用户名: 密码: 验证码:
斑岩铜矿遥感蚀变信息重现性与优选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪70年代Rowan等利用美国陆地卫星判别褐铁矿蚀变带以来,利用遥感技术提取与矿化有关的蚀变岩(矿物)得到了迅速的发展。当前,遥感技术已经贯穿于地质勘查的全过程。遥感蚀变信息提取和应用作为一个重要的发展方向,在地质矿产勘查领域发挥着不可或缺的作用。国内外遥感技术的快速发展,为地质矿产勘查提供了不同空间分辨率、不同光谱分辨率的遥感数据,极大地丰富了遥感地质勘查的信息。但与此同时,理论基础和应用基础研究不足或滞后已成为遥感技术进步和应用向纵深发展的障碍。
     遥感蚀变信息是基于遥感信息的物理机制和蚀变矿物的光谱特征,从遥感数据中提取的与围岩蚀变有关的遥感找矿信息。利用遥感技术提取斑岩型铜矿床的围岩蚀变信息具有快速、高效、低廉的优势,但是由于遥感蚀变信息提取受蚀变矿物组合、地表环境、遥感数据源、提取方法、表达方法等的影响,遥感信息的“重现”条件及“重现”规律,成为遥感蚀变信息能否推广应用的关键。
     本文以西藏典型斑岩型铜矿为例,通过定性与定量分析、原型与模型分析相结合的方法,在深入总结斑岩型铜矿床围岩蚀变的分带规律与蚀变矿物(组合)的波谱响应基础上,从不同提取尺度、不同定量化表达方法、不同遥感数据等方面,研究了遥感蚀变信息的“重现性”规律;初步建立了斑岩铜矿遥感蚀变信息的优选准则,发展了遥感地质信息的诠释模式。
     主要研究成果如下:
     1.针对遥感蚀变信息提取与分析中存在的诸多不确定性因素,提出了遥感蚀变信息重现性的概念。
     2.提出了遥感蚀变信息提取的尺度效应概念,并通过构建异常下限、异常面积、异常斑块数、异常密度、主分量信息熵和异常信息熵等参数进行了“E尺度效应”评价。多龙铜矿基于主成分分析的蚀变信息提取实验结果表明,尺度效应对遥感蚀变信息的提取具有重要的影响;遥感铁染异常的最优提取尺度约为典型矿床范围的5倍左右,而当提取尺度超过典型矿床的120倍时,遥感羟基异常的提取结果会发生异常类的变化。
     3.基于驱龙铜矿主成分分析提取的蚀变信息结果,通过对多种定量化表达方法的对比分析认为,分形分维法计算严密、稳定性强,是遥感蚀变信息的最优定量化表达方法。
     4.通过玉龙、驱龙和多龙典型矿床不同遥感数据源遥感蚀变信息结果的对比分析,提出了基于遥感数据的蚀变信息重现性概念;实验结果表明,数据源因素对蚀变信息的重现性具有一定的影响,但在时相差异不大的情况下,同传感器数据提取的遥感信息具有一定程度的可比性。
     5.从成矿地质条件、蚀变矿物成因和蚀变信息组构等三个方面入手,初步建立了斑岩铜矿遥感蚀变信息的优选条件。提出并定义了遥感蚀变信息组构的概念;基于斑岩铜矿蚀变分带的理论模型,分析了斑岩铜矿遥感蚀变信息组构分析的优选条件。
Since Rowan discriminated the limonite alteration zone with Landsat image in the1970s, application of remote sensing mineralized alteration extraction has gained the rapid development. At present, remote sensing technology runs through the whole process of geological survey. As an important development direction, extraction and application of remote sensing mineralized alterations play important roles in the field of geological survey. With the rapid advancement of remote sensing technology at home and abroad, they can offer remote sensing data of different spatial resolution and spectral resolution and greatly enrich the information of geological survey. At the same time, the under-researched theoretical basis and application foundation have hindered the further development of remote sensing technology in depth and breadth.
