用户名: 密码: 验证码:
青海东昆仑造山带斑岩型矿床成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东昆仑造山带作为我国重要的成矿带之一,其内复杂的地质背景和丰富的矿产资源受到国内外地质工作者的瞩目。同时,作为中国大陆中央造山带的重要组成部分,东昆仑造山带内构造活动频繁,先后经历了前加里东期太古宙古陆核形成、元古代古陆裂解和大洋玄武岩高原形成,加里东期前原特提斯洋盆闭合、俯冲碰撞、边缘增生,海西-印支早期安第斯型造山活动,印支晚期-燕山期岩石圈拆沉和幔源岩浆底侵作用,中新生代东昆仑东西构造分化等多期运动,复杂的动力学演化导致区内构造岩浆活动强烈,为成矿提供了优越条件。
     本次研究通过对东昆仑地区火山岩及侵入岩的岩石学、锆石U-Pb年代学、地球化学方面的工作,对东昆仑造山带加里东期至印支晚期的构造演化过程加以制约。研究表明,加里东早期(~475Ma)片麻状花岗岩源区来自基性下地壳物质的部分熔融,并受到了俯冲流体的交代,形成于原特提斯洋由南向北沿现今的昆中断裂附近向柴达木地块俯冲的活动大陆边缘环境;海西晚期二长花岗岩(~268Ma)及印支早期细粒花岗岩(~245Ma)、酸性火山岩(~250Ma、~244Ma、~241Ma)的源区均来自基性下地壳部分熔融,并可能同样受到俯冲流体的交代,而中基性火山岩源区则可能为受俯冲流体交代的富集型地幔,它们的构造背景均为古特提斯洋俯冲晚期的安第斯型活动大陆边缘环境;印支晚期石英闪长玢岩(~223Ma)源区来自地幔底侵古老陆壳形成壳源花岗质岩浆,同时幔源岩浆与壳源花岗质岩浆发生不同程度的混合,形成于古特提斯闭合以后的后碰撞伸展背景。
     本文选择研究区内乌兰乌珠尔铜矿、埃坑德勒斯特钼(铜)矿、哈陇休玛钨钼矿、加当根铜钼矿、莫河下拉银多金属矿、卡而却卡野拉赛铜矿及哈日扎铜矿七个矿床进行系统的野外地质及室内研究工作。研究认为:埃坑德勒斯特钼(铜)矿、哈陇休玛钨钼矿、加当根铜钼矿、乌兰乌珠尔铜矿为斑岩型矿床,并认为莫河下拉银多金属矿床为热液脉型和斑岩型共存的叠生型矿床;卡而却卡野拉赛铜矿为高温热液脉型矿床;哈日扎铜矿为热液脉型矿床,则并非前人认为的斑岩型矿床。根据各矿床特征,结合Westra et al.(1981)关于斑岩型钼矿床的分类,本文将东昆仑造山带内斑岩型钼矿床划分为产于钙碱性母岩系列的岩株型(埃坑德勒斯特钼(铜)矿、加当根铜钼矿)和深成侵入体型(哈陇休玛钨钼矿)两类。该分类更符合实际矿床地质特征,可为找矿提供新的地质依据,拓宽找矿思路。
     各矿床流体包裹体研究揭示,东昆仑造山带内斑岩型矿床流体包裹体类型主要为气液两相和含子矿物三相包裹体,见少量含CO2三相包裹体。部分矿床激光拉曼光谱分析显示,包裹体气相成分除H2O和CO2外,含少量SO2和CH4,成矿流体总体为NaCl-H2O体系,显示了中高温、高盐度、中高密度的特点;氢氧同位素特征表明,成矿流体以岩浆水为主,大气降水不同程度参与成矿过程;金属硫化物的硫源较为单一,主要为深源岩浆硫,并具有幔源硫的特点;铅同位素研究显示,印支晚期斑岩型矿床成矿物质具壳幔混合特点。
     成矿岩体年代学及地球化学研究表明,乌兰乌珠尔铜矿成矿斑岩体SHRIMP锆石U-Pb年龄为416.7±3.3Ma,为加里东晚期,并非前人认为的印支期;埃坑德勒斯特钼(铜)矿成矿花岗斑岩LA-ICP-MS锆石U-Pb年龄为248.3±1.5Ma,为印支早期,岩浆来源以壳源为主,有俯冲带流体的印迹;加当根铜钼矿成矿花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄为227±1Ma,莫河下拉银多金属矿床成矿花岗斑岩LA-ICP-MS锆石U-Pb年龄为222±1Ma,哈陇休玛钨钼矿成矿花岗闪长斑岩LA-ICP-MS锆石U-Pb年龄为230±1Ma,均为印支晚期,加当根及哈陇休玛花岗闪长斑岩岩浆来源于基性下地壳部分熔融,莫河下拉花岗斑岩岩浆源区为上地壳变质杂砂岩,三者均显示了壳幔混合特点。印支期成矿岩体为高分异的I型花岗岩,氧化和分异程度均较高,属磁铁矿型花岗岩,多形成铜钼矿床。
     论文在上述研究基础上,建立了东昆仑造山带斑岩型矿床的区域成矿模式,总结了区内斑岩型矿床的时空分布规律,对矿床的剥蚀保存条件进行了分析。成矿时代上主要分为加里东晚期、印支早期和印支晚期三个成矿期次,以印支晚期最为重要。空间上在东昆仑各构造带内均有分布,但很不均匀,由北往南依次减少,昆北带(即昆北弧后裂陷带)最多,昆中带(即昆中基底隆起花岗岩带)次之,昆南带(昆南复合地体拼贴带)则较少;自西向东依次增加,最西段祁漫塔格地区分布较少,往东到东昆仑中段没有出现,而至东段则有大量矿床存在。昆南带剥蚀深度最小,矿床保存条件好,昆北带次之,昆中带剥蚀深度最大,其内浅成矿床大都难以保存。
The Eastern Kunlun Orogenic Belt (EKOB), one of the important metallogenic belt in China, hascomplicated geological conditions and rich mineral resources, which attracted much attention of thedomestic and foreign geologists. The EKOB is an important part of the China’s Central Orogenic Beltwith intense magmatism resulting from the frequent tectonic activities. The tectonic processes that theEKOB has undergone include Pre-Caledonian formation of Archean Paleo-continent, breakup ofProterozoic Paleo-continent and formation of oceanic basalt plateau; Caledonian closure of thePre-Prototethys Ocean, subduction and collision, and accretion; Hercynian-Early IndochineseAndes-type orogeny; Late Indochinese-Yanshanian lithosphere delamination and mantle-derivedmagma underplating; and Meso-Cenozoic EW tectonic differentiation.
     In this study, we present petrography, zircon U–Pb dating, and major and trace elements forvolcanic and intrusive rocks in the eastern Kunlun area, to constrain the tectonic evolution of theEKOB during Caledonian-Late Indochinese. Research shows that Early Caledonian (~475Ma) gneissicgranites were probably originated by partial melting of a mafic lower crust metasomatized bysubduction-related fluids, and formed in an active continental margin setting related to the northwardssubduction of the Proto-Tethys oceanic plate beneath the Qaidam Massif along the middle Kunlun faultbelt. Late Hercynian monzogranites (~268Ma), and Early Indochinese fine-grained granites (~245Ma)and felsic volcanic rocks were probably originated by partial melting of a mafic lower crust. The EarlyIndochinese mafic volcanic rocks were probably derived from partial melting of an enriched mantlesource metasomatized by subduction-related fluids. They all formed under an Andes-type activecontinental margin setting related to the later period of subduction of the Paleo-Tethys oceanic plate.Late Indochinese quartz diorite-porphyrites (~223Ma) were probably originated by partial melting of an ancient continental crust heated by the underplating of the mantle-derived mafic magma with mixingprocess involving mafic and felsic magmas. They formed in a post-collisional extensional environmentfollowing the closure of Paleo-Tethys Ocean in the Late Indosinian.
