用户名: 密码: 验证码:
白云岩地球化学特征与古气候和海侵事件的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以歧口凹陷古近系沙河街组白云岩为研究对象,利用有序度分析、稳定同位素分析、主量微量元素和稀土元素分析,确定了沙河街组白云岩的岩石学特征、成因机理以及成岩流体特征。基于上述研究,并结合全球古气候和海平面变化研究成果,最终确定了歧口凹陷始新世—渐新世的古气候为逐渐变冷过程,并在晚始新世和早渐新世发生过两次海侵作用。这对于歧口凹陷白云岩储层的进一步油气勘探工作有重要的意义。
     稀土元素、锶同位素和流体包裹体均一温度综合分析表明,沙三段白云岩几乎不受火山热液的影响。沙二段白云岩整体表现出火山热液作用的特征,但沙二上段白云岩受影响较大。沙一下段和沙一上段白云岩样品受火山热液作用较小。火山热液作用在深度2300m附近对白云岩的影响程度最大。
     碳氧同位素研究表明,歧口凹陷沙河街组沉积时期的古气温自沙三段至沙一段总体为逐渐降低的过程,在沙二下段时期和沙一下段时期分别有两次突然升温事件。自沙三段至沙一段,白云岩的碳同位素在大洋缺氧事件和甲烷化作用的影响下发生了明显正偏移。这与全球始新世—渐新世古气候变化和碳酸盐岩的碳同位素正偏相一致。
     主量微量元素和稀土元素分析结果表明,白云岩歧口凹陷沙河街组沉积时期发生了两次海侵作用。沙二下段时期海侵规模较小,沙一下段时期海侵规模大,并持续到沙一上段时期。全球范围内始新世至渐新世时期的海平面表现出长期下降的趋势,在始新世晚期和渐新世早期出现两次明显的升高。歧口凹陷的两期海侵作用的发生时间分别与这两次海平面升高相一致,与该时期两次升温事件有关。
This paper analyses the order degree, stable isotope, major element, trace element andrare earth element (REE) of dolostones from the Paleogene Shahejie Formation in the Qikoudepression, eastern China, with the goal of determining the petrological features, genesis andcharacteristics of diagenetic fluid of dolostones in the region. These geochemical data,together with changes of paleoclimate and sea level worldwide, which are of significantimplication for revealing the palaeoclimatic and ancient environmental evolution that spansthe Eocene and Oligocene in the Qikou depression. Main achievements are as follows:
     Dolostones of Es3occur in the north of Qikou depression, dolomicrite play a dominantrole. Dolostones of Es2x develop in the north and west of Qikou depression, which are mainlycomposed of dolomicrite and crystallitic dolostone. Dolostones of Es2s occur in the north ofQikou depression, the main rock type is dolomicrite. Dolostones of Es1s and Es1x prevail inthe entire depression, which are mainly composed of dolomicrite, crystallitic dolostone,laminar algal dolostone and crystalline bioclastic dolostone.
     Dolomicrites of Es3and Es2in the Qikou depression are related to the burialdolomitization, and the genesises of crystallitic dolostones are related to the meteoric water.The genesises of crystallitic dolostones from Es1x are related to the methanation, both laminaralgal dolostones and crystalline bioclastic dolostone are related to the burial dolomitization, butthe later are buried superficially. The genesis of crystallitic dolostones from Es1s are related tothe methanation, some dolomicrites, laminar algal dolostones and crystalline bioclastic dolostones are related to the burial dolomitization, but most of them are influenced bymethanation.
     Cenozoic volcanic rocks are widespread in the south of Qikou depression, but decline inthe north, in the west are rather poorly developed. Dolostones from Es3almost not affected byvolcanic hydrotherm. Parts of dolostones from Es2x are affected by volcanic hydrotherm.Intense volcanic hydrotherm occurred in the Es2s, the dolostones show obviouscharacteristics of hydrothermal carbonate. Dolostones from Es1x and Es1s are with the littleeffect of volcanic hydrotherm. The depth of the most significant influence by volcanichydrotherm is2300m.
     A hot climate prevailed during the Es3, but this shifted to a cold climate in the Es1, andthere are two temperature rise events during the Es2x and Es1x, respectively. This change inclimate is concordant with the paleoclimate changes that spans the Eocene and Oligoceneworldwide. From Es3to Es1, the positive excursion in carbon isotope ratios caused by oceanicanoxic event and methanation, which is consistent with the positive excursions of carbonisotope at the at the Eocene–Oligocene boundary across the world.
     Two transgressions occurred during the Es3to Es1in the Qikou depression. Thesmall-scale transgression in Es2x had influenced dolostones from north and west of thisdepression. During Es1x, almost all the dolostones underwent an interaction of sea-water,even some samples show typical characteristics of marine carbonate. The influence oftransgression lasted until Es1s, both the scale and intensity are reduced.
     On a global scale, the sea level fell gradually from Eocene to Oligocene. However, therewere obvious sea levels rised during the late Eocene and early Oligocene, respectively.Time of the two transgressions happened in the Qikou depression are concordant with the sealevel rise events, this as a result of temperature rise events during this period.
