用户名: 密码: 验证码:
交通工程边坡在振动力作用下行为特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通工程边坡在地震作用下的行为特征研究,是近年来研究的热点问题。随着国家工程建设的投入,我国大量线路工程将会不可避免的穿越地震活跃区,科研人员将会遇到大量复杂边坡问题,而边坡问题将会伴随着工程建设的进行而变得日益突出。本学位论文在全面研究现代交通线路工程的各类边坡破坏模式的基础上,利用室内物理模型试验和数值模拟算等手段开展了边坡工程地质问题动力学的理论研究,为交通工程边坡治理防护和交通工程边坡地质灾害预测评价提供了动力学理论依据。主要研究成果如下:
     (1)按照机械设计原理和结构动力学原理,设计了二维单向振动试验台。利用位移传感器和动态采集系统对模型箱的位移时程曲线进行了采集,并且通过结构动力学理论计算,获取了理想状态下单向振动的位移时程曲线,通过两条曲线对比发现,振动试验台整体性能稳定,能够满足小型荷载的振动试验。
     (2)边坡坡面形态对边坡的变形破坏有着直接的影响;凸面边坡由于滑动体质量大,所以在振动力施加时能够瞬问发生整体的变形破坏,而凹面边坡由于滑体质量较小,在振动力作用下容易造成滑体的分段下滑,位于滑体下部的块体先行下滑,进而带动整个滑体的滑动破坏,由此造成的宏观现象是凹面边坡坡面的裂隙要早于边坡坡顶的裂隙产生,而凸面边坡则与此相反。凹凸组合面边坡的变形破坏受坡面上凸起部分的影响。
     (3)边坡的变形破坏程度以及滑动面倾角与边坡坡面的凹凸程度直接相关;边坡凹陷或凸出程度越强烈的边坡,振动试验结束后其坡顶剩余的部分就越少;同时分析发现,滑动面滑床倾角随着边坡坡面凹陷或者凸出程度的减缓而逐渐增大。
     (4)边坡坡面形态对坡面加速度分布有直接影响;边坡加速度放大系数在坡而凹陷和凸起区域达到局部最大,并且逐步向外减小,在同等情况下,凸而坡坡面的加速度放大效应要强于凹面坡坡面放大效应。在凹凸组合面边坡中,加速度放大效应也在边坡坡面凹陷处和凸起处达到最大。加速度在边坡内部都有随着坡高的增高而增高的趋势,而且处于同一高程的边坡坡面放大效应趋势要大于边坡内部,但不同坡面形态边坡坡体内部加速度分布并未出现不同规律,说明边坡坡面形态对边坡内部加速度的分布影响较小。
     (5)通过对层状岩石边坡物理模型试验发现,受结构面的影响,顺层模型边坡的变形破坏主要是沿着固定层面的滑动破坏,反倾向模型边坡的变形破坏主要是以崩塌体的形式破坏。
     (6)高程位置较高的隧道口由于滑体将其包含其中而容易造成隧道口的整体破坏,而高程较低的隧道口由于滑塌体堆积而容易造成隧道洞口堵塞。
     (7)结构面参数对边坡动力响应规律的影响较大;结构面刚度较小的边坡下部坡体的三量峰值较小,而上部坡体三量峰值较大;结构面越靠近边坡坡顶,结构面上部坡体的三量放大系数就越高;随着结构面倾角的增加,顺层结构面边坡加速度放大系数随之增大,反倾向结构面边坡加速度放大系数随之减小,顺层结构面边坡加速度放大系数整体大于反倾向结构面边坡加速度放大系数;结构面厚度较小的边坡其动力响应较为强烈,结构面厚度较大的边坡动力响应较弱;不同结构面连通率的边坡,加速度峰值的差异较为明显,在结构面位置处,连通率较大的结构面放大效应较强。
     (8)通过总结太平隧道出口边坡工程地震安全性分析发现,太平隧道出口边坡受结构面的影响较大,在地震来临时,结构面切割块体会受到拉张剪切应力作用而发生整体和单个块体的下滑,但是由于隧道洞口位置适中,滑体滑动面位于隧道洞口以上,并且滑体滑落后不会出现堵塞洞口的现象,这一规律给隧道出口边坡震后的迅速通车提供了可贵的先前条件。整体而言,太平隧道出口边坡选址较为可观。
Researches on behavioral characteristics of traffic engineering slopes under seismic actions have been the hot issue in recent years. With the investment in national engineering construction, large numbers of line projects in China will inevitably run through seismically active areas, as a result, scientific researchers will face lots of complicated slope problems, and slope problems will stand out increasingly along with the proceeding of engineering construction. In this paper, theoretical researches on dynamics of slope engineering geological problems were performed by laboratory physical model tests, numerical simulation algorithm and other methods based on comprehensive research on various slope failure modes of modern transport line projects, thus providing theoretical dynamic basis for control and protection of traffic engineering slopes as well as prediction and evaluation of geological hazards of traffic engineering slopes. Major research achievements are as follows:
     (1) A2D one-way vibration test bench is designed according to mechanical design principles and structural dynamic principles. The displacement-time curve of a model box is acquired using a displacement sensor and a dynamic acquisition system, and the displacement-time curve in one-way vibration under ideal conditions is acquired by theoretical calculation of structural dynamics, and comparison between the two curves shows that the vibration test bench has stable overall performance and can meet vibration tests of small loads.