     This paper carries on systematic research on the field observations and laboratory investigationsfor seven deposits in the study area, including Ulan Uzhur Cu deposit, Aikengdelesite Mo-Cu deposit,Halongxiuma W-Mo deposit, Jiadanggen Cu-Mo deposit, Mohexiala Ag polymetallic deposit,Kaerqueka Yelasai Cu deposit, and Harizha Cu deposit. Studies suggest that Aikengdelesite Mo-Cudeposit, Halongxiuma W-Mo deposit, Jiadanggen Cu-Mo deposit and Ulan Uzhur Cu deposit areporphyry deposit; Mohexiala Ag polymetallic deposit is a storeyed deposit where hydrothermalvein-type and porphyry-type mineralization coexisted; Kaerqueka Yelasai Cu deposit belongs tohigh-temperature hydrothermal vein deposit, while Harizha Cu deposit is a hydrothermal vein depositinstead of previously considered porphyry deposit. According to the characteristics of each deposit andcombined with the classification of porphyry Mo deposit by Westra et al.(1981), we divided porphyryMo deposits in the EKOB into stock type derived from calc-alkaline rocks (Aikengdelesite Cu-Modeposit and Jiadanggen Cu-Mo deposit) and intrusion type (Halongxiuma W-Mo deposit). Thisclassification is more consistent with actual geological characteristics of deposits, which provides anew geological basis and broadens ideas for prospecting.
     Studies on fluid inclusions in each deposit revealed that the types of fluid inclusions in porphyrydeposits in EKOB contain mainly gas-liquid two-phase inclusions, daughter crystal-bearing three-phaseinclusions, and a small amount of CO2-bearing three-phase inclusions. Analysis of Laser Ramanspectrum for partial deposits shows that the compositions of gas phase contain a small amount of SO2and CH4, besides H2O and CO2, and the ore-forming fluid is mainly NaCl-H2O system, indicating thecharacteristics of the moderate to high temperature, high salinity, and moderate to high density.Characteristics of hydrogen and oxygen isotopes show that the ore-forming fluid is dominated by themagmatic water, and meteoric water involved in metallogenic process with different degrees. Metalsulfide has relatively single sulfur source, which is the deep origin magmatic sulfur with thecharacteristics of mantle source. Research of Lead isotope shows that the metallogenic material ofporphyry deposit in Late Indosinian has the crust-mantle mixing characteristics.
     Studies on chronology and geochemistry of metallogenic rocks show that SHRIMP zircon U-Pbage of metallogenic porphyry in Ulan Uzhur Cu deposit is416.7±3.3Ma, i.e., Late Caledonian, ratherIV than Indosinian previously considered. LA-ICP-MS zircon U-Pb age of metallogenic granite porphyryin Aikengdelesite Cu-Mo deposit is248.3±1.5Ma, i.e., Early Indosinian, and the magma source isgiven priority to crustal materials with imprint of subduction fluid. Metallogenic granodiorite porphyryin Jiadanggen Cu-Mo deposit, metallogenic granite porphyry in Mohexiala Ag polymetallic deposit,and metallogenic granodiorite porphyry in Halongxiuma W-Mo deposit, yield LA-ICP-MS zircon U-Pbages of227±1,222±1, and230±1Ma, respectively, i.e., Late Indosinian. Granodiorite porphyrys inJiadanggen and Halongxiuma deposits were derived from partial melting of the mafic lower crust, andgranite porphyrys in Mohexiala deposit were derived from partial melting of the metamorphicgraywacke in upper crust, all showing the crust-mantle mixing characteristics. The Indosinianmetallogenic rocks were I-type granites with high differentiation and oxidation, belonging to themagnetite type granites, mostly forming copper molybdenum deposit.
     Based on the above researches, this paper establishes the metallogenic model for porphyrydeposits in EKOB, summarizes the temporal and spatial distribution of porphyry deposits in EKOB,and analyzes their denudation and preservation conditions. It mainly divides into three metallogenicperiods, namely, the Late Caledonian, Early Indosinian and Late Indosinian, and the Late Indosinian isthe most important period. Mineralization distributes in each belt of East Kunlun, and lessens fromnorth to south. The north belt of East Kunlun (i.e., the north back-arc rift belt) has the most deposits,the middle belt of East Kunlun (i.e., the middle basement uplifting and granite belt) takes the secondplace, and the south belt of East Kunlun (the south composite collage belt) has the least deposits. Fromwest to east mineralization increased, the most western part, Qimantage area, has less deposits. To theeast side, the middle East Kunlun has none deposit, while the eastern East Kunlun has a large amountof deposits. The south belt with minimum denudation depth has good preservation condition for oredeposits, the preservation condition of north belt takes the second place, While, epizonal deposits aremost difficult to save in the middle belt with the biggest eroding depth.
引文
[1] Ague J J,Brimhall G H.Regional variations in bulk chemistry,mineralogy,and the compositionsof mafic and accessory minerals in the batholiths of California[J].Geological Society of AmericaBulletin,1988,100(6):891-911.
    [2] Altherr R,Holl A,Hegner E,Langer C and Kreuzer H.High-potassium,calc-alkaline I-typeplutonism in the European Variscides:Northern Vosges (France)and northern Schwarzwald(Germany).Lithos,2000,50(1-3):51-73.
    [3] Arribas A,Hedenquist J W,Itaya T,et al.Contemporaneous formation of adjacent porphyry andepithermal Cu-Au deposits over300ka in northern Luzon,Philippines[J].Geology,1995,23(4):337-340.
    [4] Bailey J C.Geochemical criteria for a refined tectonic discrimination of orogenic andesites[J].Chemical Geology,1981,32:139-154.
    [5] Baker M B, Hirschmann M M, Ghiorso M S, et al. Compositions of near-solidusperidotite melts from experiments and thermodynamic calculations[J]. Nature,1995,375:308-311.
    [6] Barbarin B.A review of the relationships between granitoid types,their origins and theirgeodynamic environments[J].Lithos,1999,46(3):605-626.
    [7] Barnes C G.Mineralogy of the Wooley Creek batholith,Slinkard pluton,and related dikes,Klamath Mountains,northern California[J].American Mineralogist,1987,72(9-10):879-901.
    [8] Batchelor R A,Bowden P.Petrogenetic interpretation of granitoid rock series using multi-cationicparameters[J].Chemical Geology,1985,48(1):43-55.
    [9] Bateman P C,Chappell B W.Crystallization,fractionation,and solidification of the Tuolumneintrusive series,Yosemite National Park,California[J].Geological Society of America Bulletin,1979,90(5):465-482.
    [10] Bea F,Arzamastsev A,Montero P,et al.Anomalous alkaline rocks of Soustov,Kola:evidenceof mantle-derived metasomatic fluids affecting crustal materials[J].Contributions to Mineralogyand Petrology,2001,140(5):554-566.
    [11] Belousova E,Griffin W L,O'reilly S Y,et al.Igneous zircon:trace element composition as anindicator of source rock type[J].Contributions to Mineralogy and Petrology,2002,143(5):602-622.
    [12] Blevin P L,Chappell B W.Chemistry,origin,and evolution of mineralized granites in the Lachlanfold belt,Australia; the metallogeny of I-and S-type granites[J].Economic Geology,1995,90(6):1604-1619.
    [13] Boynton W V.Geochemistry of the rate earth elements:Meteorite studies.In:Henderson P(ed.).Rare Earth Elements Geochemistry[M].Amsterdam:Elsevier,1984:63-114.
    [14] Bozzo A.T.,Chen J.R.,Barduhn A.J.The properties of the hydrates of chlorine and carbondioxide. In:Delyannis,A.,Delyannis,E.(eds.)4th International Symposium on Fresh Water fromSea,vol.3. Heidelberg,pp.437-451.
    [15] Bryner.Breccia and pebble columns associated with epigenetic ore deposits[J].EconomicGeology,1961,56(3):488-508.
    [16] Burnham C W.Magmas and hydrothermal fluids[J].Geochemistry of hydrothermal ore deposits,1979,2:71-136.
    [17] Carten R B,White W H,Stein H J.High-grade granite-related molybdenum systems:classification and origin[J].Mineral deposit modeling:Geological Association of Canada SpecialPaper,1993,40:521-554.
    [18] Chappell B W,White A J R.I-and S-type granites in the Lachlan Fold Belt[J].Transactions of theRoyal Society of Edinburgh:Earth Sciences,1992,83(1-2):1-26.
    [19] Chappell B W,White A J R.Two contrasting granite types[J].Pacific Geology,1974,8:173-174
    [20] Chappell B W.Aluminium saturation in I-and S-type granites and the characterization offractionated haplogranites[J].Lithos,1999,46(3):535-551.
    [21] Clayton R N,O'Neil J R,Mayeda T K.Oxygen isotope exchange between quartz andwater[J].Journal of Geophysical Research,1972,77(17):3057-3067.
    [22] Cline J S,Bodnar R J.Can economic porphyry copper mineralization be generated by a typicalcalc‐alkaline melt?[J].Journal of Geophysical Research:Solid Earth (1978–2012),1991,96(B5):8113-8126.
