用户名: 密码: 验证码:
地下工程水灾害隐患米级天线磁共振探测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国地下工程施工密度大,工程种类多,所面临的地质条件异常复杂,受地质灾害特别是水灾害隐患的威胁十分严重。目前已有的地下工程水害检测方法都是通过测量围岩结构、地层电性等参数间接推断突涌水体的位置和大小,属于间接探测方法。磁共振方法作为目前世界上最为行之有效的地下水直接探测方法,能够对突涌水体的含水量、孔隙度、含水层位置等水文地质参数进行直接探测。但是由于受到地下工程狭窄空间影响,进行磁共振方法探测必须缩小天线尺寸,由此引起的小尺寸天线获取信号微弱、激发能量输出效果差、探测系统性能要求苛刻等技术难题,使得这种方法在国内外还没有成功应用到地下工程中。
     本文针对磁共振技术应用于地下工程中所面临的技术难题,从全空间磁共振响应计算、米级分离式天线设计、仪器系统关键技术研制、模拟场地实验验证以及在实际工程现场中应用等方面开展工作,取得的主要研究成果如下:
     1、针对地下工程的特殊应用环境,本文给出了适用于全空间环境下的米级分离式多匝环形天线的信号响应计算公式,并根据实际目标水体模型的属性进行磁共振信号响应计算和仿真,为地下工程的磁共振探测提供理论基础。
     2、针对米级磁共振接收天线甚微弱信号获取问题,对接收天线系统建模,提出了接收天线性能评价方法,给出了接收天线最优化设计流程,确定了能够应用于隧道、矿井等地下工程中米级接收天线最佳参数,使接收天线对微弱信号的检测能力提高至纳伏级。
     3、针对狭窄地下空间发射天线激发能量受限问题,在分析了发射天线系统的性能影响因素基础上,给出了发射天线的最优化设计流程,确定了发射天线最佳参数,将天线激发能量提高了65%。同时结合实际情况,研究了地下工程中金属支护结构对发射电流的影响,提出了基于距离参数的发射电流改善措施,保证了地下工程中米级发射天线的能量输出效果。
     4、针对多匝天线获取信号死区时间过长问题,在发射系统和接收系统中进行双重抑制,加速关断时间,同时利用变Q原理对切换装置的阶跃响应进行消除,将多匝天线的死区时间从60ms缩短至18ms,提高了探测信噪比和初始信号的准确度。
     5、针对信号微弱、检测系统门槛过高问题,本文提出了前端电路匹配方法,通过对离散电容的连续化设计,提高了高感接收天线的中心频点稳定度,最大传递系数偏差小于2.8%,同时通过分析匹配电阻对天线传递系统的影响,将天线系统的传递系数进一步提高,保证了纳伏级甚微弱磁共振信号的有效提取。
     6、针对地下工程环境中的测量效率问题,给出了利用组合充电方式的系统快速充电方法,在保证最大充电误差小于1%的基础上,将充电速度提高了近5倍,同时设计了精度达到±0.01mH电感参数快速测量装置,使仪器能够在复杂的电磁环境中快速确定天线参数,提高了系统的工作效率。
     7、本文在已知水文地质参数的实验场地中开展了小尺寸磁共振探测天线的实测实验,分别利用6m、4m和2m天线获得了信噪比达到4.5以上的高质量的磁共振信号,有效证明了米级天线在地下工程中进行探测的可行性。
     本文取得创新性的研究成果主要有以下几点:
     1、针对地下工程中传统方法探测地下水害时,无法直接获取水文地质参数、量化困难等不足,首次提出了基于米级天线的磁共振技术进行水灾害隐患直接探测方法,实现了地下工程中灾害水体水文地质参数的定量探测。
     2、提出了一种米级探测天线性能评价方法,通过建立特征参数、传递系数与天线性能的约束关系,完成了最佳参数的探测天线设计。首次在地磁场环境下,利用所研制的天线(6m级、4m级、2m级)获得了信噪比达到4.5以上的高质量磁共振信号,填补了磁共振技术在这一领域的研制空白。
     3、针对微弱信号获取困难、检测分辨率过低等问题,提出了一种米级接收天线的前端电路调理方法,用多匝接收天线精密匹配、短死区时间控制、宽带锁相滤波等关键技术,实现了纳伏级甚微弱磁共振信号的提取。
     4、针对多匝探测天线关断时间过长问题,提出了高电感探测天线的阶跃响应控制方法。采用快速关断与剩余能量吸收、基于变Q原理的震荡抑制等技术手段,将多匝天线的死区时间从60ms缩短至18ms,改善了能量释放和振铃效应对初始信号的影响,为探测数据的精确反演提供了有效保障。
     本文首次利用所研制的米级探测天线和仪器系统在沪昆高速铁路贵州段、金温高速铁路温州段、锦屏水电站二期工程等多个隧道中进行水灾害隐患磁共振探测,取得了良好的工程应用效果,证明了磁共振方法在地下工程中对水灾害隐患探测的有效性。通过本文的研究,拓展了磁共振探测方法的应用领域,为直接有效的解决地下工程不良水体危害问题提供了研究基础和技术保障。
China has extremely high density of underground construction, many kinds ofgeological engineering, and faces complex geological conditions and serious disasters,particularly the risk of water-induced disaster.Currently, the detection methods ofunderground water are all based on the rock structure or electrical parameters of theformation to indirectly determine the location and size of the sudden and gushingwater body, which belong to the indirect detection method. Magnetic ResonanceSounding method for direct detection of groundwater is the most effective method inthe world, which is capable of direct detection ofthe hydrogeological parameters, likewater content, porosity and aquifer location of sudden and gushing water body.However, due to the influence by the confined space in the underground,MRSmeasurementmust reducethe antenna size. Furthermore, the small size of the antennacauses very weak signal, poor excitation energy output and high detection systemperformance and other difficult technology problems. Therefore, this method has notbeen applied successfully to the underground project all around world.
     This paper focuses on taking MRS technology to apply for solving thesetechnical problems in the underground engineering. I have calculated the whole spaceresonance response, designed the small size of separated antenna, developed the keyparameters of the instrument, simulated the field experiments, and applied in theactual project sites. The main research results obtained are as follows:
