用户名: 密码: 验证码:
黑色页岩化学风化特征及其黄铁矿氧化动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在漫长的地质历史发展长河中,岩石风化作用始终存在于各种地质体的转化过程。自上个世纪以来,世界各国地质学者对于因岩石风化作用产生的地质灾害、工程破坏和环境污染等都作过大量研究报道。其中关于黑色页岩岩石风化作用的灾害调查结果表明:黑色页岩的风化过程主要体现在其硫化矿物(以黄铁矿为主)的氧化作用方面,生成的酸性水和具有膨胀性的矾类矿物,可以对黑色页岩本身和周围岩体造成溶蚀、挤胀等破坏效应,即黑色页岩风化以化学风化为主要形式对岩体结构和地质工程、环境安全产生作用。在黑色页岩化学风化作用的不同阶段,由于受到外界条件和风化速率的影响,其风化产物组合特征和生成序列,体现了黑色页岩的化学风化特征。随着我国建设事业的蓬勃发展,人类工程活动日益频繁,黑色页岩在自然条件下化学风化所导致的地质工程问题越来越突出,而对于黑色页岩化学风化特征及其硫化矿物氧化动力学速率尚缺乏深入的理论、实验研究。
     黑色页岩在我国分布广泛,其中以下寒武系黑色页岩为代表的地层主要分布于我国南方湘黔地区和扬子地台,其它分布区,如新疆、浙江和川渝地区的研究主要针对黑色页岩的地球化学元素特征。因此,对于黑色页岩的化学风化行为特征以及动力学速率展开研究,对地质工程灾害和环境安全的评价及其预测具有重大意义。
     本论文的研究选题是以广西三江地区下寒武系清溪组黑色页岩作为对象,围绕黑色页岩的化学风化行为及其风化产物的岩石学、地球化学、微观形态学等特征,从化学热力学、动力学角度对黑色页岩化学风化过程中涉及的水岩反应热力学稳定性和黄铁矿氧化动力学速率等问题进行了系统的研究,得到以下几点研究成果和主要认识:
     (1)根据研究区野外地质调查和收集资料,结合地质样品的室内矿物组分、化学成分和形态特征等测试结果,对研究区黑色页岩的沉积环境、风化程度进行分析,分析结果表明研究区黑色页岩风化沉积环境属于还原性较强的陆缘海相沉积环境,根据化学蚀变指数(CIA)等化学风化参数及A-CN-K化学风化趋势图解,显示研究区黑色页岩经历了中等程度的化学风化,原岩的剥蚀状态相对稳定,仍较好的保存了原岩化学成分特征。
     (2)基于黑色页岩风化产物的物理化学性质、分布特征以及形成条件,采用室内半浸泡模拟试验,分析了黑色页岩在水和氧气的共同作用下,所表现出来的化学风化地球化学行为,着重探讨了外界条件对于黑色页岩风化产物种类的影响,以及硫酸盐共生产物的时空序列特征。
     (3)运用化学热力学理论和反应模型,采用吉布斯自由能增量和平衡常数法,对酸性条件下黑色页岩化学风化过程所涉及的水岩化学反应进行方向和限度进行分析,通过pe-pH图解形象的阐述了黄铁矿氧化产物以及黑色页岩风化产物的热力学稳定区域及生成条件,并通过非平衡热力学理论解释了黑色页岩化学风化的不可逆性以及风化现象形成机制。
     (4)针对黄铁矿在黑色页岩中的氧化行为,设计了一套研究黄铁矿氧化动力学水岩作用流通实验装置。通过分析黄铁矿与溶解氧反应对孔隙水溶液离子浓度、岩体渗透性能以及反应前后岩体表面微观形态变化,得出孔隙水溶液饱和特征和水岩作用过程中主要的化学反应类型,重点探讨了岩体内黄铁矿在溶解氧作用下的动力学氧化速率和酸性环境中硅元素释放速率,推导出实验条件下黄铁矿氧化速率公式。
     (5)采用地球化学数值软件PHREEQC模拟了实验水样和研究区采集水样的矿物溶解析出过程,以及黄铁矿在溶解氧和铁离子作为氧化剂条件下,在不同水环境中的氧化动力学行为,重点阐述了白铁矾、叶绿矾等各种风化产物,在黄铁矿不断氧化或水分蒸发作用下酸性溶液浓度不断升高后的溶解析出特征,以及黄铁矿分别在溶解氧和铁离子作用下溶液中离子变化规律。
Rock weathering always exist in the mutual conversion process of various geological masses in the development of geological history. Since last centuries, large quantities of issues related to geological disasters, engineering damages and environmental deteriorations caused by rock weathering have been reported by the geological researchers all over the world. The disaster investigations associatied with black shale weathering indicate that the weathering process of black shale are mainly manifested on the oxidation of sulfide minerals contained. The acid water and some expansive sulfate minearals produced by rock weathering could have damage effects on the black shale and other surrounding rocks, such as acidic corrosion, dissolution and expansion. Therefore, the chemical weathering of black shale, as the most significant path, influence the rock structures and engineering propertities as we as environmental safety. With the rapid development of basic construction in China, the human engineering activities has been increasing. The engineering geological problems caused by the chemical weathering of black shale under the natural conditions become more and more protrusive. However, the chemical weathering characteristics of black shale and the kinetic oxidation of the sulfide contained are still lack of deeper theory and experimental research.
     Black shale is widely distributed in China. The typical Low Cambrian black shale mainly distributes in the southern areas, such as Hunan province, Guizhou province and Yangzi platform. The other distribution areas such as Xinjiang, Zhejiang, Sichuan and Chongqing provinces, where the researches associated with the black shale were focused on the characteristics of geochemical elements. Therefore, studying on the chemical weathering behaviors of black shale and kinetic oxidation of pyrite contained have great significance for the evaluation and prediction for engineering and environment safety.
     Taking the Low Cambrian Qingxi Formation black shale in Sanjiang-County area in Guangxi province as research project, the petrological, mineralogical, morphological features and chemical weathering behaviors of the black shale and its weathering products are analysed. From the angle of chemical thermodynamics and kinetics theory, the thermodynamics stability of water-rock chemical interactions and kinetic oxidation rate of pyrite contained are systematically studied. The main achievements are summarized as follows:
     (1) Based on the field investigations and data collections, the sedimental environment and weathering intensity of black shale are analysed by the examination of mineralogical and geochemical components as well as morphological observation. The results indicat the black shale in study area sedimented in reducing epicontinental marine sedimentary environment. The chemical weathering parameters, such as chemical index of alteration (CIA) and A-CN-K chemical weathering trending diagram and so on, reveal that the Qingxi Formation black shale underwent medium chemical weathering. The denudation state of the original rock is relative stable, and some features of chemical constitutions are still preserved.
     (2) Based on the physical and chemical properties, distribution and formation conditions of the black shale weathering procducts, a half-immersion test was performed to explore the geochemical behaviors of the black shale chemical weathering under the joint effects of water and oxygen. The influences of external conditions on the types of weathering products and the temporal and spatial sequence of paragenetic sulfate minerals are mainly discussed.
     (3) Chemical thermodynamic theory and reaction models are applied to study the direction and intensity of water-rock interactions involved in the chemical weathering of black shale in acidic conditions using Gibbs free energy and equilibrium constant methord. The pe-pH diagrams are constructed to illustrate the thermodynamic stable areas and formation conditions of black shale weathering products. Based on the non-equilibrium thermodynamic theory, the irreversibility of black shale weathering and formation mechanism of some weathering phenomenon are explained.
     (4) A flow-through experiment is designed to study the kinetic behaviors of pyrite oxidation contained in black shale. Through the analysis of the impacts of the reaction between pyrite and dissolved oxygen on ion concentrations, rock's permeability and morphological changes of rock surfaces before and after experiment, the saturation characteristics of pore water and major types of chemical reactions during water-rock interactions are obtained. Discussion is focused on the kinetic rates of pyrite oxidation and Si element releasing in acidic environment, and the rate equation of pyrite kinetic oxidation in experiment conditions is deduced.
     (5) By the employment of the geochemical numerical simulation software PHREEQC, the dissolution and precipitation processes of the experimental solutions and water samples obtained in field are simulated. What's more, the kinetic behaviors of pyrite oxidized by dissolved oxygen and/or ferric ion as oxidants is simulated as well. The dissolution and precipitation characteristics of those weathering products, such as rozenite, copiapite and so on, are stated under the effect of continuous pyrite oxidation or water evaporation. The results illustrate the concentration changes of sulfate and iron ions caused by reactions between pyrite and dissolved oxygen as well as ferric ion.