    [23] Collins W J,Beams S D,White A J R,et al.Nature and origin of A-type granites with particularreference to southeastern Australia[J].Contributions to mineralogy and petrology,1982,80(2):189-200.
    [24] Condie K C.Geochemical Changes in Basalts and Andesites Across the Archean-ProterozoicBoundary:Identification and Significance[J].Lithos,1989,23(1):1-18.
    [25] Cooke D R,Hollings P,Walshe J L.Giant porphyry deposits:characteristics,distribution,and tectonic controls[J].Economic Geology,2005,100(5):801-818.
    [26] Czamanske G K,Ishihara S, Atkin S A.Chemistry of rock‐forming minerals of theCretaceous‐Paleocene batholith in southwestern Japan and implications for magmagenesis[J].Journal of Geophysical Research:Solid Earth (1978–2012),1981,86(B11):10431-10469.
    [27] Czamanske G K,Mihálik P.Oxidation during magmatic differentiation,Finnmarka complex,Oslo area,Norway:Part1,The opaque oxides[J].Journal of Petrology,1972,13(3):493-509.
    [28] Defant M J,Drummond M S.Derivation of some modern arc magmas by melting of youngsubducted lithosphere[J].Nature,1990,347(6294):662-665.
    [29] Dungan M A,Lindstrom M M,McMillan N J,et al.Open system magmatic evolution of the TaosPlateau volcanic field,northern New Mexico:1.The petrology and geochemistry of the ServilletaBasalt[J].Journal of Geophysical Research:Solid Earth (1978–2012),1986,91(B6):5999-6028.
    [30] Eldridge C S,Compston W,Williams I S,et al.Sulfur isotope variability in sediment-hostedmassive sulfide deposits as determined using the ion microprobe SHRIMP;I.An example fromthe Rammelsberg orebody[J].Economic Geology,1988,83(2):443-449.
    [31] Emmons W H.The principles of economic geology[M].McGraw-Hill book Company,Incorporated,1918.
    [32] Foley S F,Peccerillo A.Potassic and ultrapotassic magmas and their origin[J]. Lithos,1992,28:181-185.
    [33] Gastil G,Diamond J,Knaack C et al.The problem of the magnetite-ilmenite boundary in southernand Baja California,California[J].The nature and origin of Cordilleran magmatism:GeologicalSociety of America Memoir,1990,174:19-32.
    [34] Gow P A,Walshe J L.The role of preexisting geologic architecture in the formation of giantporphyry-related Cu±Au deposits:Examples from New Guinea and Chile[J].Economic Geology,2005,100(5):819-833.
    [35] Green T H.Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantlesystem[J].Chemical Geology,1995,120(3):347-359.
    [36] Halbach P,Nakamura K,Wahsner M,et al.Probable modern analogue of Kuroko-type massivesulphide deposits in the Okinawa Trough back-arc basin[J].Nature,1989,338(6215):496-499.
    [37] Hedenquist J W,Arribas A,Reynolds T J.Evolution of an intrusion-centered hydrothermal system;Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits,Philippines[J].EconomicGeology,1998,93(4):373-404.
    [38] Hedenquist J W,Lowenstern J B.The role of magmas in the formation of hydrothermal oredeposits[J].Nature,1994,370(6490):519-527.
    [39] Hedenquist J W,Richards J P.The influence of geochemical techniques on the development ofgenetic models for porphyry copper deposits[J].Reviews in Economic Geology,1998,10:235-256.
    [40] Heinrich C A.Fluid-fluid interactions in magmatic-hydrothermal ore formation[J].Reviews inMineralogy and Geochemistry,2007,65(1):363-387.
    [41] Heinrich C A.The physical and chemical evolution of low-salinity magmatic fluids at theporphyry to epithermal transition:a thermodynamic study[J].Mineralium Deposita,2005,39(8):864-889.
    [42] Hendry D A F,Chivas A R,Reed S J B,et al.Geochemical evidence for magmatic fluids inporphyry copper mineralization part II. Ion-probe analysis of Cu contents of mafic minerals,Koloula igneous complex.Contributions to Mineralogy and Petrology,1982,78(4):404-412.
    [43] Hildreth W,Moorbath S.Crustal contributions to arc magmatism in the Andes of centralChile[J].Contributions to Mineralogy and Petrology,1988,98(4):455-489.
    [44] Hou Z Q,Mo X X,Gao Y F,et al.Adakite,a possible host rock for porphyry copper deposits:Case studies of porphyry copper belts in Tibetan plateau and in Northern Chile [J].MineralDeposits,2003,22(1):1-12.
    [45] Irvine T N,Baragar W R A.A guide to the chemical classification of the common volcanicrocks[J].Canada journal Earth Science,1971,8:523-548.
    [46] Ishihara S.Granitoid Series and Mineralization in the Circum‐Pacific Phanerozoic GraniticBelts[J].Resource Geology,1998,48(4):219-224.
    [47] Ishihara S.Granitoid series and Mo/W-Sn mineralization in east Asia[J].Rept.Geol.Surv.Japan,1984,263:173-208.
    [48] Ishihara S.Lateral variation of magnetic susceptibility of the Japanese granitoids[J].The Journalof the Geological Society of Japan,1979,85(8):509-523.
    [49] Ishihara S. Modal and chemical composition of the granitic rocks related to the majormolybdenum and tungsten deposits in the Inner Zone of SouthwestJapan[J].Jour.Geol.Soc.Japan,1971,77:441-452.
    [50] Ishihara S.The granitoid series and mineralization[J].Economic Geology,75th Anniv.Vol.,1981:458-484.
    [51] Ishihara S.The magnetite-series and ilmenite-series granitic rocks[J].Mining Geology,1977,27(145):293-305.
    [52] Jahn B,Wu F,Lo C H,et al.Crust–mantle interaction induced by deep subduction of thecontinental crust: geochemical and Sr–Nd isotopic evidence from post-collisionalmafic–ultramafic intrusions of the northern Dabie complex,central China[J].Chemical geology,1999,157(1):119-146.
    [53] Kanaya H,Ishihara S.Regional variation of magnetic susceptibility of the granitic rocks inJapan[J].Jour.Japan.Assoc.Mineral.Petrol.Econ.Geol,1973,68:219-224.
    [54] Kay SM,Coira B,Mpodozis C.1995.Neogene magmatic evolution and the shape of thesubducting oceanic slab beneath the central Andean arc.IUGG21th General Assembly,pp.A440.Boulder,CO:Int.Union Geod.Geophys.
    [55] Kerrich R,Goldfarb R,Groves D I,et al.The geodynamics of world-class gold deposits:characteristics,space-time distribution,and origins[C]//Gold in.2000,13:501-551.
    [56] Kerridge J F.Carbon,hydrogen and nitrogen in carbonaceous chondrites:Abundances andisotopic compositions in bulk samples[J].Geochimica et Cosmochimica Acta,1985,49(8):1707-1714.
    [57] Koschek G.Origin and significance of the SEM cathodoluminescence from zircon[J].Journal ofMicroscopy,1993,171(3):223-232.
    [58] Lehmann B.Metallogeny of tin[J].Lecture Notes in Earth Sciences,Berlin Springer Verlag,1990,32.
    [59] Lightfoot P C,Hawkesworth C J,Sethna S F.Petrogenesis of rhyolites and trachytes from theDeccan Trap:Sr,Nd and Pb isotope and trace element evidence[J].Contributions to Mineralogyand Petrology,1987,95(1):44-54.
    [60] Lowell J D,Guilbert J M.Lateral and vertical alteration-mineralization zoning in porphyry oredeposits[J].Economic Geology,1970,65(4):373-408.
    [61] MacDonald G D,Arnold L C.Geological and geochemical zoning of the Grasberg igneouscomplex,Irian Jaya,Indonesia[J].Journal of Geochemical Exploration,1994,50(1):143-178.
    [62] Maniar P D,Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of AmericaBulletin,1989,10:635-643.
    [63] Martin H.Adakitic magmas:modern analogues of Archaean granitoids[J].Lithos,1999,46(3):411-429.
    [64] Mason D R. Compositional variations in ferromagnesian minerals from porphyrycopper-generating and barren intrusions of the Western Highlands, Papua NewGuinea[J].Economic Geology,1978,73(5):878-890.
    [65] Massonne H J.Evidence for low-temperature ultrapotassic siliceous fluids in subduction zoneenvironments from experiments in the system K2O-MgO-Al2O3-SiO2-H2O (KMASH)[J].Lithos,1992,28(3-6):421-434.