     1. As for the special underground engineering environment in the applications,this paper gives the calculation formulas for the separated multi-turn antenna withsmall size, which is suitable for the whole-space environment, and calculates themagnetic resonance sounding signal response based on the actual target water bodymodel,which provide the theoretical basis of the magnetic resonance soundingmeasurement in the underground engineering.
     2. As for the problem that the obtained signal is very weak because of the smallsize of the magnetic resonance sounding antenna, this paper models the receivingantenna system, proposes a method for evaluating the performance of the receivingantenna. I propose the receiving antenna optimized design process, and identify thekey parameters of the6-m,4-m and2-m side of rectangular receiving antenna. Thereceiving antenna has been improved by a factor of4.8,which can be applied in thetunnels and mines.
     3. As for the problem that the limitation of excitation energy transmitting antennawhich is caused by the narrow underground space, this paperanalyses the factorsaffecting the performance of the transmitting antenna system and give the most optimized design process of the transmitting antenna and identify theparameters.While ensuring the depths, the antenna energy efficiency is improved by65%.Combining with the actual situation, I discuss the effect of the emission currentwith metal supporting structure in the underground engineering and propose thecontrol method based on the distance parameters of the transmitting current.
     4. As for the problem that long dead time for multi-turn antenna, this papercarries out a dual inhibition from the transmitting system and the receiving system toaccelerate the turn-off time. Meanwhile, according to the variable Q principle, I usethe switching unit to eliminate the step response. This method shorts the dead time inthe small detection antennas from60ms to18ms, and improvesthe accuracy of thedetection SNR and hydrological parameters.
     5. As for the problem that weak signal and high threshold entering the detectionsystem, this paper proposes a method to match the front-end circuit. Throughcontinuous design of the discrete capacitor, I improve the stability of the frequencycenter of the high inductance-receiving antenna. The maximum transfer coefficientdeviation is less than2.8%. At the same time, the matching resistance influence onantenna transmission system is analyzed. Further improve transfer coefficient of themeter-antenna system,to ensure the effective extraction of very weak magneticresonance signals on nanovolt scale.
     6. As for the problem that measuring efficiency in the underground engineeringenvironment, this paper presents a fast charging method that uses combination ofcharging way to increase the charging system speed and accuracy. On the basis oferror of less than1%, the guaranteed maximum charge is fasterby5times. Meanwhile,I design a sweep method to quickly determine the inductance parameter. Antennaparameters can be determined rapidly in complex electromagnetic environment,which improve the work efficiency of the system. The accuracy of the antennainductance is determined of±0.01mH.