引文
[1]朱宝龙.类软土滑坡工程特性及钢管压力注浆型抗滑挡墙的理论研究[D].西南交通大学,2005.
    [2]Grainger P. The influence of clay mineralogy and diagenesis of Upper Carboniferous shales on soil formation in parts of Devon[J]. Journal of Soil Science,1984,35(4): 599-606.
    [3]巫锡勇,朱宝龙,罗健.黑色岩层的风化过程及其热力学分析[M].北京:科学出版社,2008:12-90.
    [4]巫锡勇,贺玉龙,魏有仪,等.黑色岩层的风化特征研究[J].地质地球化学,2001,29(2):17-23.
    [5]彭渤,吴甫成,肖美莲,等.黑色页岩的资源功能和环境效应[J].矿物岩石地球化学通报,2005,24(2):153-158.
    [6]宋照亮.湖南下寒武统黑色页岩风化的环境地球化学初步研究[D].中国科学院研究生院(广州地球化学研究所),2003.
    [7]余昌训,彭渤,唐晓燕,等.湘中下寒武统黑色页岩土壤的地球化学特征[J].土壤学报,2009,46(4),557-570.
    [8]郑国东,徐胜,郎煜华,等.滑坡面黏土中铁元素的化学变化.科学通报,2002,47(24):1889-1893.
    [9]Woo N.C., Choi M.J., Lee K.S. Assessment of groundwater quality and contamination from uranium-bearing black shale in Goesan-Boeun areas, Korea[J]. Environmental Geochemistry and Health,2002,24(3):261-273.
    [10]马建军.黑色岩层诱发山地灾害的水-岩作用机理研究[J].铁道工程学报,2011,10:1-5,37.
    [11]Buckby T., Black S., Coleman M.L., Hodson M.E. Fe-sulphate-rich evaporative mineralprecipitates from the Rio Tinto, southwest Spain[J]. Mineralogical Magazine, 2003,37(2):263-278.
    [12]Moses C.O., Nordstrom D.K., Herman J.S., Mills A.L. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron[J].Geochimica et Cosmochimica Acta,1987,51: 1561-1571.
    [13]Singer P.C, Stunm W. Acid mine drainage:the rate determining step[J]. Science,1970, 167:1121-1123
    [14]Belly R.T, Brock T.D. Ecology of iron oxidizing bacteria in pyrite materials associated with coal[J]. Journal of Bacteriology,1974,117:726-732
    [15]McKibben M.A., Barnes H.L. Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures[J]. Geochimica et Cosmochimica Acta,1986,50(7): 1509-1520.
    [16]Williamson M.A., Rimstidt J.D. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation[J]. Geochimica et Cosmochimica Acta,1994,58(24): 5443-5454.
    [17]Chorley R.J. The role of water in rock disintegration. Introduction to Fluvial Processes[M], Methuen.1969,53-73.
    [18]魏克和,刘殿选.闽粤沿海花岗岩风化分带方法及地基承载力的研究.河海大学学报,1991,19(4):76-84.
    [19]张丽萍,等.长江三峡坝区花岗岩风化壳化学元素迁移特征.地理学报,2001,56(5):515-522.
    [20]吴梅贤,等.广东英德白沙佛冈花岗岩风化壳地下水中的稀土元素.地球化学,2003,32(4):335-342.
    [21]尚彦军,等.花岗岩风化程度的化学指标对比及其微观岩石学研究~以香港九龙地区为例.地质科学,2001.36(3):279-294.
    [22]续海金,马昌前,杨坤光,刘凡.大别山南、北坡花岗岩风化作用的差异及其构造、气候环境意义[J].中国科学(D辑:地球科学),2002,32(05):415-422.
    [23]朱波,高美荣,刘刚才,刘若刚,Atsushi Tsunekawa.紫色页岩风化侵蚀与环境效应[J].土壤侵蚀与水土保持学报,1999,5(03):33-37.
    [24]杨宗才,张俊云,等.红层泥岩边坡快速风化特性研究[J].岩石力学与工程学报,2006,25(2):275-283.
    [25]聂德新,韩爱果.岩体风化的综合分带研究[J].工程地质学报,2002,10(1):20-25.
    [26]刁桂仪,文启忠.黄土风化成土过程中主要元素迁移序列[J].地质地球化学,1999,27(1):21-26.
    [27]陈骏,季峻峰,仇纲,等.陕西洛川黄土化学风化程度的地球化学研究[J].中国科学(D辑),1997,27(6):531-536.
    [28]李徐生,韩志勇,杨守业,等.镇江下蜀土剖面的化学风化强度与元素迁移特征[J].地理学报,2007,62(11):1174-1183.
    [29]熊尚发,朱园健,周茹,等.白水黄土—红粘土化学风化强度的剖面特征与粒度效应[J].第四纪研究,2008,28(5):812-821.
    [30]孙承兴,王世杰,刘秀明,冯志刚.碳酸盐岩风化壳岩—土界面地球化学特征及其形成过程—以贵州花溪灰岩风化壳剖面为例[J].矿物学报,2002,22(02):126-132.
    [31]孙承兴,王世杰,季宏兵.碳酸盐岩风化成土过程中REE超常富集及Ce强烈亏损的地球化学机理[J].地球化学.2002,31(02):119-128.
    [32]刘建清,赖兴运,于炳松,陈晓林,隋成.成岩作用的研究现状及展望[J].石油实验地质,2006,28(1):65-72,77.
    [33]饶纪龙.关于研究铁在表作用中行为的若干热力学方法(二)—描写铁矿物关系的Eh-pH图解[J].地质地球化学,1978(1):1-16.
    [34]Berner R.A. Kinetics of weathering and diagenesis[J]. Reviews in Mineralogy and Geochemistry,1981,8:111-132.
    [35]Stromberg B., Banwart S. Weathering kinetics of waste rock from the Aitik copper mine, Sweden:scale dependent rate factors and pH controls in large column experiments[J]. Journal of Contaminant Hydrology,1999,39:59-89.
    [36]Nesbitt H.W., Young G.M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta,1984,48(7):1523-1534.
    [37]Mortatti J., Probst J.L. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemisrty:seasonal and spatial variations [J]. Chemical Geology,2003,197:177-196.
    [38]Burley S.D., Kantorwiez J.D., Waugh B. Clastic diagenesis (eds. Brenchiey P. T, Williams B. P.)[J]. Sedimentology:Recent developments and applied aspects. London: The Geological Society,1995,18:189-226.
    [39]Garreis R.M., Christ C.L. Solutions, minerals and equilibria[M]. New York:Harper and Row,1965,1-450.
    [40]黄思静,刘洁,沈立成,等.碎屑岩成岩过程中浊沸石形成条件的热力学解释[J].地质论评,2001,47(3):301-308.
    [41]黄思静,杨俊杰,张文正,等.不同温度条件下乙酸对长石溶蚀过程的实验研究[J].沉积学报,1995,13(1):7-17.
    [42]赖兴运,于炳松,陈军元,等.碎屑岩骨架颗粒溶解的热力学条件及其在克拉2气田的应用[J].中国科学D辑,2004,34(1):45-53.
    [43]肖林萍,黄思静.方解石和白云石溶蚀实验热力学模型及地质意义[J].矿物岩石,2003,23(1):113-116.
    [44]张萌,黄思静,冯明石等.碎屑岩骨架颗粒溶解的热力学模型及地质意义[J].地球科学与环境学报,2006,28(4):21-25.
    [45]Shiraki R., Dunn T.L. Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA[J]. Applied Geochemistry,2000, 15(3):265-279.
    [46]白国良,梁冰,唐晓楠.酸性矿井水入渗过程中的水岩作用[J].辽宁工程技术大学学报(自然科学版),2009,28(增):162-164.
    [47]岳梅,赵峰华,孙红福.煤系黄铁矿氧化溶解地球化学动力学研究[J].煤炭学报,2005,30(1):75-79.
    [48]Manaka M. The effective diffusion coefficient of dissolved oxygen and oxidation rate of pyrite by dissolved oxygen in compacted purified and crude sodium bentonites in carbonate buffered solution[J]. Nuclear Technology,2003,143:335-346.
    [49]Brantley S.L., Conrad C.F. Analysis of Rates of Geochemical Reactions[M]. In Brantley S.L., Kubicki, J.D., White A.F, editors, Kinetics of water-rock interaction:New York, Springer,2008,1-37.
    [50]Clayton J.L., King J.D. Effects of weathering on biological marker and aromatic hydrocarbon composition of organic matter in Phosphoria shale outcrop[J]. Geochimica et Cosmochimica Acta,1987,51:2153-2157.