引文
1. Adams JE, Rhodes ML. Dolomitization by seepage refluxion[J]. AAPG Bulletin,1960,44(12):1912-1920.
    2. Alderman AR, Skinner HCW. Dolomite sedimentation in the south-east of SouthAustralia[J]. American Journal of Science,1957,255(8):561-567.
    3. Anderson SP, Drever JI, Frost CD, et al. Chemical weathering in the foreland of aretreating glacier[J]. Geochimica et Cosmochimica Acta,2000,64:1173-1189.
    4. Anderson TF, Arthur MA. Stable isotopes of oxygen and carbon and their application tosedimentologic and paleoenvironmental problems[J]. In: Arthur, M.A.(Eds.). Stableisotopes in sedimentary geology. SEPM Short Course,1983,10:1.1–1.151.
    5. Arthur MA, Schlanger SO, Jenkyns HC. The Cenomanian-Turonian oceanic anoxicevents, Ⅱ. Palaeoceanographic controls on organic-matter production andpreservation[J]. Geological Society, London, Special Publications,1987,26:401-420.
    6. Arvidson RS, Mackenzie FT. The dolomite problem; control of precipitation kinetics bytemperature and saturation state[J]. American Journal of Science,1999,299(4):257-288.
    7. Ayalon A, Longstaffe FJ. Stable isotope evidence for the origin of diagenetic carbonateminerals from the Lower Jurassic Inmar Formation, southern Israel[J]. Sedimentology,1995,42(1):147-160.
    8. Badiozamani K. The dorag dolomitization model-application to the Middle Ordovicianof Wisconsin[J]. Journal of Sedimentary Research,1973,43(4):137-140.
    9. Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from theMid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing andfor the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geology,1999,155:77-90.
    10. Biswas SK. Rift basins in western margin of India and their hydrocarbon prospects withspecial reference to Kutch basin[J]. American Association of Petroleum GeologistsBulletin,1982,6610:1497–1513.
    11. Blum JD, Gazis CA, Jacobsen AD, et al. Carbonate versus silicate weathering in theRaikhot watershed within the High Himalayan Crystalline Series[J]. Geology,1998,26:411-413.
    12. Bolhar R, Kamber BS, Moorbath S., et al. Characterisation of early Archaean chemicalsediments by trace element signatures[J]. Earth and Planetary Science Letters,2004,222:43-60.
    13. Bolhar R, Van Kranendonk MJ. A non-marine depositional setting for the northernFortescue Group, Pilbara Craton, inferred from trace element geochemistry ofstromatolitic carbonates[J]. Precambrian Research,2007,155(3):229-250.
    14. Brookins DG. Aqueous geochemistry of rare earth elements[J]. Reviews in Mineralogyand Geochemistry,1989,21:201-225.
    15. Carbllo JD, Land LS, Meiser DE. Holocene dolomitization of supratidal sediments byactive Tidal Pumping Sugarloaf Keg, Florida[J]. Journal of Sedimentary Petrology,1987,57:153-165.
    16. Curtis CD, Petrowski C, Oertel G. Stable carbon isotope ratios within carbonateconcretions: a clue to place and time of formation[J]. Nature,1972,235:98-100.
    17. Cotton LJ, Pearson PN. Extinction of larger benthic foraminifera at theEocene/Oligocene boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2011,311(3):281-296.
    18. Deckker PD, Last WM. Modern dolomite deposition in continental, saline lakes, westernVictoria, Australia[J]. Geology,1988,16(1):29-32.
    19. DeConto RM, Pollard D. Rapid Cenozoic glaciation of Antarctica induced by decliningatmospheric CO2[J]. Nature,2003,421(6920):245-249.
    20. Deffeyes KS Lucca, FJ, Weyl PK. Dolomitization of recent and Plio-Pleistocencesediments by marine evaporate waters in Bonane, Netherlands Antillies[J]//Pray, L.C.,Murry, R.C. Dolomitization and limestone diagenesis: Society of EconomicPaleontologists and Mineralogists, Special Publication,1965,13:71-88.
    21. Diester-Haass L, Robert C, Chamley H. The Eocene-Oligocene preglacial-glacialtransition in the Atlantic sector of the Southern Ocean (ODP Site690)[J]. MarineGeology,1996,131(3):123-149.
    22. Diester-Haass L, Zahn R. Paleoproductivity in crease at the Eocene-Oligocene climatictransition: ODP/DSDP sites763and592[J]. Palaeogeography, Palaeoclimatology,Palaeocology,2001,172:153–170.
    23. Dix GR. Patterns of burial-and tectonically controlled dolomitization in an UpperDevonian fringing-reef complex: Leduc Formation, Peace River Arch area, Alberta,Canada[J]. Journal of Sedimentary Research,1993,63(4):628-640.
    24. Drummond CN, Patterson WP, Walker JCG. Climatic forcing of carbon-oxygen isotopiccovariance in temperate-region marl lakes[J]. Geology,1995,23:1031-1034.