     (2) Slope forms have direct impact on deformation and failure of slopes; for convex slopes, overall deformation and failure can occur instantaneously in case of application of vibration force due to large sliding masses, for concave slopes, segmental sliding of sliding masses easily occurs under the action of vibration force due to small sliding masses, masses below sliding masses slide, resulting in overall sliding failure of the sliding masses, the resulting macro phenomena are that surface fissure occurs earlier than top fissure for concave slopes, on the contrary, top fissure occurs earlier than surface fissure for convex slopes. Deformation and failure of combined concave and convex slopes are impacted by projections of slopes.
     (3) Deformation and failure of slopes and dip angles of sliding surfaces are directly related to concave and convex extent of slope surfaces; the stronger the concave or convex extent of the slope is, the less the remaining slope crest is after vibration tests; and analysis reveals that dip angles of sliding beds of sliding surfaces increase gradually with the decline of the concave or convex extent of the slope surfaces.
     (4) Slope forms have direct impact on the distribution of slope acceleration; the maximum slope acceleration amplification coefficient appears at local concave and convex slope areas, and gradually decreases outwards, under the same circumstances, the acceleration magnification effects of convex slopes are stronger than the amplification effects of concave slopes. With regard to combined concave and convex slopes, the maximum acceleration magnification effects occur at depression and projection of slopes. Acceleration tends to increase with the increase of slope height with regard to the same slope, and the amplification effects of slopes at the same height are larger than those in slopes, however, internal acceleration distribution of slopes of different slope forms is the same, indicating that slope forms have small impact on internal acceleration distribution of slopes.
     (5) Physical model tests on stratified rock slopes reveal that deformation and failure of bedding model slopes are mainly sliding failure along fixed bedding surfaces, and deformation and failure of anti-dip model slopes are mainly failure of avalanche masses.
     (6) Tunnel portals at higher elevation are prone to overall failure as they are included in sliding masses, and tunnel portals at lower elevation are easily blocked due to slump accumulation.
     (7) Parameters of structural planes have great impact on dynamic response of slopes; lower slopes of slopes with small structural plane stiffness have smaller peak values of the three factors, and upper slopes have larger peak values of the three factors; the closer the structural planes is to the slope crest, the larger the amplification coefficient of the three factors of upper slopes of the structural planes is; with the increase of dip angles of structural planes, the slope acceleration amplification coefficient of bedding structural planes increases, and the slope acceleration amplification coefficient of anti-dip structural planes decreases, the slope acceleration amplification coefficient of bedding structural planes is integrally larger than the slope acceleration amplification coefficient of anti-dip structural planes. Slopes with smaller structural plane thickness have stronger dynamic response, and slopes with larger structural plane thickness have weaker dynamic response; slopes with different connectivity rates of structural planes have obvious differences in acceleration peak values, and structural planes with larger connectivity rates have stronger amplification effects at structural planes.