     Based on the physical mechanisms of remote sensing and spectral features of altered minerals, remote sensing mineralized alterations, extracted from remote sensing data, refer to the remote sensing information related to wall rock alteration for mineral exploration. It has advantages of rapidness, efficiency and cost-effectiveness to make use of the remote sensing technology to extract the wall rock alterations of the porphyry copper deposits; however, because the mineralized alteration extraction from remote sensing data are influenced by many factors including the altered mineral combination, surface environment, remote sensing data source, extraction method, and expression method, the "repeatability" condition and "repeatability" mechanism of remote sensing mineralized alterations become the key factors of the application of remote sensing alterations.
     Taking typical porphyry copper deposits of wall rock of Tibet as example, this dissertation aims to explore the repeatability mechanism for remote sensing mineralized alterations with different extraction scales, quantitative expression methods and different data source based on a comprehensive summary of zoning rules of wall-rock alteration of porphyry copper deposit and spectrum responses of altered materials(combinations); it primarily establishes the evaluation criteria about screening, classification, and application principles.
     The main research results are listed as follows:
     1. As for the uncertain factors in the extraction and application of remote sensing mineralized alterations, this study puts forward the repeatability concept of remote sensing mineralized alterations.
     2. It establishes the scale effect concept in the extraction of remote sensing mineralized alterations and evaluates the scale effect with parameters of anomaly threshold, anomaly plaque, anomaly density, principal component entropy, and anomaly entropy. Experimental results based on Duolong porphyry copper remote sensing anomaly of PCA (principal component analysis) show:scale effect has a significant influence on remote sensing mineralized alterations; the optimal extraction scale of ferric alteration is about5times of the typical deposit extent; and the results of hydroxy alteration will change the anomaly classes when the extraction scale exceeds120times of deposit extent.
     3. Experimental results based on Qulong porphyry copper remote sensing anomaly of PCA (principal component analysis) show that the fractal method is an optimal quantitative expression method because of its precise calculation and high stability through the comparative analysis of quantitive expression methods.
     4. It presents the concept of data repeatability in extraction of remote sensing mineralized alterations. Experiments of Yulong, Qulong and Duolong porphyry copper deposits show that remote sensing data have some certain influence on the repeatability in extraction of remote sensing mineralized alterations. In the unobvious differences of time phases, the results from the same sensor of remote sensing mineralized alterations have some degrees of comparability.
     5. From the aspects of mineralized geological condition, genetic mineralogy and fabric of remote sensing mineralized alterations, it initiates to establish optimal conditions of remote sensing mineralized alterations of porphyry copper deposit and promotes and defines the fabric analysis concept of remote sensing mineralized alteration; and then, on a basis of the theoretical model of hydrothermal alteration zone of porphyry copper deposit, it analyzes the optimal conditions of fabric analysis of remote sensing mineralized alterations.
引文
[1]Abdeen, M.M., Allison, T.K., Abdelsalam, M.G., Stern, R.J..2001. Application of ASTER band-ratio images for geological mapping in arid regions; the Neoproterozoic Allaqi Suture, Egypt. Abstract with Program Geological Society of America,3(3), p. 289.
    [2]Abrams, M. J, Ashley, R. P., Brown, L. C., Goetz, A. F. H., KaMe, A. B.1977. Mapping of hydrothermal alteration in the Cuprite mining district,Nevada,using aircraft scanning images for the spectral region 0.46 to 2.36 mm[J]. Geology, 5:713-718.
    [3]Abrams M, Hook S.1995. Simulated ASTER data for geologic studies [J]. IEEE Transactions on Geoscience and Remote Sensing,33:692-699.
    [4]Allegre,C. J. and Lewin, E..1995. Scaling laws and geochemical distribution [J]. Earth and Planetary Science Letters,132:1-13.
    [5]Amer, R., Kusky, T., Ghulam, A.2010. Lithological mapping in the Central Eastern Desert of Egypt using ASTER data [J]. Journal of African Earth Sciences,56:75-82.
    [6]Atkinson, P. M., and Tate, N. J..2000. Spatial scale problems and geostatistical solutions:A review [J]. Professional Geographer,52(4):607-623.
