一系列的碱性-基性岩浆岩带。早侏罗世吉黑东部进入了古太平洋构造域的俯冲作用下,并发育大面积的与俯冲有关的岩浆岩。晚侏罗世-早白垩世早期古太平洋板块存在俯冲作用间歇期,早白垩世晚期古太平洋板块再次对延边地区开始俯冲作用。
     综上所述,延边地区早三叠世-中三叠世早期处于古亚洲洋持续闭合过程中,古亚洲洋在中三叠世早期最终沿延边地区的汪清-珲春一线闭合,中三叠世晚期-晚三叠世早期,延边地区处于陆-陆碰撞向伸展垮塌转换的构造环境中,从早侏罗世(~200Ma)开始,延边地区完全进入了古太平洋板块俯冲作用的构造体制下。
Yanbian Area, which is at the eastern segment of the northern margin of the NCC, islocated between XingMeng Organic Belt and Longgang block. Because the final closuretime and location of Paleo-Asian Ocean and the subduction time of Paleo-Pacific areuncertain, the Mesozoic tectonic evolution of Yanbian Area is distuped all the time. Theproblems mentioned above limit the understanding of the Mesozoic tectonic evolution inYanbian Area. However, the study about Mesozoic igneous rocks and metamorphic rocksof Xindongcun formation in Qinglongcun group is done in this paper. All the work includein petrology, Geochronology and Geochemistry. Besides these, the characteristics ofductile shear zone are also analyzed. Combined with the distributed features of igneousrocks and Seluohe Group in the regional area, the Mesozoic tectonic evolution in YanbianArea is further discussed.
     The results of LA-ICP-MS Zircon dating indicate the magmatic activities in Helongarea of Yanbian are divided into three stages:(1) the early Triassic magmatic eventsincluding Zhixin pluton and Yongxin pluton;(2) the early-middle Jurassic magmatic eventsincluding Shiguoshuiku Pluton, Yueshandong Pluton, Shasongding Pluton and GaolingPluton;(3) the early Cretaceous magmatic events including Liudong Pluton and volcanicrocks in Quanshuicun Formation.
     The early Triassic magmatic events are composed of Zhixin pluton and Yongxinpluton and have characteristics of the similar bimodal igneous rocks. They are to thenortheast of Gudonghe Fault and spread in the north-eastern direction. The analyses ofZircons from Zhixin pluton yield weighted mean206Pb/238U age of251.05±0.95Ma whileThe analyses of Zircons from Yongxin pluton yield weighted mean206Pb/238U ages of238.5±2.8Ma and243.2±1.1Ma,which suggesting they are formed in the early Triassic.Geochemically, the amphibole gabbro of Zhixin pluton is low in SiO2and MgO, and theyare strongly enriched in large ion lithophile elements and depleted in high field strengthelements (e.g., Nb, Ta), the petrogeochemical features are consistent with the ones of basicigneous rocks formed in the subduction environment. Furthermore the rocks have low Isr and positive εNd, indicating that the magma source is from the mantle wedge influencedby the fluid. The granitic rocks in Yongxin pluton are composed of garnet monzograniteand biotite monzogranite, and the granitic rocks are deformed highly. Petrogeochemically,the granitic rocks are in high SiO2and Al2O3, and are also strongly enriched in large ionlithophile elements(e. g. Cs, Rb, K) and Zr (HFSE). They are depleted in high fieldstrength elements (Nb, Ta, P and Ti) and Ba, Sr (LILE). The petrogeochemical fetures arelikely to the granites whose magma sources are from crustal material. In the harkerdiagram, they have negative correlation between the major elements (Al2O3, CaO, MgO,P2O5, FeOt, TiO2) and SiO2, which indicate the magma experienced the fractionalcrystallization during the magma evolution. Compared to the basic rocks of Zhixin pluton,the granitic rocks have higher Isr and different εNd, the magma source of granitc rockswas also influenced by the fluid, and it was derived from partial melting of mafic rocks inlower crust. However, the similar bimodal igneous rocks in early Triassic were formed inan extensional environment
     The magmatic activities in the early to middle Jurassic are distributed widely,including granodiorite, monogranite, biotite diorite and peridotite gabbro. The analyses ofZircons from grandonite of Shiguoshuiku pluton yield weighted mean206Pb/238U age of193.06±0.8Ma. Petrogeochemical, the granitic rocks are in high SiO2and Al2O3, andhave low MgO contents. In the other hand, they are also strongly enriched in large ionlithophile elements(e.g. Cs, K, Th) and depleted in high field strength elements(Nb, Ta, Pand Ti). The characteristics of geochemistry are constant with igneous rocks formed in theactive continental margin. Besides these, the major contents (Al2O3, FeOt, MgO, TiO2,P2O5and CaO)are in negative linear relationship with SiO2, indicating the evolution ofmagma is dominated by the fractional crystallization. The Isr andεNdvalues of thesamples are similar to ones of crust, these features indicate the magma source were frompartial melting of mafic rocks in lower crust, and affected by the ancient crust materials.