     (8) By summarizing the analysis on seismic safety of the slope project at Taiping Tunnel portal, the slope at Taiping Tunnel portal is greatly impacted by structural planes, in an earthquake, cutting blocks of structural planes will slide in overall and individual blocks under the action of tensile stress and shear stress. However, as the tunnel portal is located in a moderate position, sliding surfaces of sliding masses are above the tunnel portal, and the portal will not be blocked by the sliding masses, this pattern provides good prerequisite conditions for quick traffic operation after earthquake of slopes at tunnel portals. Generally speaking, the slope site of Taiping Tunnel portal is appreciable.
引文
[1]Keefer D.V.Landslides caused by earthquakes [J].Geological Society of America Bulletin,1984.95(4):406-421.
    [2]殷跃平,潘桂棠,刘宇平等.汶川地震地质与滑坡灾害概论[M].北京:地质出版社,2009.61-62.
    [3]黄润秋,裴向军,李天斌.汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J].工程地质学报,2008,16(6):730-741.
    [4]Davis T.N, Sanders N.K.The Alaska earthquake of July 10,1958:Intensity distribution an field investigation of Northern Epicentral Region [J].Bulletin of the Seismological Society of America,1960.50(2):221-252.
    [5]Plafker G, Ericksen G.E, Concha J.F.Geological aspects of the May 31,1970, Peru earthquake [J].Bulletin of the Seismological Society of America June,1971,61(3):543-578.
    [6]1933年岷江叠溪地震堰塞湖的形成及次生灾害[J].中国水利,2008,(10):88-89.
    [7]Shou KenJian,Wang ChengFung.Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan[J].Engineering Geology,2003,68:237-250.
    [8]刘爱文,夏珊,徐超.汶川地震交通系统震害及震后抢修[J].震灾防御技术,2008,(03):243-250.
    [9]Terzaghi K.Mechanisms of landslides, Engineering Geology (Berdey) Volume [M].Geological Society of America,1950.
    [10]Seed H.B.Considerations in the earthquake resistant design of earth and rockfill dams [J].Geotechniaue,1979,1(29):251-263.
    [11]Leshchinsky D.S.Pseudostatic Seismic Stability of Slopes:Design charts [J]. Journal of Geotechnical Engineering ASCE 1994,120(9):1514-1532.
    [12]Ausilioe E, Conte E, Dente G.Seismic stability analysis of reinforced slopes, Soil Dynamics and Earthquake Engineering, Elsevier Science Ltd,2000,19(3):159-172.
    [13]吕擎峰,殷宗泽,王叔华等.拟静力法边坡稳定分析的改进[J].岩土力学,2005,(S1):35-38.
    [14]Ling H.I, Leshchinsky D, Mohri Y.Soil Slopes under combined horizontal and vertical seismic accelerations earthquake engineering [J]. Structural Dynamics,1997, 26(12):1231-1241
    [15]刘杰,李建林,张玉灯等.基于拟静力法的大岗山坝肩边坡地震工况稳定性分析[J].岩石力学与工程学报,2009,(08):1562-1570.
    [16]程国伟,赵雪胜,李玲.基于拟静力法的加筋边坡地震稳定性分析[J].长江大学学报(自然科学版)理工卷,2009,(04):295-297+16.
    [17]胡成,卢坤林,朱大勇等.三维边坡拟静力抗震稳定性分析[J].岩石力学与工程学报,2011,(S1):2904-2912.
    [18]邓东平,李亮.基于滑动面搜索新方法对地震作用下边坡稳定性拟静力分析[J].岩石力学与工程学报,2012,(01):86-98.
    [19]Said L.Seismic stability analysis of fractured rock slopes by yield design theory[J].Soil Dynamics and Earthquake Engineering,2003,23(3):203-212.
    [20]NewmarkN.M.Effects of earthquakes on dams anembankments[J].Geotechnique,1965,15(2):139-160.
    [21]Franklin A.G,Chang F.K.Earthquake Resistance of Earth and Rock-fill Dams[M],Vicksburg:Army Crops of Engineers Water ways Experiment Station,1977.