    [66] Masterman G J,Cooke D R,Berry R F,et al.Fluid chemistry,structural setting,and emplacementhistory of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins,Collahuasi district,northern Chile[J].Economic Geology,2005,100(5):835-862.
    [67] McClay K,Skarmeta J,Bertens A.Structural controls on porphyry copper deposits in northernChile: New models and implications for Cu-Mo mineralization in subduction orogens:Perth[J].Australian Institute of Geoscientists Bulletin,2002,36:127.
    [68] McInnes B I A,Cameron E M.Carbonated,alkaline hybridizing melts from a sub-arcenvironment: mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua NewGuinea[J].Earth and Planetary Science Letters,1994,122(1):125-141.
    [69] Misra K.Understanding mineral deposits[M].Springer,2000,353-413
    [70] Morrison G W.Characteristics and tectonic setting of the shoshonite rock association[J].Lithos,1980,13:91-108.
    [71] Müller D,Groves D I.Direct and indirect associations between potassic igneous rocks,shoshonites and gold-copper deposits[J].Ore Geology Reviews,1993,8(5):383-406.
    [72] Müller D, Groves D I. Potassic igneous rocks and associated gold-coppermineralization[M].Berlin:Springer-Verlag,1995,1-210.
    [73] Murphy J B,Nance R D.Supercontinent model for the contrasting character of late proterozoicorogenic belts.Geology,1991,19(5):469-472.
    [74] Naylor H,Turner P,Vaughan D J,et al.Genetic studies of red bed mineralization in the Triassicof the Cheshire Basin,northwest England[J].Journal of the Geological Society,1989,146(4):685-699.
    [75] Noyes H J,Wones D R,Frey F A.A tale of two plutons:Petrographic and mineralogic constraintson the petrogenesis of the Red Lake and Eagle Peak plutons, central Sierra Nevada,California[J].The Journal of Geology,1983:353-379.
    [76] Ohmoto H,Rye R O.Isotopes of sulfur and carbon[J].In:Barnes H L.(ed.),Geochemistry ofhydrothermal ore deposits.New York:Wiley,1979:509-567.
    [77] Oxburgh E R, Parmentier E M. Compositional and density stratification in oceaniclithosphere-causes and consequences[J].Journal of the Geological Society,1977,133(4):343-355.
    [78] Pati o Douce A E.What do experiments tell us about the relative contributions of crust andmantle to the origin of granitic magmas?//Castro A,Fernandez C and Vigneressese JL.Understanding granites:Intergr ating new and classical techniques.Geological Society,London,Special Publication,1999,168:55-75.
    [79] Peacock SM,Rushmer T and Thompson AB.Partial melting of subducting oceanic crust.Earthand Planetay Science Letters,1994,121(1-2):227-244.
    [80] Pearce J A,Harris N B W,Tindle A G.Trace element discrimination diagrams for the tectonicinterpretation of granitic rocks[J].Journal of Petrology,1984,25:956-983.
    [81] Pearce J A.Role of the sub-continental lithosphere in magma genesis at active continentalmargins[J].1983.
    [82] Pearce J A.Sources and settings of granitic rocks[J].Episodes,1996,19(4):120125.
    [83] Potter R W,Clynne M C.Solubility of Highly Soluble Salts in Aqueous Media:Part1:NaCl,KCl,CaCl2,Na2SO4,and K2SO4Solubilities to100℃[J].Journal of Research of the United StatesGeological Survey,1978,6:701-705.
    [84] Pupin J P.Zircon and granite petrology[J].Contributions to Mineralogy and Petrology,1980,73(3):207-220.
    [85] Rapp RP,Watson EB and Miller C.Partial melting of amphibolite/eclogite and the origin ofArchean trondhjemites and tonalites.Precambrian Research,1991,51(1-4):1-25
    [86] Richards J P,Boyce A J,Pringle M S.Geologic evolution of the Escondida area,northern Chile:A model for spatial and temporal localization of porphyry Cu mineralization[J].EconomicGeology,2001,96(2):271-305.
    [87] Richards J P.Postsubduction porphyry Cu-Au and epithermal Au deposits:Products of remeltingof subduction-modified lithosphere[J].Geology,2009,37(3):247-250.
    [88] Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) depositformation[J].Economic Geology,2003,98(8):1515-1533.
    [89] Rickwood P C.Boundary lines within petrologic diagrams which use oxides of major and minorelements[J].Liehos,1989,22:247-263.
    [90] Roedder E.Fluid inclusions:an introduction to studies of all types of fluid inclusions,gas,liquid,or melt,trapped in materials from earth and space,and their application to the understanding ofgeologic processes[M].Washington DC:Mineralogical Society of America,1984.
    [91] Rudnick R L,Fountain D M.Nature and composition of the continental crust:a lower crustalperspective[J].Reviews of Geophysics,1995,33(3):267-309.
    [92] Rudnick R L,Gao S.Composition of the continental crust[J]//Rudnick R L Treatise ongeochemistry,2003,3:1-64.
    [93] Rush P M,Seegers H J.Ok Tedi copper-gold deposits[J].Geology of the mineral deposits ofAustralia and Papua New Guinea,1990,2:1747-1754.
    [94] Sajona F G,Maury R C,Bellon H,et al.Initiation of subduction and the generation of slab meltsin western and eastern Mindanao,Philippines[J].Geology,1993,21(11):1007-1010.
    [95] Salters V J M,Hart S R.The mantle sources of ocean ridges,islands and arcs:the Hf-isotopeconnection[J].Earth and Planetary Science Letters,1991,104(2):364-380.
    [96] Saunders AD,Norry MJ and Tarney J.Origin of MORB and chemically-depleted mantlereservoirs:tracr element constraints.Journal of Petrology,1988,1:415-445
    [97] Seedorff E,Dilles J H,Proffett J M,et al.Porphyry deposits:characteristics and origin ofhypogene features[J].Economic Geology100th Anniversary Volume,2005,29:251-298.
    [98] Sen C,Dunn T.Dehydration melting of a basaltic composition amphibolite at1.5and2.0Gpa:implications for the origin of adakites.Contributions to Mineralogy and Petrology,1994,117(4):394-409
    [99] eng r A M C.The Cimmeride orogenic system and the tectonics of Eurasia[J].GeologicalSociety of America Special Papers,1984,195:1-74.
    [100] eng r A.M.C and Okurogullari A.H.The role of accretionary wedges in the growth ofconitinents:Asiatic examples from Argand to plate tectonics[J].Eclogae Geological Helvetiae,1991,84(3):539-597.
    [101] Sheppard S M F,Taylor H P.Hydrogen and oxygen isotope evidence for the origins of water inthe Boulder batholith and the Butte ore deposits,Montana[J].Economic Geology,1974,69(6):926-946.
    [102] Sillitoe R H.A plate tectonic model for the origin of porphyry copper deposits[J].EconomicGeology,1972,67(2):184-197.
    [103] Sillitoe R H.Characteristics and controls of the largest porphyry copper‐gold and epithermalgold deposits in the circum‐P acific region[J].Australian Journal of Earth Sciences,1997,44(3):373-388.
    [104] Sillitoe R H.Major regional factors favouring large size,high hypogene grade,elevated goldcontent and supergene oxidation and enrichment of porphyry copper deposits[C]//Porphyry andhydrothermal Copper and gold deposits-a global perspective.Conference proceedings (Porter,TM.1998:21-34.
    [105] Sillitoe R H.Porphyry copper systems[J].Economic Geology,2010,105(1):3-41.
    [106] Sillitoe R H.Types of porphyry molybdenum deposits[J].Mining magazine,1980,142(6):550-553.
    [107] Singer D A,Berger V I,Menzie W D,et al.Porphyry copper deposit density[J].EconomicGeology,2005,100(3):491-514.
    [108] Singer D A,Menzie W D.Map scale effects on estimating the number of undiscovered mineraldeposits[M]//Progress in Geomathematics.Springer Berlin Heidelberg,2008:271-283.
    [109] Skarmeta J,McKlay K,Bertens A.Structural controls on porphyry Copper deposits in northernChile: new models and implications for Cu-Mo mineralization on subductionorogens[C]//Congreso Geológico Chileno.2003,10:109-110.
    [110] Solomon M.Subduction,arc reversal,and the origin of porphyry copper-gold deposits in islandarcs[J].Geology,1990,18(7):630-633.
    [111] Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts:implicationsfor mantle composition and processes[J].In:Saunders AD and Norry MJ(eds.).Magmatismin Ocean Basins.Spec.Publ.Geol.Soc.Lond.,1989,42:313-345.
    [112] Sylvester P J.Post-collisional strongly peraluminous granites.Lithos,1998,45:29-44.