    25. Drummond CN, Wilkinson BH. Carbonate cycle stacking patterns and hierarchies oforbitally forced eustatic sealevel change[J]. Journal of Sedimentary Research,1993,63:369-377.
    26. Dumitrescu M, Brassell SC, Schouten S, et al. Instability in tropical Pacific sea-surfacetemperatures during the early Aptian[J]. Geology,2006,34:833-836.
    27. Ehrmann W. Implications of late Eocene to early Miocene clay mineral assemblages inMcMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics[J].Palaeogeography, Palaeoclimatology, Palaeoecology,1998,139(3):213-231.
    28. Elderfield H. Strontium isotope stratigraphy[J]. Palaeogeography, Palaeoclimatology,Palaeoecology,1986,57:71-90.
    29. Elderfield H, Upstillgoddard R, Sholkovitz ER. The rareearth elements in rivers,estuaries, and coastal seas and their significance to the composition of ocean waters[J].Geochimica et Cosmochimica Acta,1990,54:971-991.
    30. Erba E. Calcareous nannofossils and Mesozoic oceanic anoxic events[J]. MarineMicropaleontology,2004,52:85-106.
    31. Feng ZZ, Jin ZK. Types and origin of dolostones in the Lower Palaeozoic of the NorthChina Platform[J]. Sedimentary Geology,1994,93(3):279-290.
    32. Folk RL, Land LS. Mg/Ca ratio and salinity: two controls over crystallization ofdolomite[J]. AAPG bulletin,1975,59(1):60-68.
    33. Friedman GM, Sanders JE. Origin and occurrence of dolostones[J]. Developments insedimentology,1967,9:267-348.
    34. Friedman I, Murata KJ. Origin of dolomite in Miocene Monterey Shale and relatedformations in the Temblor Range, California[J]. Geochimica et Cosmochimica Acta,1979,43:1357-1365.
    35. Frimmel HE. Trace element distribution in Neoproterozoic carbonates aspalaeoenvironmental indicator[J]. Chemical Geology,2009,258(3-4):338-353.
    36. F llmi KB, Godet A, Bodin S, et al. Interactions between environmental change andshallow water carbonate buildup along the northern Tethyan margin and their impact onthe Early Cretaceous carbon isotope record[J]. Paleoceanography,2006,21:1-16.
    37. Füchtbauer H, Goldschmidt H. Beziehungen zwischen calciumgehalt undbildungsbedingungen der dolomite[J]. Geologische Rundschau,1965,55:29-40.
    38. Gautier DL, Claypool GE. Interpretation of methanic diagenesis in ancient sediments byanalogy with processes in modern diagenetic environments[J]. Clastic Diagenesis:American Association of Petroleum Geologists, Memoir,1984,37:111-123.
    39. German CR, Elderfield H. Application of the Ce anomaly as a paleoredox indicator: theground rules[J]. Paleoceanography,1990,5:823-833.
    40. Goldstein RH. Fluid inclusions in sedimentary and diagenetic systems[J]. Lithos,2001,55:159-193.
    41. Haq BU, Hardobol J, Vail PR. Chronology of fluctuating sea levels since the Triassic[J]Science,1987,235:1156-1166.
    42. Hardie LA. On the significance of evaporates[J]. Annual Review of Earth and PlanetaryScience,1991,19:131-168.
    43. Haskin LA, Haskin MA, Frey FA, et al. Relative and absolute terrestrial abundances ofthe rare earths[J]. Origin and Distribution of the Elements,1968,1:889-911.
    44. Hird PL. The composition of carbonate and oxygen istope in the ancient dolomite[J].AAPG Bulletin,1987,34(4):156-232.
    45. Houben AJ, Van Mourik CA, Montanari A, et al. The Eocene-Oligocene transition:Changes in sea level, temperature or both?[J]. Palaeogeography, Palaeoclimatology,Palaeoecology,2012,335:75-83.
    46. Hsü KJ, Siegenthaler C. Preliminary experiments on hydrodynamic movement inducedby evaporation and their bearing on the dolomite problem[J]. Sedimentology,1969,12(1-2):11-25.
    47. Hudson JD. Stable isotopes and limestone lithification[J]. Journal of the GeologicalSociety of London,1977,133:637-660.
    48. Illing LV, Wells AJ, Taylor JCM. Penecontemporaneous dolomite in the Persian Gulf[J].In: Pray LC and Murray RC (eds). Dolomitiztion and Limestone Diagenesis. SpecialPublication,1965,13:89-111.
    49. Irwin H, Curtis CD, Coleman M. Isotopic evidence for source of diagenetic carbonatesformed during burial of organic-rich sediments[J]. Nature,1977,269:209-213.
    50. Ivany LC, Patterson WP, Lohmann KC. Cooler winters as a possible cause of massextinctions at the Eocene/Oligocene boundary[J]. Nature,2000,407(6806):887-890.
    51. James RH, Elderfield H. Chemistry of ore-forming fluids and mineral formation rates inan active hydrothermal sulfide deposition the Mid-Atlantic Ridge[J]. Geology,1996,24:1147-1150.