    [22]Giovanni B, Ernesto C.Michele Maugeri and Ernesto Motta [M].Pore Pressure Effect on Seismic Response of Slope.12WCEE,2000.
    [23]Warman J,Raymond B.Newmark Analyses of a Shaking Table Slope Stability Experiment[J].Geotechnical Special Publication 1998,1(3-6):778-789.
    [24]祁生文.考虑结构面退化的岩质边坡地震永久位移研究[J].岩土工程学报,2007,(03):452-457.
    [25]徐光兴,姚令侃,李朝红.地震作用下土质边坡永久位移分析的能量方法[J].四川大学学报(工程科学版),2010,(05):285-291.
    [26]Clough R.W,Chopra A.K.Earthquake stress analysis in earth dams[J].Journal of EngineeringMechanics, ASCE,1966,92(EM2).
    [27]Zienkiewicz O.C, Humpheson C, Lewis R.W.Associated and non-associated visco-plasticity and plasticity in soil mechanics[J].Geotechnique,1975,25(4):671-689
    [28]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,(02):4-10.
    [29]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边坡的稳定性[J].岩土工程学报,2001,(04):407-411.
    [30]赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,(03):343-346.
    [31]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,(19):3381-3388.
    [32]Cundall P.A.The measurement and analysis of acceleration on rock slopes[D].London: University of London, Imperial College of Science and Technology,1971.
    [33]王泳嘉.离散单元法——一种适用于节理岩石力学分析的数值方法.见:陈祖煜编. 第一届全国岩石力学数值计算及模型试验讨论会论文集.江西吉安:西南交通大学出版社,1986.
    [34]朱焕春,Brummer Richard,Andrieux Patrick节理岩体数值计算方法及其应用(一):方法与讨论[J].岩石力学与工程学报,2004,(20):3444-3449.
    [35]李世海,高波,燕琳.三峡永久船闸高边坡开挖三维离散元数值模拟[J].岩土力学,2002,(03):272-277.
    [36]崔芳鹏,胡瑞林,殷跃平等.纵横波时差耦合作用的斜坡崩滑效应离散元分析——以北川唐家山滑坡为例[A].中国科学院地质与地球物理研究所.中国科学院地质与地球物理研究所第十届(2010年度)学术年会论文集(下)[C].中国科学院地质与地球物理研究所,2011:9.
    [37]白永健,黄润秋,巨能攀等.高陡岩质边坡稳定性三维离散元分析[J].工程地质学报,2008,(05):592-597.
    [38]Bouckovalas G.D, Papadimitriou Achilleas G.Numerieal evaluation of slope topography effects on seismic ground motion[J].soil Dynamics and Earthquake Engineering,2005,25(7-10):547-558.
    [39]寇晓东,周维垣,杨若琼FLAC-3D进行三峡船闸高边坡稳定分析[J].岩石力学与工程学报,2001,(01):6-10.
    [40]祁生文,伍法权,孙进忠.边坡动力响应规律研究[J].中国科学E辑:技术科学,2003,(S1):28-40.
    [41]陈祖煜等著.岩质边坡稳定分析[M].中国水利水电出版社,2005:640-641.
    [42]卢坤林,朱大勇,杨扬.边坡失稳过程模型试验研究[J].岩土力学,2012,(03):778-782.
    [43]Goricki A, Goodman R.E.Failure Modes of Rock Slopes Demonstrated with Base Friction and Simple Numerical Models[J].Rock Slope.2003:25-30.
    [44]Egger P.A new development in the base friction technique[J].Proc.Symp.on Physical Geomechanical Models.1979:67-81.
    [45]张登项,许强.基于底摩擦试验的锦屏一级水电站左岸岩石高边坡变形机制研究[J].地质灾害与环境保护,2008,(01):71-75+87.
    [46]陈孝兵,李渝生,赵小平.底摩擦重力试验在倾倒变形岩体稳定性研究中的应用[J].地学前缘,2008,(02):300-304.
    [47]王华.桥基岸坡变形破坏机制物理模拟研究[J].岩土力学,2011,(07):2034-2038
    [48]Craig W.H.Edouard Phillip s and the idea of centrifuge modelling[J].Geotechnique,1989,39:679-700.