     The Gaoling pluton is composed of porphyritic granodiorite and porphyriticmonogranite, The analyses of Zircons from porphyritic granodiorite yield weighted mean206Pb/238U age of180.47±0.74Ma, while The analyses of Zircons from porphyriticmonogranite yield weighted mean206Pb/238U age of72.25±0.97Ma and170.9±0.68Ma,respectively. Similar to geochemistrical characteristics of adakite rocks, all the sampleshave high SiO2and Al2O3contents, high Sr contents and low Y and Yb contents. They are also strongly enriched in light REE and depleted in heavy REE, while are enriched in largeion lithophile elements and depleted in high field strength elements. These rocks have lowIsr and negativeεNdvalues, the geochemical data indicate that the Gaoling pluton magmawas derived mainly from partial melting of mafic rocks in thickened lower crust whichlikely affected by Neoproterozoic accretion material and also was influenced by the ancientcrust.
     The analyses of Zircons from grabbro of Shasongding pluton and diorite ofYueshandong pluton yield weighted mean206Pb/238U age of175.6±1.1Ma and178.4±1.2Ma, respectively. Both of them are low in SiO2and high in MgO, the values of Rb/Srand Nb/Ta are consistent with the average values of mantle, indicating that their magmasource are from Mantle. Besides these, both of them are enriched in large ion lithophileelements and depleted in high field strength elements (Nb, Ta). With the low P2O5contentsand TiO2, the magma source of tholeiitic grabbro and cal-alkaline diorite are from themantle wedge affected by the fluid.
     The analyses of Zircons from monogranite of Liudong pluton yield weighted mean206Pb/238U age of118.58±0.87Ma and118.52±0.67Ma, respectively. All of the samplesare high in SiO2, Alk and Al2O3and low in TiO2and∑REE, They are also stronglyenriched in light REE and depleted in heavy REE, and are enriched in large ion lithophileelements (Ba, Rb, U, K) and depleted in high field strength elements (Nb, Ta, P, Ti). Thecharacteristics mentioned above are similar to the ones of crust. And the Isr andεNd(118Ma)values are also in the range of ones of low crust. All of the characteristics indicate themagma source of Liudong pluton is from partial melting of depleted low crust mafic rocks.
     The cal-alkaline volcanic rocks in Quanshuicun formation are formed in activecontinent margin. All the sample are high in SiO2and Al2O3and low in MgO, TiO2, Sc, Ni,V and Co. The samples are also enriched in large ion lithophile elements and depleted inhigh field strength elements. The characteristics of volcanic rocks indicate the primarymagma is from partial melting of low crust mafic rocks.
     The early Triassic igneous activities are related to the subduction of paleo-asianocean, and the igneous activities in early Jurassic to early Cretaceous are formed in thesubduction environment of Paleo-pacific ocean. The features of Sr-Nd in the study area aresimilar to the ones in the XingMeng Organic Belt, suggesting the existence ofNeoproterozoic crustal growth event.
     The metamorphic rocks in Xindongcun Group are composed of marble,muscovite-biotite schistis and small amount of volcanic rocks. Its rock association issimilar to the marine stratum, and the geochemistrical features are also similar to the onesof marine stratum formed in the neritic environment. The youngest detailed zircon age is242Ma, sugguesting the paleo-asian ocean is still being before242Ma in the study area.
     The deformation age of ductile shear zone is between240Ma and200Ma, and theresults of stress analysis indicate the formation of ductile shear zone is related to theNNE-direction compressive stress under the environment of paleo-asian ocean subduction.
     Based on the study above, we also analyze the characteristics of magmatic activitiesin Yanbian-Suifenhe area. And we find the magmatic activities are mainly distributed to thesouth Wangqing-Hunchun area, suggesting the paleo-asian ocean final suture is nearWangqing-Hunchun. And after~240Ma, the pale-asian ocean disappeared, and the tectonicsetting became the setting of continental collision and collapse which resulted analkaline-basic magmatic zone were formed in the Yanbian-suifenhe area. But during theJurassic period, the Yanbian-Suifenhe area is completely controlled by the subduction ofpale-pacific ocean, and magmatic rocks with charateristics of subduction were formed ineastern Jinlin and Heilongjiang area. During the150Ma-130Ma, the subduction ofpaleo-pacific ocean was weak and in the Late cretaceous, the subducion of paleo-pacificocean once began.
     Above all, the tectonic of Yanbian area was controlled by the subdution of paleo-asianocean before the middle Traissic, and the final sutre is located from Wangqing to Hunchun.The eastern of Jinlin and Heilongjiang area is affected by the paleo-pacific ocean from~200Ma.
引文
1. Anderson T. Correction of common Lead in U-Pb analyses that do not report204Pb.Chemical Geology,2002,192(1-2):59-79.
    2. Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia:Implications for the Phanerozoic crustal. growth of central Asia[J]. Journal of AsianEarth Sciences,2002,21:87-110.
    3. Barbarin B. A Review of the Relationships Between Granitoid Types, Their Origrinsand Their Geodynamic Environments[J]. Lithos,1999,46(3):605-626.
    4. Boynton W V. Geochemistry of the rare earth elements:meteorite studies[M]//In:Henderson P, Rare Earth Element Geochemistry,1984,63-114.
    5. Brouxel M, Lapierre H, Michard A, et al. The deep layers of a Paleozoic arc:geochemistry of the Copley-Balaklala series, northern California[J]. Earth andPlanetary Science Letters,1987,85(4):386-400
    6. Cao H H, Xu W L, Pei F P, et al. Zircon U–Pb Geochronology and Petrogenesis ofthe Late Paleozoic-early Mesozoic Intrusive Rocks in the Eastern Segment of theNorthern Margin of the North China Block[J]. Lithos,2013,(170-171):191-207.