    [51]Loukola-Ruskeeniemia K., Uutelab A., Tenholac M., Paukolaa T. Environmental impact of metalliferous black shales at Talvivaara in Finland, with indication of lake acidification 9000 years ago[J]. Journal of Geochemical Exploration,1998,64(1-3): 395-407.
    [52]藤宏伟,任松,姜德义,杨春和.共和隧道页岩饱水软化试验研究[J].岩石力学与工程学报,2010,29(S1):2657-2662.
    [53]肖启云,李胜荣.湘黔下寒武统矿化黑色岩系中元素的表生迁移和环境效应[J].海淀走读大学学报,2002,59(3):44-52.
    [54]朱益民,林成巨.矿山废水污染对居民疾病死亡谱和肾功能的影响[J].中国公共卫生,1999,15(4):314-315.
    [55]余运波,汤鸣皋.煤矸石堆放对水环境的影响[J].地学前缘,2001,8(1):163-169.
    [56]张杰,孙传敏,杨国峰,谢飞.贵州下寒武统黑色页岩稀土元素地球化学特征[J].稀土,2008,29(2):72-75.
    [57]吴朝东,曾凡刚,雷家锦,赵瑞.湘西黑色页岩多种形态硫的分离与同位素指示意义[J]-科学通报,1999,44(6):661-665.
    [58]孙一虹.湘西北下寒武统碳质页岩岩石学、岩石化学和地球化学研究[J].湖南地质,1986,5(1):1-15.
    [59]李周玲,王敏捷,邓亚,等.重庆城口地区早寒武世黑色页岩地球化学特征及成矿规律[J].重庆科技学院学报(自然科学版),2011,13(6):92-95.
    [60]陈建强,李兴武,于炳松,林畅松.塔里木盆地下寒武统底部黑色页岩地球化学及其岩石圈演化意义[J].中国科学(D辑:地球科学),2002,32(5):374-382.
    [61]刘春莲,车平,石贵勇,等.广东三水盆地古近系土布心组黑色页岩地球化学特征与有机质堆积条件[C].第八届古地理学与沉积学学术会议,2004:89-90.
    [62]刘宝珺,许效松,潘杏南,黄慧琼,徐强.中国南方古大陆沉积、地壳演化与成矿[M].北京:科学出版社,1993:1-236.
    [63]魏怀瑞,杨瑞东,鲍森,等.贵州早寒武世黑色页岩地球化学特征及其意义[J].贵州大学学报(自然科学版),2006,23(4):356-360.
    [64]杨剑.黔北地区下寒武统黑色岩系形成环境与地球化学研究[D].长安大学,2009.
    [65]何江,马东升.中低温含硫、氯水溶液对地层中金、锑、汞、砷的淋滤实验[J].地质论评,1996,42(1):77-86.
    [66]吴朝东,储著银.黑色页岩微量元素形态分析及地质意义.矿物岩石地球化学通报,2001,20(11):14-20.
    [67]解庆林,马东升,裘丽雯,赵美芳,刘英俊.湘西新元古界—寒武系中锑砷存在相态研究[J].地质论评,1998,44(1):77-82.
    [68]李任伟,卢家烂,张淑坤,雷加锦.震旦纪和早寒武世黑色页岩有机碳同位素组成[J].中国科学(D辑:地球科学),1999,29(4):351-357.
    [69]肖启云,李胜荣,蔡克勤.湘黔下寒武统黑色岩系不同矿物组合中的铂族元素特征[J].中国地质,2006,33(5):1083-1091.
    [70]Peucker-Ehrenbrink B., Hannigan R.E. Effects of black shale weathering on the mobility of rhenium and platinum group elements[J]. Geology,2000,28(5):475-478.
    [71]Jaffe L.A., Peucker-Ehrenbrink B., Petsch S.T. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering[J]. Earth and Planetary Science Letters,2002,198(3-4):339-353.
    [72]Pierson-Wickmann A.C., Reisberg L., France-Lanorda C. Behavior of Re and Os during low-temperature alteration:Results from Himalayan soils and altered black shales[J]. Geochimica et Cosmochimica Acta,2002,66(9):1539-1548.
    [73]Dalai T.K., Singh S.K., Trivedi J.R., Krishnaswami S. Dissolved rhenium in the Yamuna river system and the Ganga in the Himalaya:role of black shale weathering on the budgets of Re, Os, and U in rivers and CO2 in the atmosphere[J]. Geochimica et Cosmochimica Acta,2002,66(1):29-43.
    [74]Sullivan P.J., Yelton J.L., Reddy K.J. Iron sulfide oxidation and the chemistry of acid generation[J]. Environmental Geology and Water Sciences,1988,11(3):289-295.
    [75]Aiuppa A., Allard P., Walter D., et al. Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily) [J]. Geochimica et Cosmochimica Acta,2000,64(11):1827-1841.
    [76]龚涛,段泽文.岩体风化带多元分割法[J].云南农业大学学报,2001,16(4):294-298.
    [77]郑伟.高阶地基座岩石风化特征及对铁道工程的影响[J].铁道工程学报,2003,4:67-70.
    [78]刘新根,奥村运明,等.岩石边坡风化与侵蚀研究[J].矿业研究与开发,2006,26(4):30-32,66.
    [79]周翠英,邓毅梅,等.饱水软岩力学性质软化的试验研究与应用[J].岩石力学与工程学报,2005,24(1):762-765.
    [80]郭建强.含水率变化对泥质白云岩石风化特征影响的试验研究[D].贵州大学,2009.
    [81]Matsubaya O., Sakai H. Oxygen and hydrogen isotopic study on the water of crystallization of gypsum from the Kuroko type mineralization[J]. Geochemical Journal, 1973,7,:153-165.
    [82]Yamanaka T., Miyasaka H., Aso I., et al. Involvement of sulfur- and iron-transforming bacteria in heaving of house foundations[J]. Geomicrobiology Journal,2002,19(5): 519-528.
    [83]Quigley R.M., Voga R.W. Black shale heaving at Ottawa, Canada. Canadian Geotechnical Journal[J],1970,7(2):106-112
    [84]Grattan-Bellew P.E., Eden W.J. Concrete deterioration and floor heave due to biogeochemical weathering of underlying shale[J]. Canadian Geotechnical Journal, 1975,12:372-378.
    [85]Lutenegger A.J., Wollenhaupt N.C., Handy R.L. Laboratory simulation of shale expansion by induced gypsum growth[J]. Canadian Geotechnical Journal,1978,16: 405-409.
    [86]Burkart B., Gross G.C., Kern J.P. The role of gypsum in production of sulfate-induced deformation of lime-stabilized soils[J]. Environmental and Engineering Geoscience, 1999,5(2):173-187.
    [87]郑国东,徐胜,郎煜华,等.日本富山县中田浦滑坡滑带内的黄铁矿[J].地球化学,2006,35(2):201-210.
    [88]吴刚.某水电工程两岸黄铁矿经水溶滤后的迁移转化及对坝体的影响研究[D].成都:成都理工大学,2006.
    [89]祝磊,洪宝宁.广东云浮砾状煤系土的物理力学特性[J].水文地质工程地质,2008,36(1):86-89.
    [90]胡听,洪宝宁,杜强,等.含水率对煤系土抗剪强度的影响[J].岩土力学,2009,30(8):2291-2294.
    [91]李宁远,李斌,吴家慧.硫酸盐渍土及膨胀特性研究[J].西安公路学院学报,1989,7(3):91-90.
    [92]高江平,吴家惠,杨荣尚.硫酸盐渍土盐胀特性各影响因素间交互作用规律的分析[J].中国公路学报,1997,10(1):10-15.
    [93]徐学祖,王家澄,张立新,邓友生,陶兆祥.土体冻胀和盐胀机理[M],北京:科学出版社,1995:126.
    [94]徐学祖,邓友生,王家澄,王玉杰.含盐正冻土的冻胀和盐胀[C].第五届全国冰川冻土学大会论文集,甘肃文化出版社,1996c:607-618.
    [95]费雪良,等.不同密度硫酸盐渍土盐胀规律的试验研究[J].冰川冻土,1994,16(3):247-249.
    [96]徐攸在,等.盐渍土地基[M].中国建筑工业出版社,1993:69-72.
    [97]褚彩平,李斌,等.硫酸盐渍土在多次冻融循环时的盐胀累加规律[J].冰川冻土1998,20(2):8-11.
    [98]王淑彦.东北铁路盐渍土病害与防治[J].水文地质工程地质,1990,3:55-56
    [99]赵鹏麟.盐渍土地基的处理—新疆泽普工程地基防治措施[J].化肥设计,1990,4:20-24.