    [49]Gemperline M.C, Hon Yim Ko, Centrifugal model tests for ultimate bearing capacity of footings on step slopes in cohesionless soils[C].Centrifuge'88,1988,203-221.
    [50]Myoung MoKim and Hon YimKo, Centrifugal testing of soil slop models[J].Tran.Res Rec 872,7-14.
    [51]张嘎,王爱霞,牟太平等.边坡破坏过程离心模型试验的应力位移场研究[J].岩土力学,2008,(10):2637-2641.
    [52]赵晓彦,胡厚田,唐茂颖.类土质高边坡开挖效应的离心模型试验及数值模拟研究[J].岩石力学与工程学报,2006,(S2):4046-4051.
    [53]黄浩华.地震模拟振动台发展情况介绍[J].世界地震工程,1985,(01):47-51.
    [54]王正斌.地震模拟振动台的研制[D].哈尔滨工业大学,2007.
    [55]王思敬,张菊明.岩体结构稳定性的块体力学分析[J].地质科学,1980,(01):19-33.
    [56]王思敬,张菊明.边坡岩体滑动稳定的动力学分析[J].地质科学,982,(02):162-170.
    [57]张咸恭,王思敬,张悼元等.中国工程地质学[M].北京:科学出版社,2000.
    [58]孔宪京,李永胜,邹德高等.加筋边坡振动台模型试验研究[J].水力发电学报,2009,(05):152-157.
    [59]景立平,姚运生,郑志华.饱和粉上液化特性的大型振动台模型试验研究[J].地震工程与工程振动,2007,(06):160-165.
    [60]刘云鹏,黄润秋,邓辉.反倾板裂岩体边坡振动物理模拟试验研究[J].成都理工大学学报(自然科学版),2011,(04):413-421.
    [61]邹威,许强,刘汉香等.强震作用下层状岩质斜坡破坏的大型振动台试验研究[J].地震工程与工程振动,2011,(04):143-149.
    [62]许强,陈建君,冯文凯等.斜坡地震响应的物理模拟试验研究[J].四川大学学报(工程科学版),2009,(03):266-272.
    [63]EI-Emarna Magdi M, Bathurstb Richard J.Influence of reinforcement parameters on the seismic response of reduced-scale reinforced soil retaining walls[J].Geotextiles and Geomembranes,2007,25(1):33-49.
    [64]Strasser F.O, Bommer J.J.Large-amplitude ground-motion recordings and their interpretations[J].Soil Dynamics and Earthquake Engineering,2009,29:1305-1329.
    [65]Yang J, Yan X.R.Factors affecting site response to multi-directional earthquake loading[J].Engineering Geology,2009,107:77-87.
    [66]Shoji Y, Tanii K, Kamiyama M.A study on the duration and amplitude characteristics of earthquake ground motions[J].Soil Dynamics and Earthquake Engineering,2005, 25:505-512.
    [67]张倬元,王士天,王兰生等.工程地质分析原理(第二版)[M].北京:地质出版社,1993.223-225.
    [68]王存玉.地震条件下二滩水库岸坡稳定性研究.北京:科学出版社,1987.
    [69]祁生文,伍法权,孙进忠.边坡动力响应规律研究[J].中国科学E辑:技术科学,2003,(S1):28-40.
    [70]徐光兴,姚令侃,李朝红等.边坡地震动力响应规律及地震动参数影响研究[J].岩土工程学报,2008,(06):918-923.
    [71]秋仁东,石玉成,付长华.高边坡在水平动荷载作用下的动力响应规律研究[J].世界地震工程,2007,(02):131-138.
    [72]张学东.黄土边坡动力响应研究[D].兰州大学,2011.
    [73]张学东,言志信,张森.ANSYS在岩质边坡动力响应分析中的应用[J].西北地震学报,2010,(02):117-121.
    [74]许强,刘汉香,邹威等.斜坡加速度动力响应特性的大型振动台试验研究[J].岩石力学与工程学报,2010,(12):2420-2428.