     7. Based on the known hydrogeological parameters field, I have carried outthemagnetic resonance soundingmeasurement with the small size antennas and obtaineda high quality magnetic resonance sounding signalwith more than4.5signal to noiseratio by using6m,4m,2m antenna,respectively. I have effective proved thefeasibility of the meter scale the antenna in the underground engineering.
     This paper has made the innovative research results as following:
     1. This paperaims at that the traditional method in the underground engineeringcan’t obtain the hydrogeological parametersof disaster-induced groundwater and hasdifficult to quantify. For the first time, I propose a totally new method that detects directly the hidden water hazards using MRS technology with the meter scale antennatoachieve a quantitative detection of hydrogeological parameters of disaster-inducedwaterin the underground engineering.
     2. I propose anevaluation methodfor the performanceof meter scale detectionantenna.Through establishing the constraint relations of the characteristic parameters,the transfer coefficient and the antenna performance, I complete the antenna designwith the optimal parameters.For the first time,I have used the developed antenna (6-m,4-m, and2m) to obtain the high quality of magnetic resonance sounding signalwiththe signal to noise ratio of more than4.5in the earth's magnetic field environments,which fills the blank in magnetic resonance technology area.
     3. This paper aims at the problems thatit is difficult to get the weak signal and theresolution is too low to detect,proposes a front circuit conditioning method for themeterscalereceivingantenna. The method applies theprecision matchingof multi-turnreceiving antenna, short dead-time control, broadband phase-locked filtering andother key technologies to achieve very weak magnetic resonance soundingsignalsextraction of nanovolt.
     4. This paperaims at the problem thatthe long turn-off time of the multi-turnantenna, proposes amethod to control the high inductance antennastep response.Thismethod uses fast turn-off, residual energy absorption technique and shock suppressiontechnique based on the change Q principleto reduce the impact of energy release andringing effect on the initial signal, whichreduce the dead time from60ms to18ms,and provide effective protection of the result of the data inversion.
     This paper firstly uses the developed meter scale antenna and magneticresonance sounding system in Guizhou section of Shanghai-Kunming high-speedrailway, Wenzhou section of Jinhua-Wenzhou high-speed railway and Jinpinghydropower station phase II and other tunnels to detect hidden water hazards andachieved good engineering application results. These results confirm the effectivenessof the magnetic resonance sounding method for the disaster-inducedwater detection inunderground engineering. Through the research in this paper, I expand the scope ofapplication of magnetic resonance sounding area, solve directly and effectively thewater hazard problems in the underground engineering and provide the technicalsupport for basic research.
引文
[1]中华人民共和国国民经济和社会发展第十二个五年规划纲要[N].人民日报,2011-03-17.
    [2]傅冰骏.国际隧道及地下工程发展动向--2002年世界隧道及地下工程博览会暨学术交流会情况报导[J].探矿工程,2002(5):54-57.
    [3]毛节华,许惠龙.中国煤炭资源分布现状和远景预测[J].煤田地质与勘探,1999,27(3):1-6.
    [4]徐则明,黄润秋.深埋特长隧道及其施工地质灾害[M].成都:西南交通大学出版社,2000.
    [5]石文慧.当代铁路隧道发展趋势及地质灾害防治[J].铁道工程学报,1996(2):55-62.
    [6]孙怀凤.隧道含水构造三维瞬变电磁场响应特征及突水灾害源预报研究[D],济南:山东大学,2013.
    [7]伍法权.中国21世纪若干重大工程地质与环境问题[J].工程地质学报,2001,9(2):115-12.
    [8]王梦恕.中国是世界上隧道和地下工程最多、最复杂、今后发展最快的国家[J].铁道标准设计,2003(1):l-4
    [9]王齐仁.隧道地质灾害超前探测方法研究[D],长沙:中南大学,2008.
    [10]王梦恕.21世纪是隧道及地下空间大发展的年代[J].岩土工程界,2000,3(6):13-15.
    [11]何继善,柳建新.隧道超前探测方法技术与应用研究[J].工程地球物理学报,2004,1(4):293-298.
    [12]李凤明.采矿引发的地质灾害及工程治理实践[J].煤炭科学技术,2001,29(3):16-18.