    7. Castillo P R, Janney P E, Solidum R U. Petrology and geochemistry of CamiguinIsland, southern Philippines:insights to the source of adakites and other lavas in acomplex arc setting[J]. Contributions to Mineralogy and Petrology,1999,134(1):33-51
    8. Castillo P R. Adakite petrogenesis[J]. Lithos,2012,134:304-316.
    9. Christian R L. Yellowstone magmatic evolution: its bearing on understandinglarge-volume explosive volcanism[M]//Washington D C. Explowive volcanism:inception, evolution and hazards. New York: National Academies Press,1984,84-95.
    10. Condie K C. Chemical composition and evolution of the upper continentalcrust:contrasting results from surface samples and shales[J]. Chemical Geology,1993,104(1):1-37
    11. Coulon C, Maluski H, Bollinger C, et al. Mesozoic and cenozoic volcanic rocks fromcentral and southern Tibet:39Ar/40Ar dating, petrological characteristics andgeodynamical significance[J]. Earth and Planetary Science Letters,1986,79(3):281-302
    12. Defant M J, Drummond M S. Derivation of some morden arc magmas by of youngsubducted lithosphere. Nature,1990,347:662-665.
    13. Frey F A, Gerlach D C, Hickey R L, et al. Villavicencio, F.M.Petrogenesis of theLagunael Maule volcanic complex, Chile(36°S)[J]. Contributions to Mineralogy andPetrology,1984,88:133-149
    14. Hochstaedter A G, Gill J B, Kusakabe M, et al. Nb and Pb in oceanic basalts: newconstraints on mantle evolution[J]. Earth and Planetary Science Letters,1986,79(1):33-45
    15. Huang J Q. On Major Tectonic Forms of China[M]//National Geological Survey ofChina under the Ministry of Economic Affairs,1945.
    16. Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the NorthChina craton. Nature,2004,432(7019):892-897
    17. Geist D, Howard K A, Larson P. The generation of oceanic rhyolites by crystalfractionation: the basalt-rhyolite association at Volcano Alcedo, GalapagosArchipelago[J]. Journal of Petrology,1995,36:965-982.
    18. Irvine T H, Baragar W. A guide to the chemical classification of the commonvolcanic rocks. Canadian Journal of Earth Sciences,1971,8(5):523-548
    19. Jahn B, Zhang Z Q. Archean granulite gneisses from eastern HebeiProvince,China:rare earth geochemistry and tectonic implications[J]. Contributionsto Mineralogy and Petrology,1984,85(3):224-243.
    20. Jahn B M, Griffin W L, Windley B. Continental growth in the Phanerozoic: evidencefrom Central Asia[J]. Tectonophysics,2000,328:vii-x.
    21. Jahn, B M, Capdevila R, Liu D, et al. Sources of Phanerozoic granitoids in thetransect Bayanhongor-Ulaan Baator,Mongolia:geochemical and Nd Isotopicevidence, and implications of Phanerozoic crustal growth[J]. Journal of Asian EarthSciences,2004,23:629-653.
    22. Jia D C, Hu R Z, Lu Y, et al. Collision Belt Between the Khanka Block and theNorth China Block in the Yanbian Region, Northeast China[J]. Journal of AsianEarth Sciences,2004,23:211-219.
    23. Kay R W, Kay S M. Andean adakites:three ways to make them[J]. ActaPetrologica Sinica,2002,18(3):303-311.
    24. Li J Y. Permian Geodynamic Setting of Northeast China and AdjacentRegions:Closure of the Paleo-asian Ocean and Subduction of the Paleo-PacificPlate[J].Journal of Asian Earth Sciences,2006,26:207-224.
    25. LeRoex A P. Geochemical correlation between southern African kimberlites andSouth Atlantic hotspots[J]. Nature,1986,324:243-245.
    26. Li S, Wang T, Simon, et al. Evolution, Source and Tectonic Significance of EarlyMesozoic Granitoid Magmatism in the Central Asian Orogenic Belt (centralSegment)[J]. Earthscience Reviews,2013,126:206-234
    27. Li W M, Takasu A, Liu Y J, et al. Newly discovered garnet-barroisite schists fromthe Heilongjiang Complex in the Jiamusi Massif, northeastern China. Journal ofmineralogical and petrological sciences,2010,105:86-91
    28. Liegeois J P, Jacques N, Jan H, et al. Black Contrasting Origin of Post-CollisionalHigh-K Cale-Alkaline and Shoshonitic Versus Alkaline and Peralkaline Granitoids,The Use of Sliding Normalization[J]. Lithos,1998,45(1/2/3/4):1-28.
    29. Lin W, Faure M, Nomade S, et al. Permian–triassic Amal.gamation of Asia: InsightsFrom Northeast China Sutures and Their Place in the Final Collision of North Chinaand Siberia[J].Tectonics,2008,340:190-201.
    30. Liu S, Hu RZ, Gao S, et al. Zircon U–pb Age and Sr–Nd–Hf Isotope Geochemistryof Permian Granodiorite and Associated Gabbro in the Songliao Block, NE Chinaand Implications for Growth of Juvenile Crust[J]. Lithos,2010,114(3):423-436.
    31. Ludwig K R. Using Isoplot/EX, version2.49. A geochronological toolkit forMicrosoft Excel[P/OL]. Berkeley: Berkeley Geochronology Center SpecialPublication,2001,1-55.