    [100]高江平,等.硫酸盐渍土膨胀规律的综合影响因素的试验研究[J],冰川冻土,1996,18(2):176.
    [101]李芳,高江平,陈建.盐渍土盐胀对低层建筑的危害及其防治[J].土木工程学报,1999,32(5):46-50.
    [102]Skalny J.P., Odler I., Marchand J. Sulfate Attack on Concrete[M]. Spon, London, 2001.
    [103]Adam N. The confused world of sulfate attack on concrete[J]. Cement and Concrete Research,2004,34(8):1275-1296.
    [104]Mehta P.K., Monteiro P.J.M. Concrete-Microstructure, Properties, and Materials[M]. McGraw-Hill Professional,3rd Edition,2005.
    [105]Haynes H. Sulfate attack on concrete:laboratory versus field experience [J]. Concrete International,2002,24(7):65-70.
    [106]Haynes H., O'Neill R., Mehta P.K. Concrete deterioration from physical attack by salts [J]. Concrete International,1996,18(1):63-68.
    [107]Folliard K.J., Sandberg P. Mechanisms of concrete deterioration by sodium sulfate crystallization[C]. V.M. Malhotra (Ed.),3rd CANMET/ACI International conference on durability of concrete, Nice, France (SP-145), American Concrete Institute, Detroit, MI. 1994:933-946.
    [108]Hime W.G., Martinek R.A., Backus L.A., Marusin S.L. Salt hydration distress[J]. Concrete International,2001,23(10):43-50.
    [109]Thaulow N., Sahu S. Mechanism of concrete deterioration due to salt crystallization[J]. Materials Characterization,2004,53(2-4):123-128.
    [110]杨全兵,杨钱荣.硫酸钠盐结晶对混凝土破坏的影响[J].硅酸盐学报,2007,35(7):878-880,885.
    [111]Ma K.L., Xie Y.J., Long G.C., Liu Y.H. Deterioration characteristics of cement mortar by physical attack of sodium sulfate[J]. Journal of the Chinese Ceramic Society,2007, 35(10):1376-1382.
    [112]Haynes H., O'Neill R., Neff M., Mehta P.K. Salt weathering distress on conerete exposed to sodium sulfate environment[J]. ACI Materials Journal,2008,105(1):35-43.
    [113]Nehdi M., Hayek M. Behavior of blended cement mortars exposed to sulfat solutions cycling in relative humidity[J]. Cement and Concrete Research,2005,35(4):731-742.
    [114]Frank B., Moser B., Jochen S. Influence of sulfate solution Concentration on the formation of gypsum in sulfate resistance test specimen[J]. Cement and Concrere Research,2006,36(2):358-363.
    [115]Xiao J., Deng D.H., Liu Z.Q., Yuan Q. On the ettringite form of sulfate attack:Part 1. The formation mechanism of secondary ettringite in concrete due to sulfate attack[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed.,2006,21 (s):58-63.
    [116]Deng D.H., Liu Z.Q. Yuan Q., Xiao J. On the ettringite form of sulfate attack:Part 2. The expansive mechanism of concrete cauased by secondary ettringite [J]. Journal of Wuhan University of Technology-Mater. Sci. Ed.,2006,21(s):44-48.
    [117]邓德华,肖佳,元强.水泥基材料中的碳硫硅钙石[J].建筑材料学报,2005,8(4):400-40.
    [118]Bensted J. Thaumasite-direct, woodfordite and other possible formation routes[J]. Cement and Concrete Composites,2003,25(8):873-877.
    [119]马向贤,郑国东,梁收运,魏丽娟,梁明亮.黄铁矿风化作用及其工程地质意义[J].岩石矿物学杂志,2011,30(6):1132-1138.
    [120]Berube M.A., Locat J., Gelinas P., Chagnon J.Y. Black shale heaving at Saint-foy, Quebec, Canada[J]. Canadian Journal of Earth Science,1986,23:1774-1781.
    [123]岳梅,赵峰华,任德贻.煤矿酸性水水化学特征及其环境地球化学信息研究[J].煤田地质与勘探,2004,32(3):46-49.
    [124]张猛,赵林.煤矿酸性水产生机理及预测防治研究[J].煤矿环境保护,2000,14(3):25-28.
    [125]Nesbitt H.W., Muir I.J. X-ray photoelectron spectroscopic studies of a pristine pyrite surface reacted with water vapour and air[J]. Geochimica et Cosmochimica Acta,1994, 58(24):4667-4679.
    [126]郑仲,蔡昌凤,王丽丽.煤系黄铁矿氧化产酸的动力学研究[J].安徽工程科技学院学报,2006,21(3):7-11
    [127]Evangeloe V.P. Pyrite oxidation and its control[M]. Boca Raton:CRC Press,1995, 293.
    [128]Pye K., Miller J.A. Chemical and biochemical weathering of pyretic mudrock in a shale embankment[J]. Quarterly Journal of Engineering Geology,1990,23:365-381
    [129]兰叶青,周钢,刘正华,等.不同条件下黄铁矿氧化行为的研究[J].南京农业大学学报,2000,23(1):81-84.
    [130]蒋磊,周怀阳,彭晓彤.黄铁矿生物氧化过程的阶段性[J].金属矿山,2007,10: 59-63.
    [131]王营茹,魏以和,钟康年.黄铁矿细菌氧化影响因素探析[J].武汉工程大学学报,2007,29(2):38-40.
    [132]Schrenk M.O., Edwards K.J., Goodman R.M., et al. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans:lmplications for generation of acid mine drainage[J]. Science,1998,279:1519-1522.
    [133]Fowler T.A., Holmes P.R., Crundwell F.K. On the kinetics and mechanism of the dissolution of pyrite in the presence of Thiobacillus ferrooxidans[J]. Hydrometallurgy, 2001,59:257-270.
    [134]Rodriguez Y., Ballester A., Blazquez M.L., et al. New information on the pyrite bioleaching mechanism at low and high temperature[J]. Hydrometallurgy,2003,71: 37-46.
    [135]Shrihari J.J.M., Kumar R., Gandhi K.S. Dissolution of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans[J]. Hydrometallurgy,1995,38:175-187.
    [136]李登新,高晋生,吕俊复,等.煤系黄铁矿的电解催化氧化和动力学研究[J].华东理工大学学报,2002,28(6):621-624.
    [137]周丽,李和平,徐丽萍.开放体系下方铅矿和黄铁矿之间原电池反应的实验研究[J].矿物岩石,2006,26(1):110-115.
    [138]Holmes P.R., Crundwell F.K. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen an electrochemical study[J].Geochimica et Cosmoehimica Acta,2000, 64:263-274.
    [139]Buckley A.N., Woods R. The surface oxidation of pyrite[J]. Applied Surface Science, 1987,27(4):437-452.
    [140]Todd E.C., Sherman D.M., Purton J.A. Surface oxidation of pyrite under ambient atmospheric and aqueous (pH=2 to 10) conditions:electronic structure and mineralogy from X-ray absorption spectroscopy[J]. Geochimica et Cosmochimica Acta,2003,67(5): 881-893.
    [141]Nesbitt H.W., Bancroft G.M., Pratt A.R., Scaini M.J. Sulfur and iron surface states on fractured pyrite surfaces[J]. American Mineralogist,1998,83:1067-1076.
    [142]Leiro J.A., Mattila S.S., Laajalehto K. XPS study of the sulphur 2p spectra of pyrite[J]. Surface Science,2003,547(1-2):157-161.
    [143]Schaufuβ A.G., Nesbittb H.W., Kartioc I., Laajalehtoc K., Bancroftd G.M., Szargana R. Reactivity of surface chemical states on fractured pyrite[J]. Surface Science,1998, 411(3):321-328.
    [144]Jerz J.K., Rimstidt J.D. Pyrite oxidation in moist air[J]. Geochimica et Cosmochimica Acta.2004,68(4):701-714.
    [145]Schaufuβ A.G., Nesbittb H.W., Kartioc I., Laajalehtoc K., Bancroftd G.M., Szargana R. Incipient oxidation of fractured pyrite surfaces in air[J]. Journal of Electron Spectroscopy and Related Phenomena,1998,96(1-3):69-82.
    [146]Becker U., Rosso K.M., Hochella M.F. The proximity effect on semiconducting mineral surfaces:a new aspect of mineral surface reactivity and surface complexation theory?[J]. Geochimica et Cosmochimica Acta,2001,65(16):2641-2649.