    [13]煤炭产业仍有广阔发展空间和新的发展机遇.中国煤炭网,2011-02-15,http://www.ccoalnews.com/101773/102232/150777.html
    [14]周德群,汤建影.能源工业可持续发展的概念、指标体系与侧度[J].煤炭学报,2001,26(5):449-455.
    [15]任润厚.论煤炭工业的可持续发展[J].中国煤炭,2004(12):24-25.
    [16]国家发展和改革委员会:《煤炭工业发展“十-五”规划》[S].2007.1.
    [17]田涛,秦跃平.中国煤炭企业安全效率及其影响因素分析[J].中国安全科学学报,2012,22(7):128-134.
    [18]王永红,沈文.中国煤矿水害预防及治理[M].北京:煤炭工业出版社,1996.
    [19]秦跃平.我国煤矿安全投入机制研究及线路评价分析[D],北京:中国矿业大学(北京),2013.
    [20]”十-五”期间全国煤矿水害事故分析报告.中国煤炭新闻网,2011-10-12,http://www.cwestc.com/newshtml/2011-10-12/218078.shtml
    [21]陈红,谭慧,祁慧.中国煤矿重大水害事故规律分析[J].中国矿业,2005,14(8):22-25.
    [22]轩辕啸雯.21世纪初地下工程概况[J].施工技术,2002,31(1):38-39.
    [23]刘光鼎.回顾与展望——21世纪的固体地球物理[J].地球物理学进展,2002,17(2):191-197.
    [24]王齐仁.地下地质灾害地球物理探测研究进展[J].地球物理学进展,2004,19(3):497-50.
    [25]GerdSattel, et al.Predicting ahead of the Face[J].Tunnels&Tunneling,1996:24-30.
    [26]Dickmann,T., Sander,B.K. Dricage-concurrent tunnel seismic prediction(TSP):results fromVereina north tunnel mega-project and Piora pilot gallery[J].Geomechanics,1997,14(6):406-411.
    [27]赵永贵,刘浩,孙宇,等.隧道超前预报研究进展[J].地球物理学进展,2003,18(3):460-464.
    [28]Otto R, Button E A, Bretterebner, et al. The application of TRT(true reflection tomography) atthe Unterwald tunnel[J].Felsbau,2002,20(2):51-56.
    [29]Kevin Black, Peter Kopac. The Application of Ground Penetrating Radar in HighwayEngineering[J].Public Roads,1992(3):96-103.
    [30]Johannes B S, Bahr K.Optimization of signal-to-noise radio in dc.soundings[J]. Geophysics,2000,65(5):1495-150
    [31]Li Yuguo, Klause Spitzer. Three-dimensional DC resistivity forward modeling using finiteelements in comparison with finite-difference solutions[J]. Geophysical Journal International,2002,151:924-934.
    [32]林君,段清明,王应吉.地面核磁共振仪器[M].北京:科学出版社,2011.
    [33]Legchenko,A., Shushakov,O.. Inversion of surface NMR data.Geophysics,1998,63(1):75-84.
    [34]Bray, C.L., Iannopollo, S., Hornak, J.P. Design and characterization of a sub-surface MRIsystem[C].15th Triennial Conference for the ISMAR.2004:165.
    [35]LEGCHENKO A, VALLA P. A Review of the Basic Principles for Proton MagneticResonance Sounding Measurements[J]. Journal of Applied Geophysics,2002,50(1-2):3-19.
    [36]CALLAGHAN P. Principles of Nuclear Magnetic Resonance Microscopy[M], New Zealand:Oxford University Press,2007.
    [37] LEVITT M H. Spin Dynamics-Basics of Nuclear Magnetic Resonance[M]. Chichester: JohnWiley&Sons, LTD,2002.
    [38]YARAMANCI U, LANGE G, KN DEL K. Surface NMR within a Geophysical Study of anAquifer at Haldensleben(Germany)[J]. Geophysical Prospecting,1999,47(6):923–943.
    [39]IRIS Instruments. NIMUS [EB/OL]. http://www.iris-instruments.com/index.html
    [40]VISTA CLARA INC. GMR [EB/OL]. http://www.vista-clara.com/instruments/gmr/
    [41]RASIC-RESEARCH. NMR [EB/OL]. http://www.radic-research.homepage.t-online.de/
    [42]王中兴.地面核磁共振找水仪关键技术的研究[D].长春:吉林大学,2009.