    32. Maniar P, Piccoli P. Tectonic Discrimination of Granitoids[J].Geological Society ofAmerica Bulletin,1989,101(5):635-643.
    33. Miao L C, Fan W M, Liu D Y, Zhang F Q, et al. Geochronology and Geochemistryof the Hegenshan Ophiolitic Complex:Implications for Late-stage TectonicEvolution of the Inner Mongolia-daxinganling Orogenic Belt, China[J]. Journal. ofAsian Earth Sciences,2008,32:348-370.
    34. Miao L C, Qiu Y M, Fan W M, et al. Geology, Geochronology, and Tectonic Settingof the Jiapigou Gold Deposits, Southern Jilin Province, China[J]. OreGeologyReviews,2005,26(1):137-165.
    35. Mossakovsky A A, Ruzhentsov S V, Samygin S G, et al. Central Asian FoldBelt:geodynamic evolution and formation history. Geotectonics,1994,27:445-473.
    36. Murray R W, Marilyn R, Buchholtz T B, et al. Rare Earth, Major, and TraceElements in Chert From the Franciscan Complex and Monterey Group,Cal.ifornia:Assessing Ree Sources to Fine-grained Marine Sediments[J]. GeochimicaEt Cosmochimica Acta,1991,55:1875-1895.
    37. Murray R W. Chemical. Criteria to Identify the Depositional Environment of Chert:General Principles and Applications[J]. Sedimentary Geology,1994,90:213-232.
    38. Pearce J A. Sources and Setting of Granitic Rocks[J]. Episodes,1996,19(4):120-125.
    39. Pearce J A, Nigel B W, Harris, et al. Trace Element Discrimination Diagrams for theTectonic Interpretation of Granitic Rocks[J]. Journal of Petrology,1984,25(4):956-983.
    40. Pin C, Paquette J L. A mantle-derived bimodal suite in the Hercynian belt:Nd isotopeBrevenne metavolcanics, Massif Central (France)[J].Contributions to Mineralogyand Petrology,1997,129:222-238
    41. Pupin J P. Zircon and granite petrology. Contributions to Mineralogy and Petrology,1980,73:207-220
    42. Rickwood P C. Boundary lines within petrologic diagrams which use oxides ofmajor and minor elements. Lithos,1989,22(4):247-263
    43. Rooney T O, Franceschi P, Hall C M. Water-saturated magmas in the Panama Canalregion: a precursor to adakite-like magma generation?[J]. Contributions toMineralogy and Petrology,2011,161(3):373-388
    44. Sengor A M C,Natal.'in B A, Burtman V S. Evolution of the Altaid Tectonic Collageand Pal.aeozoic Crustal. Growth in Eurasia[J]. Nature,1993,364:299-307.
    45. Sengor A M C, Naial`in B A. Paleotectonics of Asia: Fragments of asynthesis[M]//Yin A, Harrison T M. The Tectonic Evolution of Asia. Cambridge:Cambridge University Press,1996,486-641.
    46. Sheppard S, Griffin T J, Tyler I M, et al. High-and low-K granites and adakites at aPalaeoproterozoic plate boundary in northwestern Australia[J]. Journal of theGeological Society,2001,158(3):547-560.
    47. Shi G R. The marine Permian of East and Northeast Asia: an overview ofbiostratigraphy, palaeobiogeography and palaeogeographical implications[J]. Journalof Asian Earth Sciences,2006,26:175-206.
    48. Sun J G, Han S J, Zhang Y, et al. Diagenesis and metallogenetic mechanisms of theTuanjiegou gold deposit from the Lesser Xing`an Rang, NE China: Zircon U-Pbgeochronology and Lu-Hf isotopic constraints[J]. Journal of Asian Earth Sciences,2013a,62:373-388.
    49. Sun Y W, Li M S, Ge W C, Zhang Y L, et al. Eastward termination of theSolonker–Xar Moron River Suture determined by detrital zircon U–Pb isotopicdating and Permian floristics[J]. Journal of Asian Earth Sciences,2013b,75:243-250.
    50. Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[M]//Saunders, A D, Norry M J.Magmatism in Ocean Basins. London: Geological Society of Special Publication,1989,42(1),313-345.
    51. Taylor S R, McLennan S M. The continental crust: its composition andevolution[J].1985.
    52. Wang Q, Derek A W, Zhao Z H, et al. Petrogenesis of Carboniferous adakites andNb-enriched, northern Tianshan Range (western China):Implications for Phanerozoiccrustal growth in the Central Asia orogenic belt. Chemical geology,2007,236:42-46.
    53. Wang F, Xu W L, Meng E, et al. Early Paleozoic Amalgamation of theSongnen–zhangguangcai Range and Jiamusi Massifs in the Eastern Segment of theCentral Asian Orogenic Belt: Geochronological and Geochemical Evidence FromGranitoids and Rhyolites[J]. Journal of Asian Earth Sciences,2012,49:234-248.
    54. Wilhem C, Windley B F, Stampfli G M. The Altaids of Central Asia: a Tectonic andEvolutionary Innovative Review[J]. Earth science Reviews,2012,113:303-341.
    55. Wilde S A, Wu F Y, Zhang X Z. The Mashan Complex:SHRIMP U-Pb Zirconevidence for a Late Pan-African metamorphic event in NE China and its implicationfor global continental reconstructions[J]. Geochimica,2001,30(1):35-50.