    [147]Moses C.O., Herman J.S. Pyrite oxidation at circumneutral pH[J]. Geochimica et Cosmochimica Acta,1991,55(2):471-482.
    [148]Warren I.H. The generation of sulphuric acid from pyrite by pressure leaching[J]. Australian Journal of Applied Science,1956,7:346-358.
    [149]Stenhouse J. F., Armstrong W.H. The aqueous oxidation of pyrite[J]. Canadian Mining and Metallurgical Bulletin,1952,45(477):49-53.
    [150]McKAY D.R., Halpern J. A kinetic study of the oxidation of pyrite aqueous suspension[J]. Trans. Metall., Soc. AIME,1958,21:301-309.
    [151]Reedy B.J., Beattie J.K., Lowson R.T. A vibrational spectroscopic 18O tracer study of pyrite oxidation[J]. Geochimica et Cosmochimica Acta.1991.55(6).1609-1614.
    [152]Luther G.W. Pyrite oxidation and reduction:molecular orbital theory considerations[J]. Geochimica et Cosmochimica Acta,1987,51(12):3193-3199.
    [153]Khan S., Baltrus J.P., Lai R.W., Richardson A.G. X-ray photoelectron spectroscopic study of the interaction of xanthate with coal pyrite and mineral pyrite surfaces [J]. Applied Surface Science,1991,47(4):355-363.
    [154]Janzen M.P., Nicholson R.V., Scharer J.M. Pyrhotite reaction kinetics:reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution[J]. Geochimica et Cosmochimica Acta,2000,64(9):1511-1522.
    [155]Rimstidt J.D., Newcomb W.D. Measurement and analysis of rate data:The rate of reaction of ferric iron with pyrite[J]. Geochimica et Cosmochimica Acta,1993,57(9): 1919-1934.
    [156]岳梅,赵峰华,朱银凤,等.硫化物矿物氧化动力学实验研究[J].地球科学进展.2004,19(1):47-54.
    [157]Lowson R.T. Aqueous oxidation of pyrite by molecular oxygen[J]. Chemical Reviews, 1982,82:461-497.
    [158]Hiskey J.B, Schlitt W.J. Aqueous oxidation of pyrite[C]. In Interfacing Technologies in Solution Mining, Proc.2nd SME-SPE International Solution Mining Symposium, AIME, (eds. W.J. Schlitt and J.B. Hiskey),1982,55-74.
    [159]卢龙,王汝成,薛纪越,等.黄铁矿氧化速率的实验研究[J].中国科学(D辑),2005,35(5):434-440.
    [160]Garrels R.M., Thompson M.E. Oxidation of pyrite by iron sulfate solutions[J]. American Journal of Science,1960,258-A:57-67.
    [161]曾庆辉,钱玲,刘德汉,等.富有机质的黑色页岩和油页岩的有机岩石学特征与生、排烃意义[J].沉积学报,2006,24(1):113-122.
    [162]迟清华,鄢明才.应用地球化学元素丰度数据手册[M].北京:地质出版社,2007: 1-45.
    [163]Rudnick R.L., Gao S. Composition of the Continental Crust[M]. In:Holland H. D. and Condie K. (eds.), Composition of the Continental Crust. Treatise on Geochemistry, 2003,3:1-64.
    [164]郭彦如.银额盆地查干断陷闭流湖盆层序的控制因素与形成机理[J].沉积学报,2004,22(2):295-299.
    [165]李敏,颉永平.不同沉积地球化学特征对沉积环境的指示意义[J].内蒙古石油化工,2010,16:41-43.
    [166]南京大学地质系.地球化学[M].北京:科学出版社,1984:357-358.
    [167]陈孝红,汪啸风,毛晓东.湘西地区晚震旦世黑色岩系地层层序沉积环境与成因[J].地球学报,1999,20(1):87-95.
    [168]邓宏文,钱凯.沉积地球化学与环境分析[M].兰州:甘肃科学技术出版社,1993:4-28,97.
    [169]陈会军,刘招君,柳蓉,郭巍,肖国平,吴彦斌,付占荣,史冀忠,胡晓峰,孟庆涛.银额盆地下白垩统巴音戈壁组油页岩特征及古环境[J].吉林大学学报(地球科学版),2009,29(4):669-675.
    [170]王争鸣.缺氧沉积环境的地球化学标志[J].甘肃地质学报,2003,12(2):55-58.
    [171]Jones B., Manning D.A.C. Comparison of geological indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994,111:111-129.
    [172]Hatch J.R., Leventhal J.S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian Missourian Stark Shale Member of the Dennis limestone, Wabaunsee County Kansas, USA.[J]. Chemical Geology,1992,99(1):65-82.
    [173]Finkelman R.B. Trace element in coal[J]. Biological Trace Element Research.1999, 67(3):197-204.
    [174]Neall V.E. Genesis and weathering of andosols in Taranaki, New Zealand[J]. Soil Science,1977,123:400-408.
    [175]Sharma A., Rajamani V. Major element, REE, and other trace element behavior in amphibolite weathering under semiarid conditions in southern India[J]. Journal of Geology.2000,108:487-496.
    [176]Duzgoren-Aydin N.S., Aydin A., Malpas J. Re-assessment of chemical weathering indices:case study of pyroclastic rocks of Hong Kong[J]. Engineering Geology,2002, 63:99-119.
    [177]Gao S., Wedepohl K.H. The negative Eu anomaly in Archean Sedimentary rocks: implications for decomposition, age and importance of their granitic source[J]. Earth and Planetary Science Letters,1995,133:81-94.
    [178]Gao S., Ling W., Qiu Y., Hartmann G., Simon K. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze cration:evidence fot cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta,1999,63:2071-2088.
    [179]Ramesh R., Anglejan B. Mineralogy, chemistry and particle size interrealationships in some post-glacial marine deposits of the St. Lawrence lowlands [J]. Journal of Coastal Research,1995,11:1167-1179.
    [180]Fedo C.M., Eriksson K.A., Krogstad E.J. Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe:implications for provenance and source-area weathering[J]. Geochimica et Cosmochimica Acta,1996,60:1751-1763.
    [181]Colin C., Kissel C., Blamart D., Turpin L. Magetic properties of sediments in the Bay of Bengal and Andaman Sea:impact of rapid North Atlantic Ocean climatic events on the strength of the Indian monsoon[J]. Earth and Planetary Science Letters,1998,160: 623-635.
    [182]Tripathi J.K., Rajamani V. Geochemistry of the loessic sediments on Delhi Ridge, eastern Thar Desert, Rajasthan:implications for exogenic processes[J]. Chmical Geology,1999,155:265-278.
    [183]Eisenhauer A., Meyer H., Rachold V., Tuetken T., Wiegand B., Hanse B.T., Spielhagen R.F., Lindemann F., Kassens H. Grain size separation and sediment mixing in Arctic Ocean sediments:evidence from the strotium isotope systematic [J]. Chemical Geology, 1999,158:173-188.
    [184]Yong G.M. Some aspects of the geochemistry, provenance and palaeoclimatology of the Torridonian of NW Scotland[J]. Journal of the Geological Society, London,1999, 156:1097-1111.
    [185]谢远云,张丽娟,何葵,康春国,臧淑英.哈尔滨沙尘沉降物的化学风化特征及物源区意义[J].2009,25:79-84.
    [186]Parker A. An index of weathering for silicate rocks [J]. Geological Magazine,1970, 107:501-504.
    [187]Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,1982,299:715-717.
    [188]Mclennan S.M. Weathering and global denudation[J]. Journal of Geology,1993,101: 295-303.
    [189]Raiswell R., Berner R. Pyrite formation in euxinic and semi-euxinic sediments[J]. American Journal of Science,1985,285:710-724.
    [190]Davis H.R., Byers C.W., Dean W.E. Pyrite formati on in the Lower Cretaceous Moway Shale:effect of organic matter type and reactive iron content[J]. American Journal of Science,1988,288:873-890.
    [191]罗家珂,陈祥涌.从萤石、重晶石、方解石中优先浮选稀土矿物的研究[J].中国稀土学报,1985,3(3):7-12.
    [192]Liao X., Wu X.Y., Zhu B.L., et al. Study on the characteristics of black strata geochemical weathering and its disaster-causing mechanism [J]. Disaster Advances, 2012,5(4):1461-1466.
    [193]Harneit K., Goksel A., Kock D., et al. Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans[J]. Hydrometallurgy,2006,83(1-4):245-254.
    [194]Edwards K.J., Hu B., Hamers R., et al. A new look at microbial leaching patterns on sulfide minerals[J]. FEMS Microbiology Ecology,2001,34(3):197-206.