    [43]SEMENOV A. NMR hydroscope for water prospecting[C]. Proceedings of the Seminar onGeotomography. Indian Geophysical Union, Hyderabad,1987,66-67.
    [44]SEMENOV A, SCHIROV M, LEGCHENKO A, et al. Device for measuring the parameter ofunderground mineral deposits: Great Britain Patent2198540B[P],1987-3-12.
    [45]Jean Roy, Alain Rouleau, Michel Chouteau, Michel Bureau. Widespread occurrence ofaquifers currently undetectable with the MRS technique in the Grenville geological province,Canada[J].Journal of Applied Geophysics,2008,66(3-4):82-93.
    [46]J.M. Vouillamoz, G. Favreau, S. Massuel, M. Boucher, Y. Nazoumou, A. Legchenko.Contribution of magnetic resonance sounding to aquifer characterization and recharge estimatein semiarid Niger[J]. Journal of Applied Geophysics.2008,64:99–108.
    [47]Anatoly Legchenko, Jean-Michel Baltassat, Alexey Bobachev, Charlotte Martin, Henri Robain,and Jean-Michel Vouillamoz. Magnetic resonance sounding applied to aquifercharacterization[J]. Ground Water,2004,42(3):363-373.
    [48]Girard J F, Boucher M, Legchenko A, et al.2D Magnetic Resonance Tomography Applied toKarstic Conduit Imaging[J]. Journal of Applied Geophysics,2007,63(3-4):103–116.
    [49]WalshD O. Multi-channel Surface NMR Instrumentation and Software for1D/2DGroundwater Investigation[J]. Journal of Applied Geophysics,2008,66(3-4):140-150.
    [50] Hore, P.J. Nuclear magnetic resonance[M].America:New York Oxford University Press.1996.
    [51]Robert Wyns, Jean-Michel Baltassat, Patrick Lachassagne, Anatoly Legchenko, JacquesVairon, and Francis Mathieu. Application of proton magnetic resonance soundings togroundwater reserve mapping in weathered basement rocks (Brittany, France)[J]. Bulletin dela Societe Geologique de France,2004(175):21-34.
    [52]P. Kinchesh, A.A. Samoilenko, A.R. Preston, Randall E.W. Stray field nuclear magneticresonance of soil water; development of a new, large probe and preliminary results[J]. Journalof Environmental Quality,2002,31(2):494-499.
    [53]J. Díaz-Curie, B. Biosca, L. Arévalo, J.L. Plata. Development of field techniques forimproving MRS quality in shallow investigations[J].Near Surface Geophysics,2011(9):11-21.
    [54]Greben J.M., Meyer R., Kimmie Z. The underground application of Magnetic ResonanceSoundings[J]. Journal of Applied Geophysics,2011(75):220–226.
    [55] PERTTU N, PERSSON L, ERLSTROM M, et al. Magnetic resonance sounding andradiomagnetotelluric measurements used to characterize a limestone aquifer in Gotland,Sweden [J]. Journal of Hydrology,2012,424-425:184-195
    [56]荣亮亮.多匝线圈核磁共振找水技术研究[D].长春:吉林大学,2009.
    [57]林君,蒋川东,段清明,等.复杂条件下地下水磁共振探测与灾害水源探查研究进展[J].吉林大学学报(地学版).2012,42(5):1560-1570.
    [58]孙怀凤,李术才,李貅,等.核磁共振测深进行隧道超前地质预报的可行性[J].山东大学学报(工学版).2013,43(1):92-103.
    [59]M. Braun, I. Rommel, U. Yaramanci. Modelling of magnetic resonance sounding using finiteelements (femlab) for2d resistivity extension. Proceedings der Femlab Konferenz. No.ISBN3-00-017211-4,2005:191–196.
    [60] Valla,P.,Legchenko,A.. One-dimensional modelling for proton magnetic resonance soundingmeasurements over an electrically conductive medium. Journal of Applied Geophysics,2002,50(1-2):217-229.
    [61]Legchenko, A.V., Semenov, A.G., Shirov, M.D. A device for measurement of subsurface watersaturated layers parameters[P].1990,USSR Patent:1540515.
    [62]Legchenko, A V. A practical accuracy of the surface NMR measurements[C].Conference andTechnical Exhibition-European Association of Geoscientists and Engineers,1996(58):M025.