    [7]Atkinson, P. M., and Aplin, P.2004. Spatial variation in land cover and choice of spatial resolution for remote sensing [J]. International Journal of Remote Sensing, 25(18):3687-3702.
    [8]Azizi, H., Tarverdi, M. A., Akbarpour, A. A.2010 Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran [J]. Advances in Space Research,46:99-109.
    [9]Baldwin J A and Pearce J A.1982. Discrimination of productive and nonproductive porphyritic intrusions in the Chilean Andes [J]. Econ. Geol.,77(3):664-674.
    [10]Bedini, E.2011. Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data [J]. Advances in Space Research,47:60-73.
    [11]Cao, C., and Lan, N.S.N.1997. Understanding the scale and resolution effects in romote sensing and GIS [A]. In:Scale in remote sensing and GIS[C]. Levis Publishers, 57-72.
    [12]Chivas A R.1981. Geochemical evidence for magmatic fluids in porphyry copper mineralization:Part 1. Mafic silicates from the Koloula igneous complex [J]. Contributions to Mineralogy and Petrology,78(4):389-403.
    [13]Clark R N, Swayze G A.1995. Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice, and snow, and other materials [A]. In The USGS Tricorder Algorithm:in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop[C]. JPL Publication:39-40.
    [14]Clark, R. N.1999. Spectroscopy of rocks and minerals, and principles of spectroscopy. In A. Rencz (Ed.), Remote sensing for the earth sciences:Manual of remote sensing, vol.3 (pp.3-58). New York'John Wiley and Sons.
    [15]Corbett G J, Leach T M.1998. Southwest Pacific Rim Gold-copper Systems:Structure, Alteration, and Mineralization [M]. Littletion:Society of Economic Geologists Special Publication,6:240.
    [16]Crosta A P,McM Moore J.1989. Enhancement of landsat thematic mapper imagery for residual soil mapping in SW Minais Gerrain. Proceedings of the 7th (ERIM) Thematic Conference:Remote Sensing for Exploration Geology, Calgary:1173-1187.
    [17]Cudahy, T., Hewson, R.,2002. ASTER geological case histories: porphyry-skarn-epithermal, iron oxide Cu-Au and Broken hill Pb-Zn-Ag. In:Annual General Meeting of the Geological Remote Sensing Group ASTER Unveiled', Burlington House, Piccadilly, London, UK.
    [18]Debba, P., Ruitenbeek, F. J. A., Meer, F. D., Carranza, E. J.M., Stein, A.2005. Optimal field sampling for targeting minerals using hyperspectral data [J]. Remote Sensing of Environment,99:373-386.
    [19]Gad, S., Kusky, T.2007. ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt [J]. Gondwana Research,11:326-335.
    [20]Golonka J, Bocharova N Y.2000. Hot spot activity and the breakup of Pangea [J]. Palaeogeography Palaeoclimatology Palaeocology,161(1-2):49-69.
    [21]Gupta R P.1991. Remote Sensing Geology. Springer-Verlag Berlin Heidelberg:1-356.
    [22]Han P, Gong J Y, Li Z L, et al.2010. Selection of optimal scale in remotely sensed image classification [J]. Journal of Remote Sensing,14(3):507-518.
    [23]Hewson R D, CudahyT J, Mizuhiko S, UedaK and Manger A J.2005. Seamless geologicalmap generation using ASTER in the Broken Hill-Curnamona Province of Australia. Remote Sensing of Environment,99(1-2):159~172.
    [24]Hollister V F, Potter R R, and Barker A L.1974. Porphyry-type deposits of the application orogeny [J]. Economic Geology,69:618-630.
    [25]Hook, S. J., Myers, J. J., Thome, K. J., Fitzgerald, M., Kahle, A. B.2001. The MODIS/ASTER airborne simulator (MASTER)-a new instrument for earth science studies [J]. Remote Sensing of Environment,76:93-102.