    52. Jenkyns HC. Cretaceous anoxic events: from continents to oceans[J]. Journal of theGeological Society,1980,137:171-188.
    53. Jenkyns HC. The early Toarcian and Cenomanian-Turonian anoxic events in Europe:comparisons and contrasts[J]. Geologische Rundschau,1985,74:505-518.
    54. Joachimski MM, Buggisch W. Anoxic events in the late Frasnian-Causes of theFrasnian-Famennian faunal crisis[J]. Geology,1993,21:675-678.
    55. Kamber BS, Bolhar R, Webb GE. Geochemistry of late Archaean stromatolites fromZimbabwe: evidence for microbial life in restricted epicontinental seas. PrecambrianResearch,2004,132:379-399.
    56. Kamber BS, Webb GE. The geochemistry of late Archaean microbial carbonate:implications for ocean chemistry and continental erosion history[J]. Geochimica etCosmochimica Acta,2001,65:2509-2525.
    57. Katz ME, Miller KG, Wright JD, et al. Stepwise transition from the Eocene greenhouse tothe Oligocene icehouse[J]. Nature Geoscience,2008,1:329-334.
    58. Keith, ML, Weber JN. Carbon and oxygen isotopic composition of selected limestonesand fossils[J]. Geochimica et Cosmochimica Acta,1964,28:1787-1816.
    59. Kennett JP, Shackleton NJ. Oxygen isotopic evidence for the development of thepsychrosphere38Ma ago[J]. Science,1976,260:513-515.
    60. Kim ST, O'Neil J R. Equilibrium and nonequilibrium oxygen isotope effects in syntheticcarbonates[J]. Geochimica et Cosmochimica Acta,1997,61(16):3461-3475.
    61. Kotlarczyk J, Uchman A. Integrated ichnology and ichthyology of the OligoceneMenilite Formation, Skole and Subsilesian nappes, Polish Carpathians: A proxy tooxygenation history[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2012,331-332:104-118.
    62. Land LS. The origin of massive dolomite[J]. Journal of Geological Education,1985,33:112-125.
    63. Land LS. Failure to precipitate dolomite at25degrees from dilute solution despite1000-fold oversaturation after32years[J]. Aquat Geochem,1988,43(4):361-368.
    64. Lawrence MG, Greig A, Collerson KD, et al. Rare earth element and Yttrium variabilityin South East Queensland waterways[J]. Aquatic Geochemistry,2006,12:39-72.
    65. Leng MJ, Marshall JD. Palaeoclimate interpretation of stable isotope data from lakesediment archives[J]. Quaternary Science Reviews,2004,23(7):811-831.
    66. Lister GS. Stable isotopes from lacustrine ostracoda as tracers for continentalpalaeoenvironments[J]. In: De Deckker, P., Coli, J.P., Peypouquet, J.P.(Eds.): Ostracodain the Earth Sciences. Elsevier, Amsterdam,1988,201-218.
    67. Mattes BW,Mountjoy EW. Burial dolomitization of the Upper Devonian Miette Buildup,Jasper National Park Alberta[J]. Society of Economic Paleontologists and Mineralogists,Special Publication,1980,28:259-297
    68. Marino M, Flores JA. Middle Eocene to early Oligocene calcareous Nannofossilstratigraphy at Leg177Site1090[J]. Marine Micropaleontology,2002,45:383-398.
    69. McArthur JM, Howarth RJ, Bailey TR. Strontium isotope stratigraphy: LOWESS version3: best fit to the marine Sr-isotope curve for0-509Ma and accompanying look-up tablefor deriving numerical age[J]. The Journal of Geology,2001,109:155-170.
    70. McLennan SM. Rare earth elements in sedimentary rocks; influence of provenance andsedimentary processes[J]. Reviews in Mineralogy and Geochemistry,1989,21(1):169-200.
    71. Melezhik VA, Fallick, AE. A widespread positive δ13Ccarb anomaly at around2.33-2.06Ga on the Fennoscandian Shield: a paradox: Terra Nova,1996,8:141-157.
    72. Michard A, Albarede F. The REE content of some hydrothermal fluids[J]. ChemicalGeology,1986,55:51-60.
    73. Michard A, Albarede F, Michard G, et al. Rare-earth elements and uranium inhigh-temperature solutions from East Pacific Rise hydrothermal vent field (13N)[J].Nature,1983,303:795-797.
    74. Miller KG, Browning JV, Aubry M-P, et al. Eocene-Oligocene global climate and sealevel changes: St. Stephens Quarry, Alabama[J]. Geological Society of America Bulletin,2008,120:34-53.
    75. Miller KG., Kominz MA, Browning JV., et al. The Phanerozoic record of global sea-levelchange[J]. Science,2005,310:1293–1298.
    76. Mills RA, Elderfield H. Rare earth element geochemistry of hydrothermal deposits fromthe active TAG Mound,26N Mid-Atlantic Ridge[J]. Geochimica et cosmochimica acta,1995,59:3511-3524.
    77. Monta ez IP, Osleger DA, Banner JL, et al. Evolution of the Sr and C isotopecomposition of Cambrian oceans[J]. GSA Today,2000,10:1-5.