    [195]Temple K.L., Colmer A.R. The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans[J]. Journal of Bacteriology,1951,62:605-611.
    [196]Kai T., Nagano T., Fukumoto T., et al. Autotrophic growth of Acidithiobacillus ferrooxidans by oxidation of molecular hydrogen using a gas-liquid contactor[J]. Bioresource Technology,2007,98(2):460-464.
    [197]Oprime M.E.A.G., Jr O.G., Cardoso A. A. Oxidation of H2S in acid solution by Thiobacillus ferrooxidans and Thiobacillus thiooxidans [J]. Process Biochem,2001, 37(2):111-114.
    [198]Quatrini R., Appia-Ayme C., Denis Y., et al. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling[J]. Hydrometallurgy,2006,83(1-4):263-272.
    [199]李宏煦,王淀佐,陈景河,阮仁满.细菌浸矿作用分析[J].有色金属,2003,55:60-71.
    [200]Boon M., Heijnen J.J. Gas-liquid mass transfer phenomena in bio-oxidation experiments of sulphide minerals:a critical review of literature data[J]. Hydrometallurgy,1998,48:187-204.
    [201]Boon M. The mechanism of 'direct' and 'indirect' bacterial oxidation of sulphide minerals[J]. Hydrometallurgy,2001,62:67-70.
    [202]Breed A.W., Hansford G.S. Studies on the mechanism and kinetics of bioleaching[J]. Minerals Engineering,1999,12:383-392.
    [203]Crundwell F.K. How do bacteria interact with minerals?[J]. Hydrometallurgy,2003,71: 75-81.
    [204]Fowler T.A., Crundwell F.K. Leaching of zinc sulfide by Thiobacillus ferrooxidans: experiments with a controlled redox potential indicate no direct bacterial mechanism[J]. Applied and Environmental Microbiology,1998.64:3570-3575.
    [205]Fowler T.A., Holmes P.R., Crundwell F.K. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans [J]. Applied and Environmental Microbiology, 1999,65:2987-2993.
    [206]Long H., Dixon D.G. Pressure oxidation of pyrite in sulfuric acid media:a kineticstudy[J]. Hydrometallurgy,2004,73(3-4):335-349.
    [207]库兹涅佐夫C.И.地质微生物学引论[M].王修恒译.北京:科学出版社,1966.
    [208]Mazumdar A., Goldberg T., Strauss H. Abiotic oxidation of pyrite by Fe(Ⅲ) inacidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in sediments[J]. Chemical Geology,2008,253(1-2):30-37.
    [209]Sracek O., Gelinas P., Lefebvre R., et al. Comparison of methods for theestimation of pyrite oxidation rate in a waste rock pile at Mine Doyon site, Quebec, Canada[J]. Journal of Geochemical Exploration,2006,91(1-3):99-109.
    [210]周丽,李和平,刘庆友.硫化物矿物原电池反应的实验研究进展[C].矿物岩石地球化学通报.2007,26(增刊):531-532.
    [211]Biegler T., Swift D.A. Anodic behaviour of pyrite in acid solutions[J]. Electrochimica Acta,1979,24:415-420.
    [212]Shi S.Y., Fang Z.H., Ni J.R. Electrochemical impedance spectroscopy of marmatite-carbon paste electrode in the presence and absence of Acidithiobacillus ferrooxidans[J]. Electrochemistry Communications,2005,7(11):1177-1182.
    [213]Bevilaqua D., Diez-Perez I., Fugivara C., et al. Oxidative dissolution of chalcopyrite by Acidithiobacillus ferrooxidans analyzed by electrochemical impedance spectroscopy and atomic force microscopy[J]. Bioelectrochemistry,2004,64(1):79-84.
    [214]Liu Ran, Wolfe A.L., Dzombak D.A., et al. Electrochemical study of hydrothermal and sedimentary pyrite dissolution[J]. Applied Geochemistry,2008,23(9):2724-2734.
    [215]Liu Ran, Wolfe A.L., Dzombak D.A., et al. Comparison of dissolution under oxic acid drainage conditions for eight sedimentaryand hydrothermal pyrite samples[J]. Environmental Geology,2008,56(1):171-182.
    [216]Chernyshova I.V. Pyrite oxidation mechanism in aqueous solutions:an insitu FTIR study[J]. Russ J Appl Electrochem,2004,40(1):69-77.
    [217]孙小俊,李建华.黄铁矿在酸性体系下的电化学研究[J].金属矿山,2011,9:72-75.
    [218]彼列尔曼A·и.后生地球化学[M].龚子同译.北京:科学出版社,1975.
    [219]TB 10005-2010,J1167-2011.铁路混凝土结构耐久性设计规范[S].2010.
    [220]Olowe A.A., Genin J.M.R. Hyperfine structures of iron(Ⅱ) sulphates:Melanterite and rozenite[J].1992,68(1-4):253-256.
    [221]Baltatzis E., Stamatakis M.G., Kyriakopoulos K.G. Rozenite and melanterite in lignitic layers from the Voras Mountain, Western Macedonia, Greece[J]. Mineralogical Magazine 1986, (50):737-738.
    [222]Zheng G., Lang Y., Miyahara M., et al. Iron oxide precipitate in seepage of groundwater from a landslide slip zone[J]. Environental Geology,2007,51(8): 1455-1464.
    [223]Zheng G., Xu S., Liang S., et al. Gas emission from the Qingzhu River after the 2008 Wenchuan Earthquake, Southwest China[J]. Chemical Geology,2012,339:187-193.
    [224]段江涛.黑色岩层风化破坏机理研究[D].西南交通大学硕士论文,2011:1-30.
    [225]Chigira M., Oyama T. Mechanism and effect of chemical weathering of sedimentary rocks[J]. Engineering Geology,1999,55:3-14.
    [226]日本气象厅:http://www.jma.go.jp/jma/index.html.
    [227]陆达年.在超纯水中电导率和pH、加氨量的关系[R].公会第14届第3次临时理监事联席会议,2007.
    [228]Rimstidt J.D., Vaughan D.J. Pyrite oxidation A state-of-the-art assessment of the reaction mechanism[J]. Advances in Oxide and Sulfide Mineral Surface Chemistry, 2003,67:873-880.
    [229]Joeckel R.M., Ang Clement B.J., VanFleet Bates L.R. Sulfate-mineral crusts from pyrite weathering and acid rock drainage in the Dakota Formation and Graneros Shale, Jefferson County, Nebraska[J]. Chemical Geology,2005,215:433-452.
    [230]Crowley J.K., Mars J.C., Hammarstrom J.M. Airborne imaging spectrometer and field spectroscopic studies of mine wastes at the Elizabeth mine, Vermont. Society of Economic Geologists Guidebook Series,2001,35:249-253.
    [231]Liu Z.Q., Schutterb G.D., Deng D., et al. Micro-analysis of the role of interfacial transition zone in "salt weathering" on concrete[J]. Construction and Building Materials, 2010,24:2052-2059.
    [232]Jambor J.L., Traill R.J. On rozenite and siderotil[J]. The Canadian Mineralogist,1963, 7:751-763.
    [233]Farkas I.M., Weiszburg T.G., Pekker P., et al. A half-century of environmental mineral formation on a pyrite-bearing waste dump in the Matra Mountains, Hungary[J]. The Canadian Mineralogist,2009,47:509-524.
    [234]Hammarstroma J.M., Seal R.R., Meierb A.L., et al. Secondary sulfate minerals associated with acid drainage in the eastern US:recycling of metals and acidity in surficial environments[J]. Chemical Geology,2005,215:407-431.
    [235]Zehnder K., Schoch O. Efflorescence of mirabilite, epsomite and gypsum traced by automated monitoring on-site[J]. Journal of Cultural Heritage Schochb,2009,10(3): 319-330.
    [236]Schwertmann U.,Taylor R.M. Iron oxides[M]. In:Dixon,J.B., Weed, S.B.(Eds.), Minerals in Soil Environments, Soil Science Society of America. Madison, WI, USA, 1977:145-180.
    [237]Ievlev A.A. Mineralogy and formation of weathering zones in phosphorite-bearing shales of Pai Khoi[J]. Soviet Geology,1988,10:81-93.
    [238]Bolshakov A.P., Ptushko L. I. Alteration products of melanterite from the Nikitov mercury ore deposits[J]. Internationanal Geology Review,1971,13:849-854.
    [239]Jacobsen U.H. Hydrated iron sulfate occurrences at Navarana Fjord, central North Greenland[J]. Bulletin of the Geological Society of Denmark,1989,37:175-180.