    [26]HOU Z Q, MA H W, ZA W K, et al.2003a. The Himalayan Yulong porphyry copper belt:Product of large-scale strike-slip faulting in eastern Tibet [J]. Economic Geology, 98:125-145.
    [27]Hou Z Q, Qu X M, Wang S X, et al.2003b. Re-Os age for molybdenite from the Gangdese porphyry copper belt on Tibetan plateau:Duration of the Cu mineralization and implication for geodynamic setting [J]. Science in China,33:609-618.
    [28]Hou Z Q, Ma H W, Khin Zaw, et al.2003c. The Himalayan Yulong porphyry Copper belt:Product of Large-scale strike-slip faulting in Eastern Tibet [J]. Economic Geology, 98:125-145.
    [29]Hou ZQ, Gao XF, Qu XM, et al.2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet [J]. Earth and Planetary Science Letters,220:139-155.
    [30]Hou Z Q, Zeng P S and Gao Y F.2006. The Himalayan Cu-Mo-Au mineralization in the eastern Indo-asian collision zone:Constraints from Re-Os dating of molybdenite [J].Minerlium Deposita,41:33-45.
    [31]HOU Z Q, YANG ZM, QU X M, et al.2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen [J]. Ore Geology Reviews,36:25-51.
    [32]http://www.ga.gov.au/image cache/GA7833.pdf
    [33]Hubbard, B. E., Crowley, J.K.2005. Mineral mapping on the Chilean-Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery:Data dimensionality issues and solutions [J]. Remote Sensing of Environment,99:173-186.
    [34]Hunt G R, Salisbury J W.1978. Assessment of Landsat Filters for Rock Type Discrimination. Based on Intrinsic Information in Laboratory Spectra [J]. Geophysis, 43:738-748.
    [35]Ilton E S and Veblen D R.1993. Origin and mode of copper enrichment in biotite from rocks associated with porphyry copper deposits:A transmission electron microscopy investigation [J]. Econ. Geol.,88(4):885-900.
    [36]Iwasaki, A., Fujisada, H., Akao, H., Shindou, O.,& Akagi, S.2001. Enhancement of spectral separation performance for ASTER/SWIR. Proceedings of SPIE, The International Society for Optical Engineering,4486,42-50.
    [37]Jiang Y H, Jiang S Y, Ling H F and Dai B Z.2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet:Geochemical and Sr-Nd-Pb-Hf isotopic constraints [J].Earth Planet. Sci. Lett.241:617-633.
    [38]Kalakay T J, John B E, Lageson D R.2001. Fault-controlled pluton emplacement in the Sevier fold and thrust belt of southwest Montana, USA [J]. Journal of Structural Geology,23(6):1151-1165.
    [39]Khan, S. D., Mahmood, K., Casey, J. F.2007. Mapping of Muslim Bagh ophiolite complex(Pakistan) using new remote sensing, and field data. Journal of Asian Earth Sciences,30:333-343.
    [40]Knlse.F.A,Lefkoff.A. B,Boardman. J.B.,Heidebrecht. K.B. et al.1993. The Spectral Image Processing System(SIPS)Interactive Visualization and Analysis of Imaging Spectrometer Data [J]. Remote Sensing of Environment,44:145-163.
    [41]Korb A R, et al.1996. Portable FTIR Spectrometer for Field Measurements of Radiance and Emissivity [J]. Applied Optics.35:1679-1692.
    [42]Kratt, C., Calvin, W. M., Coolbaugh, M. F.2010. Mineral mapping in the Pyramid Lake basin:Hydrothermal alteration, chemical precipitates and geothermal energy potential [J]. Remote Sensing of Environment,114:2297-2304.
    [43]Krauskopf K B.1971. The source of metals [J]. Geochimi. Cosmochimi. Acta,35(7): 643-659.
    [44]Krige, D.G.1966. Two-dimensional Weighted Moving Average Trend Surface for Ore Valuation.Proc.Symp.Math.Satist.Comput. Appl.S.Afr.Inst.Min.Metal., Johannes-burg.