    78. Morford JL, Emerson S. The geochemistry of redox sensitive trace metals insediments[J]. Geochimica et Cosmochimica Acta,1999,63(11):1735-1750.
    79. Morrow DW. Diagenesis.1. Dolomite.1. the Chemistry of Dolomitization and DolomitePrecipitation[J]. Geoscience Canada,1982,9(1):5-13.
    80. Mozley PS, Burns SJ. Oxygen and carbon isotopic composition of marine carbonateconcretions: an overview[J]. Journal of Sedimentary Research,1993,63(1).
    81. Nelson CS, Smith AM. Stable oxygen and carbon isotope compositional fields forskeletal and diagenetic components in New Zealand Cenozoic nontropical carbonatesediments and limestones[J]. A synthesis and review, New Zealand Journal of Geologyand Geophysics,1996,39:93-107.
    82. Nevolin NV, Fedorov DL. Palaeozoic pre-salt sediments in the precaspian petroliferousprovince[J]. Joural of Petrolum Geology,1995,18(4):453-470.
    83. Nozaki Y, Lerche D, Alibo DS, et al. The estuarine geochemistry of rare earth elementsand indium in the Chao Phraya River, Thailand[J]. Geochimica et Cosmochimica Acta,2000,64:3983-3994.
    84. Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marineenvironment[J]. Earth and Planetary Science Letters,1997,148:329-340.
    85. Olivarez AM, Owen RM. The europium anomaly of seawater: implications for fluvialversus hydrothermal REE inputs to the oceans[J] Chemical Geology,1991,92:317-328.
    86. Palmer MR, Edmond JM. The strontium isotope budget of the modern ocean[J]. Earthand Planetary Science Letters,1989,92:11-26.
    87. Pierre C, Rouchy JM. Isotopic compositions of diagenetic dolomites in the Tortonianmarls of the western Mediterranean margins: Evidence of past gas hydrate formation anddissociation[J]. Chemical Geology,2004,205:469-484.
    88. Pierson BJ. The control of cathodoluminescence in dolomite by iron and manganese[J].Sedimentology,1981,28(5):601-610.
    89. Pisciotto KA, Mahoney JJ. Isotopic survey of diagenetic carbonates, Deep Sea DrillingProject Leg63[J]. Initial Reports of the Deep Sea Drilling Project,1981,63:595-609.
    90. Prothero DR. Does climatic change drive mammalian evolution?[J]. GSA Today,1999,9(9):1-7.
    91. Pufahl PK, Wefer G. Data report: Petrographic, cathodoluminescent, and compositionalcharacteristics of organogenic dolomites from the southwest African margin. In: Wefer,G., Berger, W.H., Richter, C.(Eds)[J]. Proceedings of the Ocean Drilling Program,Scientific Results,2001,175:1-17.
    92. Roedder E. Technique for the extraction and partial chemical analysis of fluid-filledinclusions from minerals[J]. Economic Geology,1958,53:235-269.
    93. Roehl PO, Choquette PW. Carbonate petroleum reservoirs[M]. New York,Springer-Verlag,1985:1-622.
    94. Sarkar A, Sarangi S, Ebihara M, et al. Carbonate geochemistry across theEocene/Oligocene boundary of Kutch, western India: implications to oceanic O2-poorcondition and foraminiferal extinction[J]. Chemical Geology,2003,201:281-293.
    95. Sample JC, Reid MR. Contrasting hydrogeologic regimes along strike-slip and thrustfaults in the Oregon convergent margin: Evidence from the chemistry of syntectoniccarbonate cements and veins[J]. Geological Society of America Bulletin,1998,110:48-59.
    96. Schlanger SO, Jenkyns HC. Cretaceous oceanic anoxic events: Cause andconsequence[J]. Geol Mijnbouw,1976,55:179-184.
    97. Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies aspalaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites[J].Chemical Geology,2001,175:29-48.
    98. Shields GA. A normalised seawater strontium isotope curve: possible implications forNeoproterozoic–Cambrian weathering rates and the further oxygenation of the Earth[J].Earth,2007,2:35-42.
    99. Shields GA, Webb GE. Has the REE composition of seawater changed over geologicaltime?[J]. Chemical Geology,2004,204:103-107.
    100.Spencer RJ.Origin of Ca-Cl brines in Devonian formations, western Canada sedimentarybasin [J]. Applied Geochemistry,1987,2(4):373-384.
    101.Sverjensky DA. Europium redox equilibria in aqueous solution[J]. Earth and PlanetaryScience Letters,1984,67:70-78.
    102.Talbot MR. A review of the palaeohydrological interpretation of carbon and oxygenisotopic ratios in primary lacustrine carbonates[J]. Chemical Geology: IsotopeGeoscience Section,1990,80(4):261-279.
    103.Taylor SR, McLennan SM. The continental crust: its composition and evolution[J].Blackwell, Cambridge,1985:1-321.
    104.Taylor SR,McLennan SM,Armstrong RL,et al. The composition and evolution of thecontinental crust: rare earth element evidence from sedimentary rocks[J]. PhilosophicalTransactions of the Royal Society London A,1981,301:381-399.