    56. Wilde S A, Wu F Y, Zhang X Z. Late Pan-African magmatism in northeasternChina:SHRIMP U-Pb zircon evidence for igneous ages from the Mashan Complex[J].Precambrian Research,2003,122:311-327.
    57. Windley B F, Alexeiev D, Xiao W J, et al. Tectonic Models for Accretion of theCentral Asian Orogenic Belt[J]. Journal of the Geological Society,2007,164:31-47.
    58. Wright J B. A simple alkalinity ratio and its application to questions of non-orogenicgranite genesis[J].Geological Magazine,1969,106(4):370-384.
    59. Wu F Y, Jahn B M, Wilde S A, et al. Phanerozoic crustal growth:U-Pb and Sr-Ndisotopic evidence from the granites in northeastern China. Tectonophysics,2000,328:89-113.
    60. Wu F Y, Wilde S A, Zhang G L, et al. Geochronology and Petrogenesis of thePost-orogenic Cu–ni Sulfide-bearing Mafic–ultramafic Complexes in Jilin Province,NE China[J]. Journal of Asian Earth Sciences,2004,23:781-797.
    61. Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group:its Role in the Evolution of theCentral Asian Orogenic Belt of Ne China[J]. Journal. of Asian Earth Sciences,2007,30:542-556.
    62. Wu F Y, Sun D Y, Ge W C,et al. Geochronology of the Phanerozoic Granitoids inNortheastern China[J].Journal of Asian Earth Sciences,2011,41:30.
    63. Xiao W J, Zhang L C, Qin KZ, et al. Paleozoic accretionary and collisional tectonicsof the eastern Tieshan(China):Implications for the continental growth of CentralAsia.American Journal of Science,2004,304:370-395.
    64. Xiao W J, Windley B F, Huang B C, et al. End-Permian to Mid-Triassic terminationof the accretionary processes of the southern Al.taids: implications for thegeodynamic evolution, Phanerozoic continental. growth, and metal.logeny of CentralAsia[J]. International Journal of Earth Sciences,2009,98:1189-1217.
    65. Xiong X L, Adam G T H.Rutile stability and rutile/melt HFSE partitioning duringpartial melting of hydrous basalt: implications for TTG genesis[J]. ChemicalGeology,2005,218:339-359.
    66. Xu W L, Wang Q H, Wang D Y, et al. Mesozoic adakitic rocks from theXuzhou-Suzhou area, eastern China: Evidence for partial melting of delaminatedlower continental crust[J]. Journal of Asian Earth Sciences,2006,27(4):454-464
    67. Xu W L, Ji W Q, Pei F P, et al. Triassic Volcanism in Eastern Heilongjiang and JilinProvinces, NE China:chronology, Geochemistry, and Tectonic Implications[J].Journal of Asian Earth Sciences,2009,34:392-402.
    68. Xu W L, Pei F P, Wang F, et al. Spatial.–temporal Relationships of MesozoicVolcanic Rocks in NE China: Constraints on Tectonic Overprinting andTransformations Between Multiple Tectonic Regimes[J]. Journal of Asian EarthSciences,2013,74:167-193.
    69. Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb Age and Trace ElementDeterminations of Zircon by Laserablation Inductively Coupled PlasmamassPectrometry[J]. Geostandards News Letter,2004,28(3):353-370.
    70. Yu JJ, Wang F, Xu W L, et al. Early Jurassic Mafic Magmatism in the LesserXing'an–zhangguangcai Range, NE China, and Its Tectonic Implications: ConstraintsFrom Zircon U–pb Chronology and Geochemistry[J]. Lithos,2012,(142-143):256-266.
    71. Yu Q, Ge W C, Yang H. Petrogenesis of late Paleozoic volcanic rocks from theDaheshen Formation in central Jilin Province, NE China, and its tectonicimplication:Constraints from geochronology, geochemistry and Sr-Nd-Hf isotopes[J].Lithos,2014,192-195:116-113.
    72. Zhang Y B, Wu F Y, Wilde S A, et al. Zircon U-Pb Ages and Tectonic Implications of‘early Paleozoic’ granitoids at Yanbian, Jilin Province, Northeast China[J]. TheIsland Arc,2004,13:484-505.
    73. Zhou J B, Wilde S A. The Crustal Accretion History and Tectonic Evolution of theNE China Segment of the Central Asian Orogenic Belt[J]. Gondwana Research,2013,23(4):1365-1377.
    74. Zhu G Z, Shi Y L, Tackley P. Subduction of the Western Pacific Plate underneathNortheast China: Implications of numerical studies[J]. Physics of the Earth andPlanetary Interiors,2010,178:92-99.
    75.曹花花.珲春地区晚海西期辉长岩—闪长岩的形成时代和地球化学[D].吉林大学,2010.
    76.曹花花.华北板块北缘东段晚古生代—早中生代火成岩的年代学与地球化学研究[D].吉林大学,2013.
    77.曹花花,许文良,裴福萍,等.华北板块北缘东段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J].岩石学报,2012(9):2733-2750.
    78.陈作文,赵春荆,李之彤,程德琳.吉林南部加里东期花岗岩带.中国地质科学院沈阳地质矿产研究所文集[C]//天津:[出版者不详],1982.
    79.陈跃军,花艳秋,李林山,等.吉林敦化小蒲柴河地区张三沟岩组的建立[J].世界地质,2005(2):144-148.