    [45]Kruse F A, Perry S I, Caballero A.2002. Integrated Multispectral and Hyperspectral Mineral Mapping, Los Menucos. Rio Negro [A]. In:Part Ⅱ:EO-1 Hyperion/AVIRIS Comparisons and Landsat TM/ASTER Extensions[C]. Argentina.
    [46]L.H.Ahrens.1954. The Lognormal Distribution of the Elements, Geoch.Cosmoch.Acta, 5(2).
    [47]Loughlin W P.1991. Principal component analysis for alteration mapping. Proceedings of the 8th Thematic Conference on Geologic Remote Sensing,Denver,USA:293-306.
    [48]Lowell, J.D., Guilbert, J.M.1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits [J]. Econ. Geol.65:373-408.
    [49]Mandelbrot B.B.1967. How long is the coast of Britain, statistical self similarity and frational dimension [J]. Science,156:636-638.
    [50]Mason D R and Feiss P G.1979. On the relationship between whole rock chemistry and porphyry copper mineralization [J]. Econ. Geol.,74(6):1506-1510.
    [51]Mason D R.1978. Compositional variation in ferromagnesian minerals from porphyry copper generating and barren intrusions of the Western Highlands, Papua New Guinea [J]. Econ. Geol.,73 (5):878-890.
    [52]Miller K G, Faribanks K G and Mountain G S.1987. Tertiary oxyges isotope synthesis, sea level history and Continental margin erosion [J]. Paleocanog,2(1):1-19.
    [53]Misra K C.2000. Understanding Mineral Deposits [M]. USA:Kluwer Academic Publishers:353-413.
    [54]Raffy, M..1994. Change of scale theory:a capital challenge for space observation of earth [J]. International Journal of Remote Sensing,15(12):2353-2357.
    [55]Ranjbar, H., Honarmand, M., Moezifar, Z.2004. Application of the Crosta technique for porphyry copper alteration mapping, using ETM+data in the southern part of the Iranian volcanic sedimentary belt [J]. Journal of Asian Earth Sciences,24:237-243.
    [56]Ren, D., Abdelsalam, M. G.2006. Tracing along-strike structural continuity in the Neoproterozoic Allaqi-Heiani Suture, southern Egypt using principal component analysis(PCA), fast Fourier transform(FFT), and redundant wavelet transform(RWT) of ASTER data [J]. Journal of African Earth Sciences,44:181-195.
    [57]Robb L.2005. Introduction to ore-forming process [M]. Oxford:Blackwell.,1-166.
    [58]Rowan,L.C.,Goetz,A.F.H. and Ashley,R.P.1977a. Discrimination of Hydrothermally Altered and Unaltered Rocks in Visible and Near-infrared Multispectral Images [J]. Geophysics,42:522-535.
    [59]Rowan, L. C., Wetlaufer, P. H., Geotz, A.F.H., et al.1977b. Discrimination of rock types and detection of hydrothermally altered areas in south-central Nevada by the use of computer-enhanced ERTS images:U.S.G.S. Prof. Paper,883,35p.
    [60]Rowan, L. C., Crowley, J. K., Schmidt, R. G., Ager, C. M., Mars, J. C.2000. Mapping hydrothermally altered rocks by analyzing hyperspectral image (AVIRIS) data of forested areas in the Southeastern United States [J]. Journal of Geochemical Exploration,68:145-166.
    [61]Rowan, L. C., Mars, J. C., Simpson, C. J.2003. Lithologic mapping in the mountain pass, California area using Advanced Spaceborne Tthermal Emission and Reflection Radiometer (ASTER) data [J]. Remote Sensing of Environment,84:350-366.
    [62]Rowan, L. C., Simpson, C. J., Mars, J. C.2004. Hyperspectral analysis of the ultramafic compex and adjacent lithologies at Mordor, NT, Australia [J]. Remote Sensing of Environment,91:419-431.
    [63]Rowan, L. C., Schmidt, R. G., Mars, J. C.2006. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data [J]. Remote Sensing of Environment,104:74-87.
    [64]Sabins, F.F.,1997. Remote Sensing-Principles and Interpretation,3rd edn., W.H. Freeman, New York, NY.,494 pp.