    105.Thomsen E, Abrahamsen N, Heilmann-Clausen C, et al. Middle Eocene to earliestOligocene development in the eastern North Sea Basin: Biostratigraphy,magnetostratigraphy and palaeoenvironment of the Kysing-4borehole, Denmark[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2012,350-352:212–235.
    106.Varentsov IM. Genesis of the Eastern Paratethys manganese ore giants: impact of eventsat the Eocene/Oligocene boundary[J]. Ore Geology Reviews,2002,20:65-82.
    107.Veizer J, Ala D, Azmy K, et al.87Sr/86Sr,13C and18O evolution of Phanerozoicseawater[J]. Chemical Geology,1999,161:58-88.
    108.Warren J. Dolomite: occurrence, evolution and economically important associations[J].Earth-Science Reviews,2000,52(1):1-81.
    109.Webb GE, Kamber BS. Rare earth elements in Holocene reefal microbialites: a newshallow seawater proxy[J]. Geochimica et Cosmochimica Acta,2000,64:1557-1565.
    110.Wolfe JA. Climatic, floristic, and vegetational changes near the Eocene/Oligoceneboundary in North America[J]. Eocene-Oligocene Biotic and Climatic Evolution,1992:421-436.
    111.Wright J, Schrader H, Holser WT. Paleoredox variations in ancient oceans recorded byrare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta,1987,51:631-644.
    112.Yarincik KM, Murray RW, Lyons TW, et al. Oxygenation history of bottom waters in theCariaco Basin, Venezuela, over the past578,000years: Results from redox‐sensitivemetals (Mo, V, Mn, and Fe)[J]. Paleoceanography,2000,15(6):593-604.
    113.Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate65Ma to present[J]. Science,2001,292:686-693.
    114.Zeng L, Wan MX, Peng Y. Dolomite sequentiality and its application to petroleumgeology[J]. Natural Gas Exploration&Development,2004,27:64-66.
    115.Zengler DH, Dunham JD, Ethington RL. Concepts and models of dolomitization[M].Spec. Publ.–SEPM,1980:1-320.
    116.Zhang YX, Li XD, Zhang J. Basic pluton and its tectonic setting in Kaladala of WestTianshan Mountains, China[J]. Xinjiang Geology,2000,18(1):258-263.
    117.陈世悦,李聪,杨勇强,等.黄骅坳陷歧口凹陷沙一下亚段湖相白云岩形成环境[J].地质学报,2012,10:1679-1687.
    118.陈绍周,高兴辰,丘东洲.中国早第三纪海陆过渡相[J].石油与天然气地质,1982,04:343-350.
    119.陈莹.歧口凹陷古近系层序地层及构造对沉积的控制研究[D].中国地质大学(北京),
    2006.
    120.陈永权,周新源,赵葵东,等.塔里木盆地塔中1井藻纹层白云岩与竹叶状白云岩成因—基于岩石学、元素与同位素地球化学的厘定[J].地质学报,2008,06:826-834.
    121.董福湘,刘立,马艳萍.大港滩海地区沙一段下部砂岩储层中方解石胶结物碳、氧同位素研究[J].石油实验地质,2004,06:590-593.
    122.杜民,苏俊青,陆永潮,等.歧口凹陷歧深地区沙三段沉积体系演化特征及沉积模式[J].地学前缘,2013,05:139-148.
    123.丁巍伟,戴金星,初凤友,等.黄骅坳陷港西断裂带流体包裹体的地球化学特征[J].岩石学报,2007,09:2287-2295.
    124.杜韫华.渤海湾地区下第三系湖相碳酸盐岩及沉积模式[J].石油与天然气地质,1990,04:376-392.
    125.邓运华.歧口凹陷沙一下碳酸盐岩形成环境探讨[J].石油勘探与开发,1990,01:8-13.
    126.冯增昭.碳酸盐岩分类[J].石油学报,1982,01:11-18.
    127.郭长敏,施振生.歧口凹陷沙一段砂岩成岩作用及孔隙演化[J].岩性油气藏,2009,01:34-39.
    128.郭金凤,李洪香,苏俊青,等.滨海断鼻沙三段油气成藏特征[J].天然气地球科学,2010,04:554-558.
    129.葛瑞全.济阳坳陷新生界海绿石的存在及其地质意义[J].沉积学报,2004,02:276-280.
    130.葛瑞全,宋传春,淳萍,等.济阳沾-车凹陷古近系沙河街组海侵的再认识[J].高校地质学报,2003,03:450-457.
    131.高玉巧,欧光习,谭守强,等.歧口凹陷西坡白水头构造沙一段下部油气成藏期次研究[J].岩石学报,2003,02:359-365.
    132.龚再生,李思田,谢泰俊,等.南海北部大路边缘盆地分析与油气聚集[M].北京:科学出版社,1997,1-500.
    133.高知云.黄骅凹陷第三系火山岩与油气研究[R].西安,西北大学,1997.
    134.高知云.黄骅拗陷第三系隐伏火山岩及其形成的大地构造环境初探[J].岩石学报,1986,04:14-30.