    80.陈跃军,孙春林,刘跃文,等.华北板块北缘活动带元古宙构造岩片[J].吉林大学学报(地球科学版),2002(2):134-139.
    81.池永一,苏养正,南润善.吉中呼兰镇地区呼兰群的划分及时代[J].地球学报,1997,(2):94-103.
    82.崔军平,任站利,史正,等.东北地区二叠纪沉积特征及原型盆地分析[J].现代地质,2013(2):260-268.
    83.董策.佳木斯地块构造演化—来自晚古生代沉积—火山岩的制约[D].吉林大学,2013。
    84.冯光英,刘燊,冯彩霞,等.吉林红旗岭超基性岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素特征及岩石成因[J].岩石学报,2011(6):1594-1606.
    85.冯光英,刘燊,钟宏,等.吉林晚古生代榆木川基性岩的地球化学特征及其岩石成因[J].地球化学,2010(5):427-438.
    86.付长亮.珲春小西南岔地区花岗岩类的时代、地球化学特征与成因[D].吉林大学,2009.
    87.付长亮,孙德有,张兴洲,等.吉林珲春三叠纪高镁闪长岩的发现及地质意义[J].岩石学报,2010(4):1089-1102.
    88.葛文春,吴福元,周长勇,等.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报,2005(12):1239-1247.
    89.葛肖虹.吉林省东部的大地构造环境与构造演化轮廓[J].现代地质,1990(1):107-113.
    90.苟军,孙得有,李蓉,等.孙吴—嘉荫地区早中生代花岗岩的年代学、地球化学与成因[J].吉林大学学报(地球科学版),2013(1):119-133.
    91.郭胜哲.中朝板块与西伯利亚板块拼合时限的确定及其生物地层学依据[J].中国地质科学院沈阳地质矿产研究所,1986,14:127-136.
    92.韩杰.西拉木伦—长春缝合线的形成时代[D].吉林大学,2013.
    93.何国琦,邵济安.内蒙古东南部(昭盟)西拉木伦河一带早古生代蛇绿岩建造的确定及其大地构造意义.中国北方板块构造文集[C].北京:地质出版社,1983:243-250.
    94.黄汲清,姜春发.从多旋回构造运动观点初步探讨地壳发展规律[J].地质学报,1962(2):105-152.
    95.黄汲清,任纪舜.中国大地构造及其演化[M].北京:科学出版社,1980.
    96.黄汲清,任纪舜,姜春发,等.中国大地构造基本轮廓[J].地质学报,1977(2):117-135.
    97.吉林省地质矿产局.地质出版社[M]//北京:地质出版社,1988:1-698.
    98.吉林省地质矿产局.吉林省岩石地层[M]//武汉:中国地质大学出版社,1997:93-94.
    99.吉林省地质调查院.延吉市幅1:25万区域地质调查报告[R].长春,2007.
    100.贾大成.青龙村群及其地质时代[J].吉林地质,1994(1):31-34.
    101.贾大成.延吉地体地质特征及构造演化探讨[J].吉林地质,1995(1):40-44.
    102.李超文,郭锋,范蔚茗,等.延吉地区晚中生代火山岩的Ar-Ar年代学格架及其大地构造意义[J].中国科学(D辑:地球科学),2007(3):319-330.
    103.李承东,张福勤,苗来成,等.吉林色洛河群的重新认识[J].吉林大学学报(地球科学版),2007a(5):841-847.
    104.李承东,张福勤,苗来成,等.吉林色洛河晚二叠世高镁安山岩SHRIMP锆石年代学及其地球化学特征[J].岩石学报,2007b(4):767-776.
    105.李春昱,王荃,张之孟,等.中国板块构造的轮廓[J].中国地质科学院院报,1980,2(1):11-19.
    106.李德发.延边地区下白垩统泉水村组的新认识[J].吉林地质,1984(2):61-65.
    107.李红霞,郭锋,李超文,等.延边小西南岔金铜矿区早白垩世英云闪长岩的岩石成因[J].地球化学,2012(6):497-514.
    108.李怀坤,朱士兴,相振群,等.北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J].岩石学报,2010(7):2131-2140.
    109.李锦轶,张进,杨天楠,等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报(地球科学版),2009(4):584-605.
    110.李俊建,罗镇宽,燕长海,等.华北陆块的构造格局及其演化[J].地质找矿论丛,2010(2):89-100.
    111.李明松,孙跃武,赵国伟.吉林延边地区汪清县大兴沟早二叠世华夏植物群的发现及其地质意义[J].地球科学进展,2011(3):339-346.
    112.李蓉,孙德有,苟军,等.张广才岭北部苇河花岗岩基的地球化学特征与岩石成因[J].世界地质,2012(3):462-470.
    113.李双林,欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质,1998(3):46-55.
    114.李之彤,赵春荆.东北地区的印支运动[J].地质科学,1985(3):211-223.
    115.李之彤,赵春荆.吉黑东部晚三叠世岩浆活动及其与板块构造的关系[J].中国地质科学院院报,1988(00):21-32.
    116.刘大瞻.1:5万杨树河子、金银别幅地质说明书[R].长春:吉林省区调研究所,1989.
    117.刘先文,申宁华,葛肖虹.吉黑东部中生代两种机制的碰撞构造[J].长春地质学院学报,1994(4):385-389.