    [113] Takagi T.Origin of magnetite-and ilmenite-series granitic rocks in the Japan arc[J].AmericanJournal of Science,2004,304(2):169-202.
    [114] Tapponnier P,Zhiqin X,Roger F,et al.Oblique stepwise rise and growth of the TibetPlateau[J].science,2001,294(5547):1671-1677.
    [115] Taylor H P. The application of oxygen and hydrogen isotope studies to problems ofhydrothermal alteration and ore deposition[J].Economic geology,1974,69(6):843-883.
    [116] Taylor S R,McLennan S M.The continental crust:its composition and evolution[J].1985.
    [117] Taylor S R,McLennan S M.The geochemical evolution of the continental crust[J].Reviews ofGeophysics,1995,33(2):241-265.
    [118] Thiéblemont D, Stein G, Lescuyer J L. Epithermal and porphyry deposits: the adakiteconnection[J]. Comptes Rendus de l'Academie des Sciences Series IIA Earth and PlanetaryScience,1997,325(2):103-109.
    [119] Touret J, Bottinga Y. Equation d'état pour le CO2; application aux inclusionscarboniques[J].Bull.Mineral,1979,102(5-6):577-583.
    [120] Weaver BL.The orign of ocean island basalt end-member compositions:trace element andisotopic constraints.Earth and Planetary Science Letters,1991,104(2-4):381-397
    [121] Wedepohl K H.The composition of the continental crust.Geochimica et Cosmochimica Acta,1995,59(7):1217-1232.
    [122] Westra G, Keith S B. Classification and genesis of stockwork molybdenumdeposits[J].Economic Geology,1981,76(4):844-873.
    [123] Wilson B M.Igneous petrogenesis a global tectonic approach[M].Springer,1989.
    [124] Winchester J A,Floyd P A.Geochemical discrimination of different magma series and theirdifferentiation products using immobile elements[J].Chemical geology,1977,20:325-343.
    [125] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmaticclassification and to establishing the nature of crustal contamination of basaltic lavas of theBritish Tertiary Volcanic Province[J].Earth and planetary science letters,1980,50(1):11-30.
    [126] Xiao W J,Windley B F,Liu D Y,et al.Paleozoic accretionary tectonics of the Western KunlunRange,China:new SHRIMP zircon ages from the Kudi ophiolite and associated granites,andimplications for the crustal growth of Central Asia[J].Journal of Geology,2005,113:687-705.
    [127] Yan J,Chen J F,Xu X S.Geochemistry of Cretaceous mafic rocks from the Lower Yangtzeregion,eastern China:Characteristics and evolution of the lithospheric mantle[J].Journal ofAsian Earth Sciences,2008,33:177-193.
    [128] Yang J S,Robinson P T,Jiang C F,et al.Ophiolites of the Kunlun Mountains,China and theirtectonic implications[J].Tectonophysics,1996,258(1):215-231.
    [129] Yang J S,Shi R D,Wu C L,Wang X B,Robinson P T.Dur’ngoi ophiolite in East Kunlun,Northeast Tibetan plateau:evidence for paleo-Tethyan suture in Northwest China[J].Journal ofEarth Science,2009,20(2):303-331.
    [130] Yogodzinski G M,Lees J M,Churikova T G,et al.Geochemical evidence for the melting ofsubducting oceanic lithosphere at plate edges[J].Nature,2001,409(6819):500-504.
    [131] Zartman R E,Doe B R.Plumbotectonics—the model[J].Tectonophysics,1981,75(1):135-162.
    [132] Zhang J Y,Ma C Q,Xiong F H,et al.Petrogenesis and tectonic significance of the LatePermian–Middle Triassic calc-alkaline granites in the Balong region,eastern Kunlun Orogen,China[J].Geological Magazine,2012,149(05):892-908.
    [133] Zhao G C,Wilde S A,Cawood P A.,et al. Archean blocks and their boundaries in the NorthChina Craton:lithological,geochemical,structural and P-T path constraints and tectonicevolution[J].Precambrian Research,2001,107(1):45-73.
    [134]阿成业,王毅智,任晋祁,等.东昆仑地区万保沟群的解体及早寒武世地层的新发现[J].中国地质,2003,30(2):199-206.
    [135]奥琮,孙丰月,李碧乐,等.青海夏日哈木矿区中泥盆世闪长玢岩锆石U-Pb年代学、地球化学及其地质意义[J].西北地质,2014,(1):96-106
    [136]拜永山,常革红,谈生祥,等.东昆仑东段加里东造山旋回侵入岩特征研究[J].青海地质,2001,S1:28-35.
    [137]边千韬,罗小全,陈海泓,等.阿尼玛卿蛇绿岩带花岗—英云闪长岩锆石U-Pb同位素定年及大地构造意义[J].地质科学,1999,(04):420-426.
    [138]曹世泰,刘晓康,马永胜,等.祁漫塔格地区早志留世侵入岩的发现及其地质意义[J].青海科技,2011,5:008.
    [139]常有英,李建放,张军,等.青海那陵郭勒河东晚三叠世侵入岩形成环境及年代学研究[J].西北地质,2009,42(1):57-65.
    [140]陈丹玲,刘良.祁漫塔格印支期铝质A型花岗岩的确定及初步研究[J].地球化学,2001,30(6):540-546.
    [141]陈国超,裴先治,李瑞保,等.东昆仑造山带东段南缘和勒冈希里克特花岗岩体时代、成因及其构造意义[J].地质学报,2013,87(10):1525-1541.
    [142]陈静,谢智勇,李彬,等.东昆仑拉陵灶火地区泥盆纪侵入岩成因及其地质意义[J].矿物岩石,2013,(02)26-34.
    [143]陈静.黑龙江小兴安岭区域成矿背景与有色、贵金属矿床成矿作用[D].长春:吉林大学,2011.
    [144]陈俊,王鹤年.地球化学[M].北京:科学出版社,2004:50-63.
    [145]陈隽璐,黎敦朋,李新林,等.东昆仑祁漫塔格山南缘黑山蛇绿岩的发现及其特征[J].陕西地质,2004,22(2):35-46.
    [146]陈能松,李惠民.热离子质谱测定的颗粒级锆石U-Pb不一致年龄数据处理的多边形准则——以大别山和东昆仑山深变质岩为例[J].地质科技情报,2002,21(3):24-29.
    [147]陈能松,李晓彦,张克信,等.东昆仑山香日德南部白沙河岩组的岩石组合特征和形成年代的锆石Pb-Pb定年启示[J].地质科技情报,2006,(06):1-7.
    [148]陈向阳,张雨莲,宋忠宝,等.东昆仑清水河东沟斑岩铜钼矿地质地球化学特征[A].中国矿物岩石地球化学学会.中国矿物岩石地球化学学会第14届学术年会论文摘要专辑
    [C].2013:357-358
    [149]谌宏伟,罗照华,莫宣学,等.东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义[J].岩石矿物学杂志,2006,25(1):25-32.
    [150]谌宏伟,罗照华,莫宣学,等.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制[J].中国地质,2005,3:386-395.
    [151]崔美慧,孟繁聪,吴祥珂.东昆仑祁漫塔格早奥陶世岛弧:中基性火成岩地球化学、Sm-Nd同位素及年代学证据[J].岩石学报,2011,27(11):3365-3379.
    [152]丁清峰.东昆仑造山带区域成矿作用与矿产资源评价[D].长春:吉林大学博士论文,2004.
    [153]杜德勋,罗建宁,陈明,等.巴颜喀拉三叠纪沉积盆地岩石地球化学特征与物源区构造背景的探讨——以阿坝-若尔盖、小金-马尔康及雅江盆地为例[J].岩相古地理,1999,(2):3-22
    [154]丰成友,李东生,吴正寿,等.青海东昆仑成矿带斑岩型矿床的确认及找矿前景分析.矿物学报,2009(S1):171-172.
    [155]丰成友,王松,李国臣,等.青海祁漫塔格中晚三叠世花岗岩,年代学,地球化学及成矿意义[J].岩石学报,2012,28(2):665-678.
    [156]丰成友,王雪萍,舒晓峰,等.青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J].吉林大学学报(地球科学版),2011,(6):1806-1817.
    [157]丰成友,张德全,党兴彦,等.青海格尔木地区驼路沟钴(金)矿床石英钠长石岩锆石SHRIMPU-Pb定年——对“纳赤台群”时代的制约[J].地质通报,2005,24(6):501-505.
    [158]丰成友,张德全,王富春,等.青海东昆仑复合造山过程及典型造山型金矿地质[J].地球学报,2004,(04):415-422.