    135.韩吟文,马振东.地球化学[M].北京:地质出版社,2003:1-370.
    136.何镜宇,余素玉.黄骅坳陷北部下第三系的海绿石[J].地球科学,1982,01:129-143.
    137.胡圣标,张容燕,罗毓晖,等.渤海海域盆地热历史及油气资源潜力[J].中国海上油气地质,2000,05:13-21.
    138.黄翠蓉,张光荣,王英华.我国部分地区白云岩岩石矿物学研究及其意义[J].地质论评,1987,33(5):449-460.
    139.黄思静, HairuoQING,裴昌蓉,等.川东三叠系飞仙关组白云岩锶含量、锶同位素组成与白云石化流体[J].岩石学报,2006,08:2123-2132.
    140.黄思静.碳酸盐矿物的阴极发光性与其Fe,Mn含量的关系[J].矿物岩石,1992,04:74-79.
    141.韩银学,李忠,韩登林,等.塔里木盆地塔北东部下奥陶统基质白云岩的稀土元素特征及其成因[J].岩石学报,2009,10:2405-2416.
    142.黄志诚,杨守业,陈智娜.原生白云石与交代白云石的矿物学对比研究[J].中国科学(D辑),1996,26(6):544-550.
    143.洪志华.济阳拗陷下第三系生油岩地球化学特征[J].地球化学,1983,01:41-51.
    144.李成凤,肖继风.用微量元素研究胜利油田东营盆地沙河街组的古盐度[J].沉积学报,1988,04:100-107.
    145.刘传联.东营凹陷沙河街组湖相碳酸盐岩碳氧同位素组分及其古湖泊学意义[J].沉积学报,1998,03:109-114.
    146.李得立,谭先锋,夏敏全,等.东营凹陷沙四段湖相白云岩沉积特征及成因[J].断块油气田,2010,04:418-422.
    147.李广兵,苗建宇,孙立军,等.歧口凹陷扣村油田沙一下亚段湖相碳酸盐岩储层成岩作用分析[J].长江大学学报(自科版),2013,02:28-30.
    148.梁鸿德,申绍文,刘香婷,等.辽河断陷火山岩地质年龄及地层时代[J].石油学报,1992,02:35-41.
    149.吕琳,焦养泉,吴立群,等.渤海湾盆地歧口凹陷古近系沙一段物源—沉积体系重建[J].沉积学报,2012,04:629-638.
    150.廖静,董兆雄,翟桂云,等.渤海湾盆地歧口凹陷沙河几组一段下亚段湖相白云岩及其与海相白云岩的差异[J].海相油气地质,2008,13(1):18-24.
    151.刘建章,刘伟,王存武.沉积盆地活动热流体类型及其石油地质意义[J].海洋石油,2004,03:8-13.
    152.李绍光,吴涛,方文娟,等.中国石油地质志,卷四,大港油田[M].北京:石油工业出版社,1991:74-113.
    153.刘群明,王丽娟,饶良玉,等.黄骅坳陷歧口凹陷沙河街组二段物源分析[J].现代地质,2012,02:363-369.
    154.李亚林,黄永建,王成善,等.西藏措勤盆地白垩系白云岩地球化学特征及其成因分析[J].岩石学报,2008,03:609-615.
    155.李应暹,卢宗盛,王丹,等.辽河盆地陆相遗迹化石和沉积环境研究[M].北京:石油工业出版社,1997.
    156.李振宏,杨永恒.白云岩成因研究现状及进展[J].油气地质与采收率,2005,02:5-8.
    157.马昌前,廖群安.黄骅凹陷区火山岩形成、分布规律研究[R].武汉,中国地质大学,
    2007.
    158.彭世福.中国近海早第三纪海侵层序及地层对比[J].海洋地质与第四纪地质,1992,01:41-56.
    159.蒲秀刚,周立宏,肖敦清,等.黄骅坳陷歧口凹陷西南缘湖相碳酸盐岩地质特征[J].石油勘探与开发,2011,02:136-144.
    160.邱家骧,林景仟.岩石化学[M].北京:地质出版社,1991.
    161.秦建中,饶丹,蒋宏.高演化海相碳酸盐岩层系古温标的直接指标:包裹体均一温度[J].石油实验地质,2008,30(5):494-498.
    162.裘松余,卢兵力.我国东部晚白垩世和早第三纪海侵与油气关系[J].地质论评,1994,03:229-236.
    163.任来义,林桂芳,赵志清,等.东濮凹陷早第三系的海侵(泛)事件[J].古生物学报,2000,39(4):553-557.
    164.孙钰.惠民凹陷西部沙一段湖相碳酸盐岩沉积及储层特征研究[D].中国石油大学,2007.
    165.石油化学工业部石油勘探开发规划研究院,中国科学院南京地质古生物研究所.渤海沿岸地区新生代有孔虫、早第三纪介形类、早第三纪腹足类、早第三纪轮早、早第三纪沟鞭藻类和疑源藻类[M].北京:科学出版社,1978.