    [240]涂光炽,李锡林.干旱和极端干旱气候条件下硫化物矿床氧化带发育特征(以西北五个矿床为例说明)[J].地质学报,1963,43:361-377.
    [241]Jambor J.L., Nordstrom D.K., Alpers C.N. Sulfate minerals-crystallography, geochemistry, and environmental significance[J]. Reviews in mineralogy and geochemistry,2000,40:303-350.
    [242]Bandy M.C. Mineralogy of three sulphate deposits of northern Chile[J]. American Mineralogist,1938,23:669-760.
    [243]Buurman P. In vitro weathering products of pyrite[J]. Geologie en Mijnbouw,1975,54: 101-105.
    [244]Nordstrom D.K., Alpers C.N., Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site[J]. Proceedings of the National Academy of Sciences of the United States of America,1999, 96:3455-3462.
    [245]Hoff H. Application of non-equilibrium thermodynamics to osmosis and permeation[J]. Journal of the Chemical Society, Faraday Transactions,1981,77:2325-2340.
    [246]沈照理.水文地球化学基础[M].北京:地质出版社,1986.
    [247]ъyлax A.Γ矿物学中的热力学方法[M].夏林圻译.北京:地质出版社,1982.
    [248]李宽良.水文地球化学热力学[M].北京:原子能出版社,1993.
    [249]张萌.鄂尔多斯盆地上古生界碎屑岩次生孔隙形成机制的热力学计算和溶解实验模拟研究[D].成都理工大学,2007.
    [250]Yee N., Shaw S., Benning L.G. The rate of ferrihydrite transformation to goethite via the Fe(Ⅱ) pathway[J]. American Mineralogist,2006,91:92-96.
    [251]Drever D.I. The geochemistry of natural groundwaters[M]. Prentice Hall,1997.
    [252]殷辉安.岩石学相平衡[M].北京:地质出版社,1988.
    [253]Blanc P., Piantone P., Lassin A. et Burnol A. Thermochimie:Selection de constantes thermodynamiques pour les elements majeurs, le plomb et le cadmium[R]. Rapport final. Rapport, BRGM 54902-FR,2006.
    [254]Cox J.D., Wagman D. D., Medvedev V.A. CODATA Key Values for Thermodynamics[M]. New York:Hemisphere Publishing Corp,1989.
    [255]Robie R.A., Hemingway B.S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures[R]. U.S. Geological Survey Bulletin 2131,1995:461.
    [256]Wagman D.D., Evans W.H., Parker V.V., Schumm R.H., Harlow I., Bailey S.M., Churney K.L., Nuttall R.L. The NBS tables of chemical thermodynamic properties: Selected valus for inorganic and Cl and C2 Organic substances in SI units. J.Phys[M]. Chemical Reference Data,1982, 11(Supp1.2):1-392.
    [257]Busenberg E., Plummer N.L. The solubility of BaCO3(cr) (witherite) in CO2-H2O solutions between 0 and 90℃, evaluation of the association constants of BaHCO3+(aq) and BaCO30 (aq) between 5 and 80℃, and a preliminary evaluation of the thermodynamic properties of Ba2+(aq)[J]. Geochimica et Cosmochimica Acta,1986,50, 10:2225-2233.
    [258]Wesolowski D.J., Palmer D.A. Aluminum speciation and equilibria in aqueous solution: V. Gibbsite solubility at 50℃ and pH 3-9 in 0.1 molal NaCl solutions (a general model for aluminum speciation; analytical methods)[J]. Geochimica et Cosmochimica Acta, 1994,58(14):2947-2969.
    [259]Ball J.W., Nordstrom D.K. User's manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters[R]. U.S. Geological Survey,1991:91-183.
    [260]Gunnarsson I., Arnorsson S. Amorphous silica solubility and the thermodynamic properties of H4Si°O4 in the range of 0° to 350℃ at Psat[J].Geochimica et Cosmochimica Acta,2000,64(13):2295-2307.
    [261]Grevel K.D., Majzlan J. Internally consistent thermodynamic data for magnesium sulfate hydrates[J]. Geochimica et Cosmochimica Acta,2009,73(22):6805-6815.
    [262]Garvin D., Parker V.B., White H.J.Jr. Codata Thermodynamic Tables:selections for some compounds of calcium and related mixtures:a prototype set of tables[M]. Taylor & Francis,1987.
    [263]Schulte M.D., Shock E.L., Wood R.H. The temperature dependence of the standard-state thermodynamic properties of aqueous nonelectrolytes. Geochimica et Cosmochimica Acta,2001,65(21):3919-3930.
    [264]Hemingway B.S, Seal R.R, Chou I.M. Thermodynamic data for modeling acid mine drainage problems:Compilation and estimation of data for selected soluble iron-sulfate minerals[R]. U.S. Geological Survey Open-File Report:2002-161.
    [265]Drouet C., Navrotsky A. Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites[J]. Geochim. Cosmochim. Acta,2003,67,11:2063-2076.
    [266]Majzlan J., Navrotsky A., Schwertmann U. Thermodynamics of iron oxides:Part Ⅲ. Enthalpies of formation and stability of ferrihydrite (-Fe(OH)3), schwertmannite (-FeO(OH)3/4(SO4)1/8), and ε-Fe2O3[J]. Geochimica et Cosmochimica Acta,2004,68,5: 1049-1059.
    [267]Benezeth P., Dandurand J.L., Harrichoury J.C. Solubility product of siderite (FeCO3) as a function of temperature (25-250 degrees C)[J]. Chemical Geology,2009,265, 1-2(SI):3-12.
    [268]胡忠鲤,金继红,李盛华.现代化学基础[M].北京:高等教育出版社,2000.
    [269]Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous solutions[M]. NACE, Houston, Taxas. USA. CEBELCOR,1996.
    [270]杨熙珍,杨武.金属腐蚀电化学热力学—电位-pH图及其应用[M].第一版.北京:化学工业出版社,1991:26,249-253.
    [271]李自强,何良惠.水溶液化学位图及其应用[M].成都:成都科技大学出版社,1991.
    [272]Nagumo M. Hydrogen entry into metals from liquid phase:Ⅰ-Basic electrochemical reactions[J]. Corrosion Engineering,2006,55:380-389.
    [273]Kunitsugu A. A nanotechnology in corrosion science (part 3)-prevention of passive film breakdown on iron by coverage with chemically modified self-assembled monolayers[J]. Corrosion Engineering,2006,55:224-231.
    [274]边莉,金宗哲.Fe系E(pE)-pH图及随时间变化规律[J].全面腐蚀控制,2008,22(3):25-28.
    [275]张索林.化学热力学平衡中的几个问题[M].石家庄:河北教育出版社,1989.
    [276]Garrels R.M., Christ C.L. Solutions, Minerals, and Equilibria[M]. Harper and Row: New York,1965.
    [277]Biernat R.J., Robins R.G. High-temperature potential/pH diagrams for the iron-water and iron-water-sulphur systems[J]. Electrochtmica Acta,1972,17(7):1261-1283.
    [278]Bouet J., Brenet J.P. Contribution a l'etude du diagramme tension/pH du fer en milieux sulfures[J]. Corrosion Science,1963,3(1):51-63.
    [279]Thomas R., Williams E. T. LXXXI.—The catalytic oxidation of ferrous salts in acid solutions[J]. Journal of the Chemical Society,1921,119:749-758.
    [280]Biernat R.J., Robins R.G. High temperature potential/ph diagrams for the sulphur-water syste[J]. Electrochimica Acta,1969,14(9):809-820.
    [281]Parker V.B., Khodakovskii I.L. Thermodynamic properties of the aqueous ions (2+ and 3+) of iron and they compounds of iron[J]. Journal of Physical and Chemical Reference Data,1995,24:1669-1745.
    [282]Chou I.M., Seal R.R. II, Hemingway B.S. Determination of melanterite-rozenite and chalcanthite-bonattite equilibria by humidity measurements at 0.1 MPa[J]. American Mineralogist,2002,87:108-114.
    [283]Baskerville W.H., Cameron F.K. Ferric oxide and aqueous sulfuric acid at 25℃[J]. The Journal of Physical Chemistry,1935,39:769-779.
    [284]Posnjak E., Merwin H.E. The system, Fe2O3-SO3-H2O[J]. Journal of the American Chemical Society,1922,44:1965-1994.
    [285]Merwin H.E., Posnjak E. Sulphate incrustations in the copper Queen mine, Bisbee, Arizona[J]. American Mineralogist,1937,22:567-571.