    [159]丰成友.青海东昆仑地区的复合造山过程及造山型金矿床成矿作用[D].北京:中国地质科学院,2002.
    [160]高锐.青藏高原岩石圈演化与地球动力学过程:亚东—格尔木—额济纳旗地学断面的启?[J].地质论评,1998,44(4):389-395.
    [161]高晓峰,校培喜,贾群子.滩间山群的重新厘定——来自柴达木盆地周缘玄武岩年代学和地球化学证据[J].地质学报,2011,(09):1452-1463.
    [162]高延林,吴向农,左国朝.东昆仑山清水泉蛇绿岩特征及其大地构造意义[J].西北地质科学,1988(21):17-28.
    [163]高永宝,李文渊,李侃,等.阿尔金和东昆仑造山带中酸性侵入岩地质、地球化学特征及地质意义[J].新疆地质,2011,29(4):359-366.
    [164]高永宝,李文渊,马晓光,等.东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J].兰州大学学报(自然科学版),2012,(02):36-47.
    [165]高永宝,李文渊,张照伟,等.东昆仑祁漫塔格地区中酸性侵入岩浆作用与成矿[A]//第六届构造地质与地球动力学学术研讨会摘要集[C].2013:358.
    [166]高永宝,李文渊.东昆仑造山带祁漫塔格地区白干湖含钨锡矿花岗岩:岩石学、年代学、地球化学及岩石成因[J].地球化学,2011,04:324-336.
    [167]古凤宝.东昆仑地质特征及晚古生代—中生代构造演化[J].青海地质,1994,1:4-14.
    [168]郭国章,任启江.德兴斑岩铜矿成矿过程中地下热水运移的动力学模拟[J].地球化学,1994,23(4):402-410.
    [169]郭宪璞,王乃文,丁孝忠,等.东昆仑纳赤台群晚二叠世孢粉化石的发现及其意义[J].地质论评,2003,49(5):485-485.
    [170]郭宪璞,王乃文,丁孝忠,等.青海东昆仑纳赤台群基质系统与外来系统的关系[J].地质通报,2004,22(3):160-164.
    [171]郭正府,邓晋福.青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程[J].现代地质,1998,12(3):344-352.
    [172]韩英善,郭桂兰,张大明,等.东昆仑东段哈日扎地区含矿斑岩特征及找矿潜力分析[J].西北地质,2012,01:33-39.
    [173]郝杰,刘小汉,桑海清.新疆东昆仑阿牙克岩体地球化学与40Ar/39Ar年代学研究及其大地构造意义[J].岩石学报,2003,19(3):517-522.
    [174]何书跃,李东生,李良林,等.青海东昆仑鸭子沟斑岩型铜(钼)矿区辉钼矿铼-锇同位素年龄及地质意义[J].大地构造与成矿学,2009(2):236-242.
    [175]何书跃,祁兰英,舒树兰,等.青海祁漫塔格地区斑岩铜矿的成矿条件和远景.地质与勘探,2008,44(2):14-22.
    [176]洪大卫,王涛,童英,等.华北地台和秦岭-大别-苏鲁造山带的中生代花岗岩与深部地球动力学过程[J].地学前缘,2003,10(3):231-256.
    [177]侯增谦,潘小菲,杨志明,等.初论大陆环境斑岩铜矿[J].现代地质,2007,21(2):332-351.
    [178]侯增谦,曲晓明,黄卫,等.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带[J].中国地质,2001,28(10):27-29.
    [179]胡瑞忠,毕献武,苏文超,等.华南白垩-第三纪地壳拉张与铀成矿关系[J].地学前缘,2004,11(1):153-159.
    [180]胡永达.青海东昆仑乌兰乌珠尔铜矿地质特征及成矿远景评价[D].长春:吉林大学,2007.
    [181]姜春发,王宗起,李锦轶,等.中央造山带开合构造[M].北京:地质出版社,2000。
    [182]姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质出版社,1992
    [183]解玉月.昆中断裂东段不同时代蛇绿岩特征及形成环境[J].青海地质,1998,7(1):27-36.
    [184]景向阳,王维,张永胜,等.青海省茫崖镇乌兰乌珠尔铜矿床地质特征、成因类型及其找矿前景分析[J].矿产与地质,2010,(03):222-228.
    [185]景向阳,张永胜,徐唯成,等.青海省茫崖镇乌兰乌珠尔铜矿床地质特征及成矿地质条件分析[J].青海科技,2008,03:36-42.
    [186]奎明娟,柏红喜,古凤宝,等.东昆仑构造岩浆带的划分及晚华力西期-燕山期岩石构造组合[J].青海大学学报:自然科学版,2010,28(5):49-55.
    [187]黎敦朋,李静,张汉军,等.东昆仑祁漫塔格山志留系白干湖组浊积岩特征[J].陕西地质,2003,21(2):39-44.
    [188]李碧乐,孙丰月,于晓飞,等.东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究[J].岩石学报,2012,28(4):1163-1172.
    [189]李碧乐,孙丰月,于晓飞,等.青海东昆仑卡尔却卡地区野拉塞铜矿床成因类型及成矿机制.岩石学报,2010,26(12):3696-3708.
    [190]李大新,丰成友,赵一鸣,等.青海卡而却卡铜多金属矿床蚀变矿化类型及矽卡岩矿物学特征[J].吉林大学学报(地球科学版),2011,06:1818-1830.
    [191]李光岑,林宝玉.昆仑山东段几个地质问题的探讨[A].见:青藏高原地质论文集[C].1982,28-48.
    [192]李光明,沈远超.东昆仑祁漫塔格地区华力西期花岗岩地质地球化学特征[J].地质与勘探,2001,37(1):73-78.
    [193]李利平,田军.东昆仑造山带下中三叠统沉积岩地球化学特征[J].同济大学学报:自然科学版,2002,30(8):938-943.
    [194]李荣社,计文化,赵振明,等.昆仑早古生代造山带研究进展[J].地质通报,2007,26(4):373-382.
    [195]李世金,孙丰月,丰成友,等.2008b.青海东昆仑鸭子沟多金属矿的成矿年代学研究.地质学报,82(7):949-955.
    [196]李世金,孙丰月,王力,等.2008a.青海东昆仑卡尔却卡多金属矿区斑岩型铜矿的流体包裹体研究.矿床地质,27(3):339-406.
    [197]李廷栋,肖序常.青藏高原地体构造分析//青藏高原岩石圈结构构造和形成演化[J].中华人民共和国地质矿产部地质专报(五),1996(20):6-20.
    [198]李长民.锆石成因矿物学与锆石微区定年综述[J].地质调查与研究,2009,32(3):161-174.
    [199]刘彬,马昌前,郭盼,等.东昆仑中泥盆世A型花岗岩的确定及其构造意义[J].地球科学—中国地质大学学报,2013,38(5):947-962.
    [200]刘彬,马昌前,张金阳,等.东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示[J].岩石学报,2012,28(6):1785-1807.
    [201]刘斌,段光贤.NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987,7(4):345-352.
    [202]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999.
    [203]刘成东,莫宣学,罗照华,等.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据[J].科学通报,2004,49(6):596-602.
    [204]刘成东,莫宣学,罗照华,等.东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征[J].地球学报,2003,24(6):584-588.
    [205]刘成东,张文秦,莫宣学,等.东昆仑约格鲁岩体暗色微粒包体特征及成因[J].地质通报,2002,11:739-744.
    [206]刘成东,周肃,莫宣学,等.东昆仑造山带后碰撞花岗岩岩石地球化学和40Ar/39Ar同位素年代学约束[J].华东地质学院学报,2003,(04):301-305.
    [207]刘成东.东昆仑造山带东段花岗岩岩浆混合作用[M].地质出版社,2008.
    [208]刘丛强,黄智龙,许成,等.地幔流体及其成矿作用:以四川冕宁稀土矿床为例[M].北京:地质出版社,2004:65-80.
    [209]刘红涛.祁漫塔格陆相火山岩:塔里木陆块南缘印支期活动大陆边缘的岩石学证据[J].岩石学报,2001,(03):337-351.
    [210]刘建楠,丰成友,亓锋,等.青海都兰县下得波利铜钼矿区锆石U-Pb测年及流体包裹体研究[J].岩石学报,2012,28(2):679-690.
    [211]刘敏,王志良,张作衡,等.新疆东天山土屋斑岩铜矿床流体包裹体地球化学特征[J].岩石学报,2009(6):1446-1455.