    166.孙镇城,杨藩,张枝焕,等.中国新生代咸化湖泊沉积环境与油气生成[M].北京:石油工业出版社,1997.
    167.谭建财,尹志军,苏进昌,等.歧口凹陷歧南断阶带沙二段浊积扇沉积特征[J].石油天然气学报,2012,09:6-12.
    168.田克勤,于志海,冯明,等.渤海湾盆地下第三系深层油气地质与勘探[M].北京:石油工业出版社,2000:121.
    169.拓守廷,刘志飞.始新世—渐新世界线的全球气候事件:从“温室”到“冰室”[J].地球科学进展,2003,05:691-696.
    170.唐天福,薛耀松,周仰康,等.广东省三水盆地下第三系(土布)心群碳酸盐岩的特征及沉积环境分析[J].地质学报,1980,04:249-259.
    171.童晓光.中国东部早第三纪海侵质疑[J].地质论评,1985,31(3):261-267.
    172.唐祥华.东濮凹陷渐新世早期成盐环境及古生态的探讨[J].微体古生物学报,1986,01:51-59.
    173.王全伟,梁斌,阚泽忠.四川盆地下侏罗统自流井组湖相碳酸盐岩的碳、氧同位素特征及其古湖泊学意义[J].矿物岩石,2006,02:87-91.
    174.王小芬,杨欣,王起琮.鄂尔多斯盆地奥陶系马家沟组白云石有序度研究[J].新疆石油天然气,2011,01:12-15.
    175.王晓梅,王明镇,张锡麒.中国晚始新世—早渐新世地层孢粉组合及其古气候特征[J].地球科学,2005,03:309-316.
    176.吴贤涛,任来义.渤海湾盆地古近纪海水通道与储层探新[J].古生物学报,2004,01:147-154.
    177.王云飞.抚仙湖现代湖泊沉积物中海绿石的发现及成因的初步研究[J].科学通报,1983,22:1388-1392.
    178.吴元燕,付建林,周建生,等.歧口凹陷含油气系统及其评价[J].石油学报,2000,06:18-22.
    179.文沾,刘忠保,何幼斌,等.黄骅坳陷歧口凹陷古近系沙三2亚段辫状河三角洲沉积模拟实验研究[J].古地理学报,2012,04:487-498.
    180.许淑梅,翟世奎,李三忠,等.歧口凹陷滩海区下第三系层序地层分析及沉积体系研究[J].沉积学报,2001,03:363-367.
    181.谢习农,李思田,董伟良,等.热流体活动示踪标志及其地质意义—以莺歌海盆地为例[J].地球科学,1999,24(2):184-186.
    182.杨池银,周宗良,周建生.歧口凹陷含油气系统与油气勘探[J].勘探家,2000,03:64-70.
    183.杨浩.东天山地区花岗岩的成因、特征、分布规律及其与构造背景和成矿关系[D].南京:南京大学,1988.
    184.伊海生,林金辉,周恳恳,等.青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义[J].古地理学报,2007,03:303-312.
    185.姚益民,徐金鲤,单怀广,等.山东济阳坳陷早第三纪海侵的讨论[J].石油学报,1992,02:29-34.
    186.杨有星,金振奎,高白水.歧口凹陷缓坡区湖泊碳酸盐岩优质储层特征及成因[J].石油学报,2012,06:978-986.
    187.于众.我国辽河地区发现钙质微型化石[J].石油勘探与开发,1982,03:82-83.
    188.于志超.歧口凹陷古近系热流体活动及其对碎屑岩储层的影响[D].吉林大学,2010:1-121.
    189.业治铮,孟祥化,何起祥.石灰岩的结构-成因分类[J].地质论评,1964,05:378-389.
    190.张国栋,王慧中.中国东部早第三纪海侵和沉积环境[M].北京:地质出版社,1987.
    191.张晶,李勇,张自力,等.歧口凹陷歧北斜坡沙三段成岩作用及其对储层影响分析[J].地质学刊,2012,01:8-16.
    192.张世奇,纪友亮.东营凹陷早第三纪古气候变化对层序发育的控制[J].石油大学学报(自然科学版),1998,06:29-33.
    193.钟筱春,钟石兰,费轩冬,等.渤海湾盆地沙河街组一段颗石藻类化石及其沉积环境[J].微体古生物学报,1988,02:145-1517.
    194.朱筱敏,董艳蕾,郭长敏,等.歧口凹陷沙河街组一段层序格架和储层质量分析[J].沉积学报,2007,06:934-941.
    195.张玉宾.济阳坳陷及其邻近地区早第三纪海侵问题之我见[J].岩相古地理,1997,01:48-52.
    196.张玉宾.济阳坳陷始新统藻白云岩成岩演化探讨[J].石油实验地质,1994,16(1):53-59.
    197.张永生,侯献华,张海清,等.江汉盆地潜江凹陷上始新统含盐岩系准原生白云岩的沉积学特征与形成机理[J].古地理学报,2006,04:441-455.
    198.张云孝,李向东,张冀.西天山喀拉达拉基性岩及其构造背景[J].新疆地质,2000,18(3):258-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700