    [286]Majima H., Awakura Y. Water and solute activities of H2SO4-Fe2(SO4)3-H2O and HCl-FeCl3-H2O solution systems. Part I. Activities of water[J]. Metallurgical Transactions B,1985,16:433-439.
    [287]Majima H., Awakura Y. Water and solute activities of H2SO4-Fe2(SO4)3-H2O and HCl-FeCl3-H2O solution systems. Part II. Activities of solutes[J]. Metallurgical Transactions B,1986,17:621-627.
    [288]Reardon E.J., Beckie R.D. Modelling chemical equilibria of acid-mine drainage:The FeSO4-H2SO4-H2O system[J]. Geochimica et Cosmochimica Acta,1987,51: 2355-2368.
    [289]Pitzer K.S. Ion interaction approach:Theory and data collection[M]. In "Activity Coefficients in Electrolyte Solutions", Pitzer K.S., ed. CRS, Boca Raton,1991,75-153.
    [290]Christov C. Pitzer ion-interaction parameters for Fe(Ⅱ) and Fe(Ⅲ) in the quinary {Na+K+Mg+Cl+SO4+H2O} system at T=298.15K[J]. The Journal of Chemical Thermodynamics,2004,36:223-235.
    [291]Rumyantsev A.V., Hagemann S., Moog H.C. Isopiestic investigation of the systems Fe2(SO4)3-H2SO4-H2O,FeCl3-H2O, and Fe(Ⅲ)-(Na,K,Mg,Ca)Cln-H2O at 298.15K[J]. Zeitschrift fur Physikalische Chemie,2004,218:1089-1127.
    [292]Dickson A.G., Wesolowski D.J., Palmer D.A., Mesmer R.E. Dissociation constant of bisulfate ion in aqueous sodium chloride solutions to 250℃[J]. The Journal of Physical Chemistry,1990,94:7978-7985.
    [293]Majzlan J., Navrotsky A., Mccleskey R.B., Alpers C.N. Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5[J]. European Journal of Mineralogy.2006,18:175-186.
    [294]艾树涛.非平衡态热力学概论[M].武汉:华中科技大学出版社,2009.
    [295]Prigogine I. Moderation et transformations irreversibles des systemes ouverts[J]. Bulletin of the Academy of the Royal Belgian CI. Sci.1945,31:600-606.
    [296]Degroot S.R., Mazur P.非平衡态热力学[M].陆全康,译.上海:上海科学技术出版社,1981.
    [297]李如生.非平衡态热力学和耗散结构[M].北京:清华大学出版社,1986.
    [298]於祟文.地球化学的理论体系与方法论[J].地球科学,1986,11(4):331-339.
    [299]张招崇.耗散结构理论在地学中的应用[J].矿物岩石地球化学通讯,1990,(4):236-237.
    [300]王江海.耗散结构理论与地质学研究[J].地球科学进展,1992,7(2):5-11.
    [301]Ortoleva P. The self organization of liesegang bands and other precipitate patterns[J]. Chemical Instabilities, D. Reidel Publishing Company,1984:289-297.
    [302]Tromans D. Temperature and pressure dependent solubility of oxygen in water:a thermodynamic analysis. Hydrometallurgy,1998,48:327-342.
    [303]Klobes P., Meyer K., Munro R.G. Porosity and Specific Surface Area Measurements for Solid Materials[M]. U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology,2006.
    [304]Guidelines for Drinking-water Quality,4th[R]. Value Chain, India,2011.
    [305]Muller P. Glossary of terms used in physical organic chemistry[R]. Pure and Applied Chemistry,1994,66(5):1077-1184.
    [306]Reuss J.O., Johnson D.W. Acid deposition and the acidification of soils and waters[M]. Ecological studies 59. New York:Springer-Verlag,1986.
    [307]Kamei G., Ohmoto H. The kinetics of reactions between pyrite and O2-bearing water revealed from in situ monitoring of DO, Eh and pH in a closed system[J]. Geochimica et Cosmochimica Acta,2000,64:2585-2601.
    [308]Goldhaber M.B. Experimental study of metastable sulfur oxyanion formation during pyrite oxidation at pH 6-9 and 30℃[J]. American Journal of Science.1983,283: 193-217.
    [309]Scholz C.H., Leger A., Karner S.L. Experimental diagenesis:Exploratory results[J]. Geophysical Research Letters,1995,22:719-722.
    [310]Tenthorey E., Scholz C.H., Aharonov E. Precipitation sealing and diagenesis:1. Experimental results[J]. Journal of Geophysical Research,1998,103:23951-23967.
    [311]Aharonov E., Tenthorey E., Scholz C.H. Precipitation sealing and diagenesis:2. Theoretical analysis[J]. Journal of Geophysical Research,1998,103:23969-23981.
    [312]Chigira M., Watanabe M. Silica precipitation behavior in a flow field with negative temperature gradients[J]. Journal of Geophysical Research,1994,99:15539-15548.
    [314]Brunauer S., Emmett P.H. Teller E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society,1938,60:309-319.
    [315]Fischer C., Gaupp R. Change of black shale organic material surface area during oxidative weathering:Implications for rock-water surface evolution. Geochimica et Cosmochimica Acta,2005,69:1213-1224.
    [316]Sayegh S.G., Krause F.F., Girard M., DeBree C. Rock/fluid interactions of carbonated brines in a sandstone reservoir:Pembina Cardium, Alberta, Canada. SPE Formation Evaluation,1990,5:399-405.
    [317]Bowker K.A., Shuler P.J. Carbon dioxide injection and resultant alteration of the Weber sandstone, Rangely field, Colorado[J]. American Association of Petroleum Geologists Bulletin,1991,75,1489-1499.
    [318]Bernabe Y., Mok U., Evans B. Permeability-porosity relationships in rocks subjected to various evolution processes [J]. Pure and Applied Geophysics,2003,160(5-6): 937-960.
    [319]王随继,曾凡刚,黄杏珍,等.含油气盆地中粘土矿物的穆斯堡尔效应及应用—以柴达木盆地第三系为例[J].沉积学报,1998(2):109-112.
    [320]Dewhurst D.B., Aplin A.C., Sarda J.P., et al. Compaction-driven evolution of porosity and permeability in natural mudstones:An experimental study [J]. Journal of Geophysical Research,1998,103:651-661.
    [321]余钟波,黄勇.地下水水文学原理[M].北京:科学出版社,2008,6:25-32.
    [322]Chigira M. A mechanism of chemical weathering of mudstone in a mountainous area[J]. Engineering Geology,1990,29:119-138.
    [323]Garrels R.M., Mackenzie F.T. Origin of the chemical compositions of some springs and lakes[M]. Advances in Chemistry,1967,67:222-242
    [324]Helgeson C. Thermodynamics of hydrothermal systems at elevated temperatures and pressures[J]. American Journal of Science,1969,267, (7):729-804.
    [325]周海燕,周训,姚锦梅.广东从化温泉的水文地球化学模拟[J].现代地质,2007,21(4):620-623.
    [326]谢水波,陈泽昂,张晓健,等.铀尾矿库区浅层地下水中U(Ⅵ)迁移的模拟[J].原子能科学技术,2007,41(1):58-64.
    [327]王益峰,冯祖钧.一个计算机模拟水-岩反应过程的数学模型[J].矿床地质,1987,6(2):77-88.
    [328]陈振,刘金辉.水-岩相互作用的地球化学模拟研究[J].科技情报开发与经济,2008,18(23):144-146.
    [329]朱义年,王焰新.地下水地球化学模拟的原理及应用[M].北京:中国地质大学出版社,2005.
    [330]毛小敏,刘翔,Barry D A.PHREEQC在地下水溶质反应运移模拟中的应用[J].水文地质工程地质,2004,2:20-24.
    [331]高柏,史纬浚,孙占学PHREEQC在研究地浸溶质迁移过程中的应用[J].华东地质学院学报,2002,25(2):42-45.
    [332]马尧.地球化学模式PHREEQC在地浸工艺中的应用[J].铀矿冶,2007,26(2):67-71.
    [333]周祖权.平衡常数法和饱和指数法及其在水-岩作用模拟中的应用[M].河海大学,2001.
    [334]Palandri J.L., Kharaka Y.K. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling[R]. U.S. Geological Survey Open-File Report,2004-1068.
    [335]Brown J.B. Jarosite-goethite stabilities at 25℃,1 ATM[J]. Mineralium Deposita.1971, 6:245-252.
    [336]Madden M.E.E., Bodnar R.J., Rimstidt J.D. Jarosite as an indicator of water-limited chemical weathering on Mars[J]. Nature,2004,431:821-823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700