    [75]刘汉香,许强,范宣梅等.地震动强度对斜坡加速度动力响应规律的影响[J].岩土力学,2012,(05):1357-1365.
    [76]刘汉香,许强,范宣梅.地震动参数对斜坡加速度动力响应规律的影响[J].地震工程与工程振动,2012,(02):41-47.
    [77]董金玉,杨国香,伍法权等.地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究[J].岩土力学,2011,(10):2977-2982+2988.
    [78]杨国香,伍法权,董金玉等.地震作用下岩质边坡动力响应特性及变形破坏机制研究[J].岩石力学与工程学报,2012,(04):696-702.
    [79]杨国香,叶海林,伍法权等.反倾层状结构岩质边坡动力响应特性及破坏机制振动台模型试验研究[J].岩石力学与工程学报,2012,(11):2214-2221.
    [80]叶海林,郑颖人,杜修力等.边坡动力破坏特征的振动台模型试验与数值分析[J].土木工程学报,2012,(09):128-135.
    [81]Terzaghi K.Meehanism of landslides[J].In5.Paige(ed) Applieation of Geology to Engineering Praetiee.Geologieaol Soeiety of America, Berky,1950.
    [82]Haefeli R.Creep and progressive failure in snow, soil, rock and ice.Proe.Sixth Intern.Conf.Soil Mech.Found.Eng, Montreal,1965(36).
    [83]Mogenstern N.R.The Influence of Groundwater on Stability.In Stability in Open Pit Ming(Brwnaer C.O.and Miligan V.eds), Soeiety of Mining Engineers, American In statute of Mining, Metallurgical and Petroleum Engineers, Newyork,1971.
    [84]胡广韬,文宝萍,赵法锁.缓动式低速滑坡的滑移机理[J].陕西水力发电,1991,(03):13-20.
    [85]王家鼎,白铭学,肖树芳.强震作用下低角度黄土斜坡滑移的复合机理研究[J].岩土工程学报,2001,(04):445-449.
    [86]徐邦栋,王恭先.滑坡防治研究[J].中国铁道科学,1980,(01):110-122.
    [87]徐邦栋.我国铁路路基滑坡防治[J].土木工程学报,1982,(02):77-84.
    [88]徐邦栋.治理铁路山坡病害在施工和运营阶段地质工作的内容及作用[J].路基工程,1994,(03):1-6.
    [89]晏同珍,滑坡学[M],武汉中国地质大学出版社,2000.
    [90]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,(03):433-454.
    [91]胡启军,长大顺层边坡渐进失稳机理及首段滑移长度确定的研究[D],西南交通大学博土研究生学位论文,成都,2008
    [92]张均锋,丁桦,徐永君,孟祥跃,一类含裂隙岩质边坡的滑动弱化逐步破坏机理[J].岩石力学与工程学报,2004,23(21):3679-3653.
    [93]薛守义.岩体边坡动力性研究[D].中国科学技术大学博士学位论文,1989.
    [94]YQ.Liu, H.B Li, H.C.DAI, etl, Preliminary Study on the Progressive Failure of a Layered Rock Slope under Explosions.Key Engineering Materials,2006, 306-308:1461-1466.
    [95]祁生文,伍法权,刘春玲等.地震边坡稳定性的工程地质分析[J].岩石力学与工程学报,2004,(16):2792-2797.
    [96]郑颖人,赵尚毅,邓卫东.岩质边坡破坏机制有限元数值模拟分析[J].岩石力学与工程学报,2003,(12):1943-1952.
    [97]毛彦龙,胡广韬,毛新虎等.地震滑坡启程剧动的机理研究及离散元模拟[J].工程地质学报,2001,(01):74-80.
    [98]黄润秋,裴向军,李天斌.汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J].工程地质学报,2008,16(6):730-741.
    [99]殷跃平.汶川八级地震滑坡高速远程特征分析[J].工程地质学报,2009,17(2):153-166.
    [100]殷跃平.汶川八级地震滑坡特征分析[J].工程地质学报,2009,17(1):29-38.
    [101]付碧宏,王萍,孔屏等.中国汶川“5.12”8.0级大地震地震地质灾害图集[M]北京:地震出版社,2009.