    [65]Sabins, F. F.1999. Remote sensing for mineral exploration[J]. Ore Geology Reviews, 14:157-183.
    [66]Shannon, C. E.1948. A mathematical theory of communication [J]. The Bell System Technical Journal,27:379-423.
    [67]Sillitoe R H.1972. A plate tectonic model for the origin of porphyry copper deposits [J]. Econ.Geol.,67(2):184-197.
    [68]Sillitoe R H, Gappe I M.1984. Philippine Porphyry Copper Deposits:Geologic Settings and Characteristics [R]. CCOP Technical Report.
    [69]Sillitoe R H.1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region [J]. Australian Journal of Earth Sciences,44 (3):373-388.
    [70]Sillitoe R H.2010. Porphyry copper systems:An invited paper [J]. Economic Geology, 105(1):3-41.
    [71]Singer D A, Berger V I, Menzie W D, et al.2005. Porphyry copper deposit density [J]. Economic Geology,100(3):491-514.
    [72]Tafty R.2006. Preliminary geochronology report for the Xietongmen deposit area, Tibet, China. Private Report to Continental Minerals Corp.
    [73]Tangestani, M. H., Jaffari, L., Vincent, R. K., Sridhar, B.B. M.2011. Spectral characterization and ASTER-based lithological mapping of an ophiolite complex:A case study from Neyriz ophiolite, SW Iran [J]. Remote Sensing of Environment,115: 2243-2254.
    [74]Tingbin Zhang, Dingfa Huang, Guihua Yi, Xiaojuan Bie, Na Guo, Hua Wu.2013. Data repeatability of remote sensing mineralized alteration mapping:a case study from Duolong porphyry copper deposit, Tibet, China [C]. Applied Mechanics and Materials Vols.295-298, pp.2778-2785.
    [75]Tommaso, I. D., Rubinstein, N.2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina [J]. Ore Geology Reviews, 32:275-290.
    [76]Van der Wel.2000. Assessment and Visulisaton of uncertainty in Remote Sensing land Cover Classification. Ph. D thesis. Universiteit Utrech.
    [77]Vaughan, R. G., Hook, S. J., Calvin, W. M., Taranik, J. V.2005. Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images [J]. Remote Sensing of Environment,99:140-158.
    [78]Williams R S, Southworth C S.1984. Remote Sensing Makes Important Gains [J]. Geotimes,8:13-15.
    [79]Woodcock, C. E., Strahler, A. H., and Jupp, D. L.B.1988a. The use of variograms in remote sensing I:Scene models and simulated images [J]. Remote Sensing of Environment,25:323-348.
    [80]Woodcock, C. E., Strahler, A. H., and Jupp, D. L.B.1988b. The use of variograms in remote sensing II:Real digital inages [J]. Remote Sensing of Environment, 25:349-379.
    [81]Zhang N.2006. Scale issues in ecology:concepts of scale and scale analysis [J]. Acta Ecologica Sinica,26(7):2340-2355.
    [82]Zhang, X. F., Pazner, M. Duke, N.2007. Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California) [J]. ISPRS Journal of Photogrammetry & Remote Sensing,62:271-282.
    [83]H.H.库列克.1955.围岩蚀变及其找矿意义[M].北京:地质出版社.
    [84]Hunt. G. R1980.粒状矿物的可见及近红外光谱特征标记图[A].地质部情报研充所,遥感专辑——矿物岩石的可见-中红外光谱及其应用,第一辑[M].北京:地质出版社:193-207.
    [85]Colins W.1980.填绘热液蚀变岩带机载分光辐射计数据的分析及陆地卫星数据的应用[A].地质部情报研充所,遥感专辑--矿物岩石的可见-中红外光谱及其应用,第一辑[M].北京:地质出版社:358-372.
    [86]GB/T6379.1-2004,测量方法与结果的准确度(正确度与精密度)第1部分:总则与定义[S].
    [87]柏延臣,王劲峰.2003.遥感信息的不确定性研究分类与尺度效应模型[M].北京:地质出版社.