    [212]刘训,傅德荣,韦光明,等.从沉积特征研究格尔木-额济纳旗地学断面走廊域地体的构造演化史[J].地球物理学报,1995(S2):114-129+166.
    [213]刘战庆,裴先治,李瑞保,等.东昆仑南缘布青山构造混杂岩带早古生代白日切特中酸性岩浆活动:来自锆石U-Pb测年及岩石地球化学证据[J].中国地质,2011,38(5):1150-1167.
    [214]刘正荣,杨永强,李钟山,等.东昆仑索拉吉尔铜钼矿床成矿系统及开发条件[J].资源与产业,2010,04:129-132.
    [215]卢德源,陈纪平.青藏高原北部沱沱河—格尔木一带地壳深部结构[J].地质论评,1987,33(2):122-128.
    [216]卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004.
    [217]卢良兆,许文良,等.岩石学[M].北京:地质出版社,2011.
    [218]芦文泉,童海奎,马永胜.鄂拉山查查香卡地区晚三叠世火山岩产出环境分析[J].西北地质,2012,45(1):48-55.
    [219]陆济璞,李江,覃小锋,等.东昆仑祁漫塔格伊涅克阿干花岗岩特征及构造意义[J].沉积与特提斯地质,2005,25(4):46-54.
    [220]陆松年,于海峰,李怀坤,等.“中央造山带”早古生代缝合带及构造分区概述[J].地质通报,2006,25(12):1368-1380.
    [221]罗文行,钱莉莉,李德威,等.东昆仑中灶火地区超镁铁质辉石岩的成因[J].地球科学—中国地质大学学报,2013,38(6):1214-1228.
    [222]罗照华,邓晋福.青海省东昆仑地区晚古生代——早中生代火山活动与区域构造演化[J].现代地质,1999,13(1):51-56.
    [223]罗照华,柯珊,曹永清,等.东昆仑印支晚期幔源岩浆活动.地质通报,2002,21(6):292-297.
    [224]马文璞.当前造山带研究的几个重要问题[J].地学前缘,1999,6(3):103-111.
    [225]马忠元,李良俊,周青禄,等.东昆仑哈日扎斑岩型铜矿床特征及成因探讨[J].青海大学学报(自然科学版),2013,03:69-75.
    [226]毛景文,张建东,郭春丽.斑岩铜矿-浅成低温热液银铅锌-远接触带热液金矿矿床模型:一个新的矿床模型——以德兴地区为例[J].地球科学与环境学报,2010,01:1-14.
    [227]孟繁聪,崔美慧,吴祥珂,等.东昆仑祁漫塔格花岗片麻岩记录的岩浆和变质事件[J].岩石学报,2013,29(6):2107-2122.
    [228]莫宣学,邓晋福,喻学惠,等.东昆仑中段成矿地质背景与找矿方向的框架研究.原地质矿产部定向基金项目科研报告,1998.
    [229]莫宣学,罗照华,邓晋福,等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报,2007,133(3):403-414.
    [230]潘桂棠,陈智粱,李兴振.东特提斯地质构造形成演化[M].北京:地质出版杜.1997.
    [231]潘桂棠,李兴振.青藏高原及邻区大地构造单元初步划分[J].地质通报,2002,21(11):701-707.
    [232]潘桂棠,徐强,侯增谦,等.西南“三江”多岛弧造山过程成矿系统与资源评价[M].北京:地质出版社,2003.
    [233]潘裕生.青藏高原叶城—狮泉河路线地质特征及区域构造演化[J].地质学报,1994,68(4):295-307.
    [234]潘裕生.西昆仑山构造特征与演化[J].地质科学,1990,25(3):224—232.
    [235]青海省地质局石油普查大队.祁连山、阿尔金山、昆仑山地层概况[M].1962.
    [236]青海省地质矿产局.1∶20万格尔木市幅、纳赤台幅区域地质调查报告[M].1981.
    [237]青海省地质矿产局.青海省区域地质志[M].北京:地质出版社,1991.
    [238]青海省地质矿产局.青海省岩石地层[M].北京:中国地质大学出版社,1997
    [239]青海省地质调查院.1∶25万都兰湖幅区域地质调查报告[M].2003.
    [240]青海省地质调查院.1∶25万兴海幅区域地质调查报告[M].2001.
    [241]青海省地质调查院.1∶5万水泥厂幅、忠阳山幅、黑刺沟幅区域地质调查报告[M].2004
    [242]青海省区调综合地质大队.1∶5万错扎玛幅区域地质调查报告[M].1995.
    [243]青海省区调综合地质大队.东昆仑山缝合带及基底构造对比研究[M].1992(内部资料).
    [244]邱瑞照,邓晋福,周肃,等.青藏高原中新生代花岗岩Sr、Nd同位素研究[J].地球学报,2003,24(6):611-617.
    [245]曲晓明,黄卫.冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?[J].矿床地质,2001,20(4):355-366.
    [246]芮宗瑶,黄崇柯,齐国民,等.中国斑岩型铜(钼)矿[M].北京:地质出版社,1984.
    [247]芮宗瑶,张洪涛,王龙生,等.吉黑东部斑岩型-浅成热液型铜金矿床多重成矿模型[J].矿床地质,1995,14(2):174-184.
    [248]芮宗瑶,张立生,陈振宇,等.斑岩铜矿的源岩或源区探讨[J].岩石学报,2004,20(2).
    [249]佘宏全,丰成友,张德全,等.西藏冈底斯铜矿带甲马夕卡岩型铜多金属矿床与驱龙斑岩型铜矿流体包裹体特征对比研究[J].岩石学报,2006(03):689-696.
    [250]佘宏全,张德全,景向阳,等.青海省乌兰乌珠尔斑岩铜矿床地质特征与成因[J].中国地质,2007,34(2):306-314.
    [251]沈远超,王岳军.新疆东昆仑祁漫塔格地区上三叠统火山岩岩石成因初探[J].大地构造与成矿学,1999,23(1):50-58.
    [252]沈远超,杨金中.新疆东昆仓祁漫塔格地区上三叠统火山岩的年代及构造环境研究[J].地质与勘探,2000,36(3):32-35.
    [253]石天成,张占玉.乌兰乌珠尔铜矿床基本特征及找矿潜力分析[J].青海科技,2007,06:26-28.
    [254]时超,李荣社,何世平,等.东昆仑东段杏树沟金矿(化)点的成矿特征及其围岩时代的确定[J].地质通报,2013,31(12):1983-1990.
    [255]宋文彬,赖健清,黄敏,等.青海省卡尔却卡铜多金属矿床流体包裹体特征及成矿流体[J].中国有色金属学报,2012,03:733-742.
    [256]宋忠宝,张雨莲,陈向阳,等.东昆仑哈日扎含矿花岗闪长斑岩LA-ICP-MS锆石U-Pb定年及地质意义[J].矿床地质,2013,01:157-168.
    [257]孙丰月,金巍,李碧乐,等.关于脉状热液金矿床成矿深度的思考[J].长春科技大学学报,2000,30(增刊):27-30.
    [258]孙丰月,李碧乐,丁清峰,等.东昆仑成矿带重大找矿疑难问题研究成果报告[M].2009(内部资料).
    [259]孙延贵,田琪.西秦岭与东昆仑的侧向碰撞与造山[J].青海地质,2001,10(2):18-25.
    [260]孙延贵.鄂拉山造山带中段哇洪拉分盆地的充填机制[J].青海地质,1999,01:30-35.
    [261]孙延贵.西秦岭—东昆仑造山带的衔接转换与共和坳拉谷[D].西安:西北大学,2004.
    [262]谈生祥,拜永山,常革红,等.祁漫塔格地区晋宁期变质侵入岩(体)的发现及其地质意义[J].西北地质,2004,37(1):69-73.
    [263]田军,张克信.东昆仓造山带东段下中三叠统研究进展[J].地球科学:中国地质大学学报,2000,25(3):290-294.
    [264]王冠,孙丰月,李碧乐,等.东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义[J].大地构造与成矿学,2013,(04):685-697.
    [265]王国灿,王青海,简平,等.东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义[J].地学前缘,2004,11(4):481-490.
    [266]王国灿,魏启荣,贾春兴,等.关于东昆仑地区前寒武纪地质的几点认识[J].地质通报,2007(08):929-937.
    [267]王磊.吉林大黑山钼矿矿床地质特征及成矿模式研究[D].长春:吉林大学,2012.
    [268]王松,丰成友,李世金,等.青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMPU-Pb测年及其地质意义[J].中国地质,2009,01:74-84.