    118.刘永江,张兴洲,金巍,等.东北地区晚古生代区域构造演化[J].中国地质,2010(4):943-951.
    119.刘正宏,徐仲元,杨振升.华北板块北缘中段中元古代魏家沟岩群的建立及其地质意义[J].长春科技大学学报,1999,29(1):6.
    120.马收先,孟庆任,曲永强.华北地块北缘上石炭统—中三叠统碎屑锆石研究及其地质意义[J].地质通报,2011(10):1485-1500.
    121.门兰静.延边东宁地区晚中生代浅成热液金铜矿床的成矿流体与成矿机理研究[D].吉林大学,2011.
    122.孟繁兴.吉林中部呼兰群泥质岩递进变质带特征及其地质意义[J].吉林地质,1992(3):60-70.
    123.孟庆丽,周永昶,柴社立.中国延边东部斑岩-热液脉型铜金矿床[M].长春:吉林科学技术出版社,2001:1.
    124.裴福萍,许文良,靳克.延边地区晚三叠世火山岩的岩石地球化学特征及其构造意义[J].世界地质,2004(1):6-13.
    125.彭向东,张梅生,李晓敏.吉黑造山带古生代构造古地理演化[J].世界地质,1999(3):24-28.
    126.彭玉鲸,齐成栋,周晓东,等.吉黑复合造山带古亚洲洋向滨太平洋构造域转换:时间标志与全球构造的联系[J].地质与资源,2012(3):261-265.
    127.秦亚.辽吉古元古裂谷带构造演化的年代学制约[D].吉林大学,2013.
    128.邱检生,肖娥,胡建,等.福建北东沿海高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J].岩石学报,2008,24(11):2468-2484.
    129.任纪舜.论中国大陆岩石圈构造的基本特征[J].中国区域地质,1991(4):289-293.
    130.任云生,王辉,屈文俊,等.延边小西南岔铜金矿床辉钼矿Re-Os同位素测年及其地质意义[J].地球科学(中国地质大学学报),2011(4):721-728.
    131.任战利,崔军平,史政,等.中国东北地区晚古生代构造演化及后期改造[J].石油与天然气地质,2010(6):734-742.
    132.邵济安,唐克东,詹立培,等.一个古大陆边缘的再造及其大地构造意义-延边地质研究新进展[J].中国科学(B辑),1995(5):548-555.
    133.时溢.吉林东部古洞河构造岩浆杂岩带的基本特征及其演化[D].吉林大学,2013a.
    134.时溢,刘正宏,徐仲元,等.吉林勇新海西期花岗质岩石的同位素年代学及地球化学[J].地质与资源,2013b(1):6-13.
    135.孙德有,吴福元,张艳斌,等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间-来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版),2004(2):174-181.
    136.孙景贵,陈雷,赵俊康,等.延边小西南岔富金铜矿田燕山晚期花岗杂岩的锆石SHRIMP U-Pb年龄及其地质意义[J].矿床地质,2008(3):319-328.
    137.孙卫东,凌明星,汪方跃,等.太平洋板块俯冲与中国东部中生代地质事件[J].矿物岩石地球化学通报,2008(3):218-225.
    138.孙跃武,万传彪,葛文春,等.吉林延边地区早白垩世长财组的时代及其对晚中生代火山岩年代格架的约束.中国古生物学会第十次全国会员代表大会暨第25届学术年会-纪念中国古生物学会成立80周年论文摘要集[C],南京:地层学杂志,2009.
    139.孙跃武,李明松,赵国伟.吉林延边地区早二叠世一个新的陆相地层单位[J].地层学杂志,2012(1):89-96.
    140.唐臣,柴鹏,孙景贵,等.黑龙江伊春大安河金矿床区辉长岩的锆石U-Pb年龄及其地质意义[J].世界地质,2011(2):173-179.
    141.唐克东,邵济安,李景春,等.吉林延边缝合带的性质与东北亚构造[J].地质通报,2004,23(9-10):885-891.
    142.唐克东,邵济安,李永飞.松嫩地块及其研究意义[J].地学前缘,2011(3):57-65.
    143.唐守贤,宋振海.色洛河群地质特征及建群依据[J].吉林地质科技情报,1986(9):2-9.
    144.田昌烈,曹从周,杨芳林.中朝陆台北侧褶皱带(中段)蛇绿岩的地球化学特征[J].中国地质科学院院报,1989,19:107-129.
    145.王成文,金巍,张兴洲,等.东北及邻区晚古生代大地构造属性新认识[J].地层学杂志,2008(2):119-136.
    146.王东方,陈从云,杨森.中朝陆台北缘大陆构造地质[M].北京:地震出版社,1992:1-105.
    147.王兴安,徐仲元,刘正宏,等.大兴安岭中部柴河地区钾长花岗岩的成因及构造背景:岩石地球化学、锆石U-Pb同位素年代学的制约[J].岩石学报,2012(8):2647-2655.
    148.王占福.延边地区前中生代主要变质岩地质演化特征概述[J].吉林地质,1998(2):32-42.
    149.吴福元,张兴洲,马志红,等.吉林省中部红帘石硅质岩的特征及意义[J].地质通报,2003(6):391-396.
    150.吴福元,李献华,杨进辉,等.花岗岩研究的成因问题[J].岩石学报,2007,23(6):1217-1238.
    151.吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,2004,49(16):1589-1604.