    [63]A.Legchenko, M. Ezersky, J.-F. Girard, J.-M. Baltassat, M. Boucher, C. Camerlynck, A.Al-Zoubi. Interpretation of magnetic resonance soundings in rocks with high electricalconductivity[J].Journal of Applied Geophysics,2008,66(3-4):118-127.
    [64]Weichman P B, Lavely E M, Ritzwoller M H. Theory of surface nuclear magnetic resonancewith applications to geophysical imaging problems[J].Physical Review E,2000(62):1290-1312.
    [65]Jonathan F. Stebbins and Ian Farnan. Nuclear magnetic resonance spectroscopy in the earthsciences; structure and dynamics[J].Science,1989,245(4915):257-263.
    [66]Legchenko, Anatoly V,Some aspects of the performance of the surface NMR method[C]. SEGAnnual Meeting Expanded Technical Program Abstracts with Biographies,1996(66):936-939.
    [67]Yaramanci,U.. Surface Nuclear Magnetic Resonance(SNMR)-A new method for exploration
    [68]Yaramanci, U. New technologies in ground water exploration-Surface nuclear magneticresonance[J]. Geologica Acta,2004,2(2):109-120.
    [69]M. Lubczynski and J. Roy Magnetic resonance sounding; new method for ground waterassessment[J].Ground Water,2004,42(2):291-303.
    [70]P. Kinchesh, A. A. Samoilenko, A. R. Preston,Randall E. W. Stray field nuclear magneticresonance of soil water; development of a new, large probe and preliminary results[J].Journalof Environmental Quality,2002,31(2):494-499.
    [71]Bray, C.L., Iannopollo, S., Hornak, J.P. Design and characterization of a sub-surface MRIsystem[C].15th Triennial Conference for the ISMAR.2004(165).
    [72]BLüUMICH B, PERLO J, CASANOVA F. Mobile single-sided NMR[J].Progress in NuclearMagnetic Resonance Spectroscopy,2008(52):197-269.
    [73]Lubczynski, M.W., Roy, J. MRS contribution to hydrogeological system parameterization[J].Near Surface Geophysics.2005(3):131-139.
    [74]Grunewald E, Knight K. The effect of pore size and magnetic susceptibility on the surfaceNMR relaxation parameter T2*[J]. Near Surface Geophysics,2011(9):169-178.
    [75]A.Legchenko, M. Ezersky, J.-F. Girard, J.-M. Baltassat, M. Boucher, C. Camerlynck, A.Al-Zoubi. Interpretation of magnetic resonance soundings in rocks with high electricalconductivity[J]. Journal of Applied Geophysics,2008,66(3-4):118-127.
    [76] Müller-Petke M, Hiller T, Herrmann R, et al. Reliability and limitations of surface NMRassessed by comparison to borehole NMR [J]. Near Surface Geophysics,2011b,9,123-134.
    [77]Lenitt M H. Spin Dynamics-Basics of Nuclear Magnetic Resonance[M]. Chichester: JohnWiley&Sons, LTD,2002.
    [78]Schirov M, Legchenko A, Creer G. A new direct noninvasive groundwater detectiontechnology for Australia[J]. Exploration Geophysics,1991(22):333-338.
    [79]蒋川东.核磁共振2D/3D地下水成像方法及其阵列式地面探测系统研究[D],长春:吉林大学,2013.
    [80]Müller-Petke M, Hiller T, Herrmann R, et al. Reliability and limitations of surface NMRassessed by comparison to borehole NMR[J].Near Surface Geophysics,2011b(9):123-134.
    [81]Aster R M, Brochers B, Thurber C. Parameter Estimation and Inverse Problems[M]. ElsevierAcademic Press,2004
    [82]Menke W. Geophysical data analysis: Discrete inverse theory[M]. San Diego: Academic PressInc,1989.
    [83]蒋川东,林君,段清明,等.二维阵列线圈核磁共振地下水探测理论研究[J].地球物理学报,2011,54(11):2973-2983.
    [84]Hertrich M, Braun M., Günther T., et al. Surface Nuclear Magnetic Resonance Tomography[J]. IEEE Transactions On Geoscience And Remote Sensing,2007(45):3752-3759.
    [85]Guillen A, Legchenko A. Inversion of surface nuclear magnetic resonance data by an adaptedMonte Carlo method applied to water resource characterization[J]. Journal of AppliedGeophysics,2002(50):193-205.
    [86]Legchenko A. Magnetic Resonance Sounding: Enhanced Modeling of a Phase Shift[J].Applied Magnetic Resonance,2004(25):621–636.