    [269]王向利,高小平,刘幼骐,李新林,周小康,杜少喜,崔继刚,戴新宇,曾忠诚.东昆仑西段祁漫塔格群的重新厘定[J].西北地质,2010,(04):168-178.
    [270]王永标,黄继春,骆满生,田军,拜永山.海西-印支早期东昆仑造山带南侧古海洋盆地的演化[J].地球科学,1997,(04):33-36.
    [271]王岳军,沈远超,林舸.中昆仑北部地区构造地层学初步研究[J].地层学杂志,2000,24(1):55-59.
    [272]王云山,陈基娘.青海省及毗邻地区变质地带与变质作用[M].北京:地质出版社,1987.
    [273]魏启荣,李德威,王国灿.东昆仑万保沟群火山岩(Pt2w)岩石地球化学特征及其构造背景[J].矿物岩石,2007,27(1):97-106.
    [274]吴福元,李献华,杨进辉,郑永飞.花岗岩成因研究的若干问题[J].岩石学报,2007,(06):1217-1238.
    [275]吴功建,肖序常.揭示青藏高原的隆升——青藏高原亚东—格尔木地学断面[J].地球科学:中国地质大学学报,1996,21(1):34-40.
    [276]吴健辉,丰成友,张德全,李进文,佘宏全.2010.柴达木盆地南缘祁漫塔格—鄂拉山地区斑岩-矽卡岩矿床地质.矿床地质,24(2):87-98.
    [277]吴开兴,胡瑞忠,毕献武,等.矿石铅同位素示踪成矿物质来源综述[J].地质地球化学,2002,03:73-81.
    [278]吴少锋,陈礼标,任文恺,张海青,王少华,丁成旺.祁漫塔格地区更长环斑花岗岩的发现及其地质意义[J].青海大学学报(自然科学版),2012,(05):49-54.
    [279]吴祥珂,孟繁聪,许虹,等.青海祁漫塔格玛兴大坂晚三叠世花岗岩年代学、地球化学及Nd-Hf同位素组成[J].岩石学报,2011,(11):3380-3394.
    [280]夏斌,陈根文,王核.全球超大型斑岩铜矿床形成的构造背景分析[J].中国科学:D辑,2002,32:87-95.
    [281]夏楚林,任二峰,高莉,等.青海喀雅克登塔格晚三叠世鄂拉山组火山熔岩地球化学特征及构造环境探析[J].青海大学学报:自然科学版,2012,29(6):48-53.
    [282]向鹏,熊索菲.青海省共和县加当根铜(钼)矿矿床类型探讨[J].矿床地质,2010(S1):303-304.
    [283]向鹏.青海省加当根斑岩型铜(钼)矿床成矿特征及成矿条件研究[D].武汉:中国地质大学,2011.
    [284]肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法.北京:地质出版社,2002.
    [285]肖庆辉,邱瑞照,邓晋福,等.中国花岗岩与大陆地壳生长方式初步研究[J].中国地质,2005,32(3):343-352.
    [286]熊富浩,马昌前,张金阳,等.东昆仑造山带白日其利辉长岩体LA-ICP-MS锆石U-Pb年龄及地质意义[J].地质通报,2011,31(8):1196-1202.
    [287]许庆林,孙丰月,李碧乐,等.东昆仑莫河下拉银多金属矿床花岗斑岩年代学、地球化学特征及其构造背景[J].大地构造与成矿学,2014,(02):421-433.
    [288]许荣华,HarrisN,LewisC,等.拉萨至格尔木的同位素地球化学.见:青藏高原地质演化.北京:科学出版社.1990:282-302.
    [289]许志琴,崔军文,张建新.大陆山链变形构造动力学[M].北京:冶金工业出版社,1996,204-225.
    [290]许志琴,杨经绥,陈方远.1996.阿尼玛卿缝合带及“俯冲-碰撞”动力学.//张旗主编.蛇绿岩与地球动力学研究.北京:地质出版社,185-189.
    [291]许志琴,杨经绥,李海兵,等.造山的高原:青藏高原的地体拼合、碰撞造山及隆升机制
    [M].北京:地质出版社,2007.
    [292]薛明轩.黑龙江省内生金矿成矿作用研究[D].长春:吉林大学,2012.
    [293]杨金中,沈远超,刘铁兵.新疆东昆仑祁漫塔格群火山岩建造成因初析[J].新疆地质,2000,18(2):105-112.
    [294]杨经绥,柴耀楚,冯秉贵.东昆仑万宝沟群中的基性火山岩特征及其成因探讨[J].岩石矿物学杂志,1987,2:121-130.
    [295]杨平,裴生菊,陈丽娟,等.青海哈日扎含铜斑岩特征及其找矿潜力分析[J].青海大学学报(自然科学版),2010,06:62-68.
    [296]杨延乾,李碧乐,许庆林,等.东昆仑埃坑德勒斯特二长花岗岩锆石U-Pb定年及地质意义[J].西北地质,2013(1):56-62.
    [297]殷鸿福,张克信,陈能松,等.1:25万冬给措纳湖幅区域地质调查报告[M].武汉:中国地质大学出版社,2003.
    [298]殷鸿福,张克信.东昆仑造山带的一些特点[J].地球科学:中国地质大学学报,1997,22(4):339-342.
    [299]殷鸿福,张克信.中央造山带的演化及其特点[J].地球科学:中国地质大学学报,1998,23(5):437-442.
    [300]尹福光,潘桂棠.昆仑多岛弧盆系及泛华夏大陆的增生[J].大地构造与成矿学,2003,27(1):22-28.
    [301]于淼,丰成友,肖晔,等.青海共和县加当根斑岩铜矿床成矿流体特征及演化[J].矿床地质,2013,(1):133-147.
    [302]袁万明,莫宣学.东昆仑印支期区域构造背影的花岗岩记录[J].地质论评,2000,46(2):203-211.
    [303]张德全,党兴彦,佘宏全,等.柴北缘—东昆仑地区造山型金矿床的Ar-Ar测年及其地质意义.矿床地质,2005,24(2):87-98.
    [304]张德全,丰成友.柴北缘—东昆仑地区的造山型金矿床[J].矿床地质,2001,20(2):137-146.
    [305]张金明,王钦元,许海全,等.喀雅克登塔格地区古元古代金水口变质侵入岩(体)的发现及其地质意义[J].西北地质,2012,45(3):13-19.
    [306]张梅芬,刘建华,肖文进,等.青海省斑岩铜矿地质特征及找矿方向探讨[J].矿产与地质,2007,21(4):440-444.
    [307]张文淮,陈紫英.流体包裹体地质学[M].北京:中国地质大学出版社,1993.
    [308]张雪亭,王秉璋,俞建,等.巴颜喀拉残留洋盆的沉积特征[J].地质通报,2005,24(7):613-620.
    [309]张亚峰,裴先治,丁仨平,等.东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义[J].地质通报,2010,29(1):79-85.
    [310]张耀玲,张绪教,胡道功,等.东昆仑造山带纳赤台群流纹岩SHRIMP锆石U-Pb年龄[J].地质力学学报,2010,16(1):21-27.
    [311]张以茀,郑祥身.青海可可西里地区地质演化[C].北京:科学出版社,1996.
    [312]赵财胜,杨富全,代军治.青海东昆仑肯德可克钴铋金矿床成矿年龄及意义[J].矿床地质,2006,25:427-430.
    [313]赵风清,郭进京,李怀坤.青海锡铁山地区滩间山群的地质特征及同位素年代学[J].地质通报,2003,22(1):28-31.
    [314]赵俊伟.青海东昆仑造山带造山型金矿床成矿系列研究[D].吉林大学,2008.
    [315]赵小明,姚华舟,汤朝阳,涂兵.青海省曲麻莱地区上三叠统巴颜喀拉山群砂岩成分与构造背景探讨[J].华南地质与矿产,2006,(1):54-58.
    [316]赵振明,马华东,王秉璋,等.东昆仑早泥盆世碰撞造山的侵入岩证据[J].地质论评,2008,54(1):47-56.
    [317]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000:218-245.
    [318]郑永飞,傅斌,张学华.岩浆去气作用的碳硫同位素效应[J].地质科学,2006,31(1):44-53.
    [319]朱炳泉,李献华,戴橦谟.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化[J].北京:科学出版社,1998.
    [320]朱云海,张克信.东昆仑造山带东段晋宁期岩浆活动及其演化[J].地球科学,2000,(03):231-266.
    [321]朱云海.东昆仑造山带不同蛇绿岩带的厘定及其构造意义[J].地球科学:中国地质大学学报,1999,24(2):134-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700