    152.武鹏飞,孙德有,王天豪,等.延边和龙地区闪长岩的年代学、地球化学特征及岩石成因研究[J].高校地质学报,2013(4):600-610.
    153.郗爱华,葛玉辉,李绪俊,等.中亚蒙古造山带东段造山事件的40Ar/39Ar同位素年代学证据[J].中国地质,2006(5):1059-1065.
    154.郗爱华,任洪茂,张宝福,等.吉林中部呼兰群同位素年代学及其地质意义[J].吉林大学学报(地球科学版),2003(1):15-18.
    155.肖庆辉,刘勇,冯艳芳,等.中国东部中生代岩石圈演化与太平洋板块俯冲消减关系的讨论[J].中国地质,2010(4):1092-1101.
    156.许继峰,王强.宁镇地区中生代安基山中酸性侵入岩的地球化学:亏损重稀土和钇的岩浆产生的限制[J].岩石学报,2001,17(4):1-30.
    157.徐公愉.东北亚地区古亚洲洋的构造演化特点[J].吉林地质,1993(3):1-8.
    158.徐美君,许文良,王枫,等.小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义[J].岩石学报,2013(2):354-368.
    159.许文良,葛文春,裴福萍,等.东北地区中生代火山作用的年代学格架及其构造意义[J].矿物岩石地球化学通报(增刊),2008,27(3):286-287.
    160.许文良,王枫,裴福萍,等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报,2013(2):339-353.
    161.于介江,门兰静,陈雷,等.延边地区五道沟群变质英安岩的锆石SHRIMP U-Pb年龄及其地质意义[J].吉林大学学报(地球科学版),2008(3):363-367.
    162.赵庆英,李春锋,李殿超,等.延边地区五道沟群辉长岩岩脉的锆石年龄及其地质意义[J].世界地质,2008(2):150-155.
    163.赵全国,许文良,靳克,等.延边地区中生代火山岩的岩浆源区:来自Sr-Nd同位素和深源捕虏体(晶)的证据[J].吉林大学学报(地球科学版),2005(4):416-422.
    164.赵院冬,迟效国,车继英,等.延边东宁地区晚三叠世花岗岩地球化学特征及其大地构造背景[J].吉林大学学报(地球科学版),2009(3):425-434.
    165.赵越,陈斌,张栓宏,等.华北克拉通北缘及邻区前燕山期主要地质事件[J].中国地质,2010(4):900-915.
    166.张超,马昌前,Francois Holtz.含水大陆下地壳的部分熔融:大别山C型埃达克岩成因探讨[J].高校地质学报,2012,18(1):41-51.
    167.张超,郭巍,徐仲元,等.吉林东部延边地区二长花岗岩年代学、岩石成因学及其构造意义研究[J].岩石学报,2014a,30(2):512-526.
    168.张超,徐仲元,刘正宏,等.东北延边地区晚中生代柳洞岩体的成因:锆石U-Pb年代学和地球化学证据[J].吉林大学学报:地球科学版,2014b,44(1):145-157.
    169.张旗,钱青,王二七,等.燕山中晚期的中国东部高原:埃达克岩的启示.地质科学,2001,36(2):248-255.
    170.张春艳,张兴洲,邱殿明.延边地区青龙村群斜长角闪岩中锆石U-Pb同位素年龄及地质意义[J].吉林大学学报(地球科学版),2007(4):672-677.
    171.张炯飞.色洛河群的地质时代[J].吉林地质,1993(1):51-52.
    172.张炯飞.延边地区渤海地块与兴凯地块之间古缝合带的初步研究[J].吉林地质,1997(2):31-32.
    173.张旗.中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗?[J].岩石矿物学杂志,2013(1):113-128.
    174.张兴洲,马玉霞,迟效国,等.东北及内蒙古东部地区显生宙构造演化的有关问题[J].吉林大学学报(地球科学版),2012(5):1269-1285.
    175.张兴洲,穆石敏,杨宝俊,等.拼合的大陆板块[M]//.张怡侠,孙运生,张兴洲,等.中国满洲里-绥芬河地学断面1:100万说明书.北京:地质出版社,1998a,6-19.
    176.张兴洲,穆石敏,陈琦,等.黑龙江板块群的地球动力学[M]//张怡侠,孙运生,张兴洲,等主编.中国满洲里-绥芬河地学断面1:100万说明书,北京:地质出版社,1998b,20-23.
    177.张艳斌,吴福元,李惠民,等.吉林黄泥岭花岗岩体的单颗粒锆石U-Pb年龄[J].岩石学报,2002(4):475-481.
    178.张允平.东北亚地区晚侏罗—白垩纪构造格架主体特点[J].吉林大学学报(地球科学版),2011(5):1267-1284.
    179.周建波,韩杰,Simon A Wilde,等.吉林—黑龙江高压变质带的初步厘定:证据和意义[J].岩石学报,2013(2):386-398.
    180.周建波,刘建辉,郑常青,等.大别-苏鲁造山带的东延及板块缝合线:郯庐-鸭绿江-延吉断裂的厘定[J].高校地质学报,2005(1):92-104.
    181.周建波,曾维顺,曹嘉麟,等.中国东北地区的构造格局与演化:从500Ma到180Ma[J].吉林大学学报(地球科学版),2012(5):1298-1316.
    182.周晓东,殷长建.吉林省近期基础地质研究新进展[J].吉林地质,2004(4):1-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700