    [87]J.-F. Girard, A. Legchenko, M. Boucher, J.-M. Baltassat. Numerical study of the variations ofmagnetic resonance signals caused by surface slope[J].Journal of Applied Geophysics.2008,66(3-4):94-103.
    [88]Braun, M., Hertrich, M., Yaramanci, U.. Study on complex inversion of magnetic resonancesounding signals[J].Near Surface Geophysics.2005(3):155–163.
    [89]B. K. Bhattacharyya. Electromagnetic fields of a small loop antenna on the surface of apolarizable medium[J].Geophysics,1964,29(5):814-831.
    [90]P B. Weichman, Eugene M. Lavely, Michael H. Ritzwoller. Theory of surface nuclearmagnetic resonance with applications to geophysical imaging problems. Physical ReviewE,2000(62):1290-1298.
    [91]P B. Weichman,Eugene M. Lavely, and Michael H. Ritzwoller..Surface Nuclear MagneticResonance Imaging of Large Systems[J]. Physical Review Letters,1999(82):4102-4105
    [92]Lubczynski, M.W., Roy, J. MRS contribution to hydrogeological system parameterization[J].Near Surface Geophysics.2005(3):131-139.
    [93]Russel C. Hertzog, Timothy A. White and Christian Straley, Using NMR Decay-timeMeasurements to Monitor and Characterize DNAPL and Moisture in Subsurface PorousMedia[J].JEEG.2007,12(4):293-306.
    [94]Kristina Keating, Rosemary Knight, A laboratory study of the effect of magnetite on NMRrelaxation rates[J]. Journal of Applied Geophysics,2008,66(3-4):188-196.
    [95]孙淑琴,林君,张世雄.导电性对地面MRS信号的影响研究[J].物探化探计算技术.2005,27(2):128-130.
    [96]梁庆华.矿井全空间小线圈瞬变电磁探测技术及应用研究[D].长沙:中南大学,2012.
    [97]楼仁海.电磁场理论[M].成都:电子科技大学出版社,1996.
    [98]李军峰,李文杰.航空电磁发射线圈自感系数的精确计算[J].物探化探计算技.2007,29(1):17-20.
    [99]袁义生.电感器分布电容建模[J].华东交通大学学报.2006,23(5):90-93.
    [100]徐春国.铜合金导线材料的滑动摩擦磨损性能研究[D].兰州:兰州理工大学,2005.
    [101]高强高导行变Cu-Fe-Ag原位复合材料制备技术基础[D].上海:上海交通大学,2007.
    [102]荣亮亮,王中兴,林君,等.核磁共振发射波形质量评估及影响因素分析[J].仪器仪表学报,2010,31(2):442-448.
    [103]李瀚荪.电路分析基础[M].北京:高等教育出版社,1992.
    [104]Nilsson J.W. Electric Circuits. Addison-Wesley.1986.
    [105]Chalikakis K., Nielsen M.R. and Legchenko A. MRS applicability for a study of glacialsedimentary aquifers in Central Jutland, Denmark[J]. Journal of Applied Geophysics.2008(66):176–187.
    [106]IAGA,Working Group V-MOD. International Geomagnetic Reference Field: the eleventhgeneration[J].Geophys.J.Int,2010(183):1216-1230.
    [107]高东旭.核磁共振找水仪弱信号放大器设计[D].长春:吉林大学.2008.
    [108]Legchenko,A. MRS measurements andinversion inpresence of EMnoise[J]. Proc. of the3rdMagnetic Resonance Sounding International Workshop,2006,21–24.
    [109]Chuandong J,Jun L,Qingming D,Shuqin S,Baofeng T.Statistical stacking and adaptive notchfilter to remove high-level electromagnetic noise from MRS measurements[J].Near SurfaceGeophysics2011(9):459-468.
    [110]R. J. Lisle and C. S. Strom. Least-squares fitting of the linear Mohr envelope[J].QuarterlyJournal of Engineering Geology and Hydrogeology,1982(15):55-56.
    [111]Huang Haoping. Evaluation of svd noise rejection by s/n analysis in frequencydomain[J].Computing Techniques for Geophysical and Geochemical Exploration.1992,14(2):113-11.
    [112]Legchenko A, Shushakov O A. Inversion of surface NMR data[J].Geophysics,1998(63):75-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700