    [102]伍法权,胡瑞林,岳中琦等.5.12汶川地震地质灾害[M].北京:地质出版社,2009.
    [103]崔鹏,韦方强,何思明等.5.12汶川地震诱发的山地灾害及减灾措施[J].山地学报,2008,26(3):280-282.
    [104]唐川,梁京涛.汶川震区北川9.24暴雨泥石流特征研究[J].工程地质学报,2008,16(6):751-758.
    [105]工运生,罗永红,吉峰等.汶川大地震山地灾害发育的控制因素分析[J].工程地质学报,2008,16(6):759-763.
    [106]赵纪生,魏景芝,吴景发等.汶川8.0级地震滑坡、崩塌机制[J].震灾防御技术,2008,3(4):379-383.
    [107]乔普拉著谢礼立,吕大刚译.结构动力学(理论及其在地震工程中的应用)(第2版)[M].高等教育出版社,2007.
    [108]罗先启,葛润修.滑坡模型试验理论及其应用[M].水利水电出版社,2008.
    [109]罗永红.地震作用下复杂斜坡响应规律研究[D].成都理工大学,2011.
    [110]王汉鹏,李术才,张强勇等.新型地质力学模型试验相似材料的研制[J].岩石力学与工程学报,2006,(09):1842-1847.
    [111]张强勇,李术才,郭小红等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,(08):2126-2130.
    [112]GriffithsD.W, Bollinger G.A.The effect of Appalachian Mountain topography on seismicwaves [J].Bull.Seism.Soc.Am.197969 (4):1081-1105.
    [113]ZahradnikJ,Urban L.Effect of a simple mountain range on underground seismic motion [J].Geophys.J.R.Astr.Soc.1984,79 (1):167-183.
    [114]Trifunac M.D, Hudson D.E.Analysis of the Pacoima Dam accelerogram:San Fernando, California, earthquake of 1971 [J].Bull.Seism.Soc.Am,1971,61 (5): 1393-1411.
    [115]Bard P.Y.Effects of surface geology on ground motion:recent results and remaining issues.In Proc.of the 10th European Conf.on Earthquake Engineering, Vienna, 1994,305-323.
    [116]Rogers A.M, Katz L.J, Benett T.J.Topographic effect on ground motion for incident P waves:a model study [J].Bull.Seism.Soc.Am.1974,64(2):437-456.
    [117]李爽,谢礼立.近场问题的研究现状与发展方向[J].地震学报,2007,29(1):102-111.
    [118]许强,黄润秋.“5.12”汶川大地震诱发大型崩滑灾害动力特征初探[J].工程地质学报,2008,16(6).
    [119]张永双,雷伟志,石菊松等.四川5.12地震次生地质灾害的基本特征初探[J].地质力学学报,2008,14(2):109-114.
    [120]潘旦光,楼梦麟.河谷地形对土层地震反应的影响[J].北京科技大学学报,2008,30(11):1217-1222.
    [121]Siad L.Seismic stability analysis of fractured rock slopes by yield design theory[J].Soil dynamics and earthquake enginering,2003,23(3):203-212.
    [122]黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报.2009,28(6):1239-1249
    [123]Itasca.Three-dimensional Distinetelement Code, ITASCA Consulting GrouP Ine.Version 3.0 User,5 manual.USA,2003.
    [124]王泳嘉,邢纪波.离散单元法同拉格朗日元法及其在岩土力学中的应用[J].岩土力学,1995,(02):1-14.
    [125]麻凤海,范学理,王泳嘉.岩层移动动态过程的离散单元法分析[J].煤炭学报,1996,(04):54-58.
    [126]王海波,李德玉,陈厚群.拱坝振动台动力破坏试验研究[J].土木工程学报,2006,(07):109-118.
    [127]申玉生,高波,王峥峥.强震区山岭隧道振动台模型试验破坏形态分析[J].工程力学,2009,(S1):62-66.
    [128]肖锐铧,许强,冯文凯,陈建君,左雅娅.强震条件下双面坡变形破坏机理的振动台物理模拟试验研究[J].工程地质学报,2010,(06):837-843.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700