    [88]柏延臣,王劲峰.2004.基于统计可分性的遥感数据专题分类尺度效应分析[J].遥感技术与应用,19(6):443-449.
    [89]布仁仓,李秀珍,胡远满,等.2003.尺度分析对景观格局指标的影响[J].应用生态学报,14(12):2181-2186.
    [90]蔡博峰,于嵘.2008.景观生态学中的尺度分析方法[J].生态学报,28(5):2279-2287.
    [91]查显杰,戴志阳,傅容珊.2005.多维空间角度方法提取植被覆盖区蚀变信息[J].遥感信息,2:3-5.
    [92]陈建平,唐菊兴,丛源,等.2009.藏东玉龙斑岩铜矿地质特征及成矿模型[J].地质学报,83(12):1777-1900.
    [93]陈江,付建飞.2006.先进星载热发射和反射辐射仪(ASTER)--地质学家的最佳选 择[J].地质通报,25(5):649-652.
    [94]陈俊,王文,李子杨,等.2008LANDSAT-5 TM数据的辐射校正与几何定位精度[J].中国图象图形学报,13(6):1094-1100.
    [95]陈松龄,卢福宏,高光明,等.2001.华北地台北缘内蒙古段金矿围岩蚀变的遥感识别[J].国土资源遥感,48(2):13-18.
    [96]成秋明.2000.多维分形理论和地球化学元素分布规律[J].地球科学--中国地质大学学报,25(3):311-318.
    [97]成秋明,张生元,左仁广,等.2009.多重分形滤波方法和地球化学信息提取技术研究与进展[J].地学前缘,16(2):185-198.
    [98]丛丽娟,岑况,黄增芳,等.2008.内蒙古西部朱拉扎金矿遥感蚀变异常与化探异常对比研究[J].华南地质与矿产,1:29-34.
    [99]代晶晶,曲晓明,辛洪波.2010.基于ASTER遥感数据的西藏多龙矿集区示矿信息的提取[J].地质通报,29(5):752-759.
    [100]戴昌达,姜小光,唐伶俐.2004.遥感图像应用处理与分析[M].北京:清华大学出版社.
    [101]方洪宾,李志中.1998.遥感化探信息综合分析在地质找矿中的应用[J].国土资源遥感,38(4):33-36.
    [102]冯雨林,刑德和,陈江,等.2009.遥感混合蚀变信息在辽西等地矿产调查中的应用[J].地质与资源,18(2):149-151.
    [103]傅伯杰,陈利顶,马克明,等.2001.景观生态学原理及应用[M].北京:科学出版社.
    [104]傅国斌,李丽娟,刘昌明.2001.遥感水文应用中的尺度问题[J].地球科学进展,16(6):755-760.
    [105]傅文杰,洪金益,朱谷昌.2006.基于SVM遥感矿化蚀变信息提取研究[J].国土资源遥感,68(2):16-19.
    [106]傅文杰.2008.基于光谱相似尺度的遥感矿化蚀变信息提取[J].地质找矿论丛,23(2):161-164.
    [107]甘甫平,王润生,马蔼乃,等.2002.光谱遥感岩矿识别基础与技术研究进展[J].遥感技术与应用,17(3):140-147.
    [108]甘甫平,王润生.2004.遥感岩矿信息提取基础与技术方法研究[M].北京:地质出版社.
    [109]甘甫平,王润生.2007.高光谱遥感技术在地质领域中的应用[J].国土资源遥感,74(4):57-60.
    [110]甘甫平,王润生,马蔼乃,等.2008.基于光谱匹配滤波的蚀变信息提取[J].中国图象图形学报,8(A),2:147-150.
    [111]高合明.1994.斑岩铜矿床研究中存在的问题与复杂性科学[J].矿物岩石地球化学通报,3:178-181.
    [112]高合明.1995.斑岩铜矿床研究综述[J].地球科学进展,10(1):40-46.
    [113]郭华东.1992.新疆北部地质矿产遥感[M].北京:科学出版社.
    [114]郭泺,夏北成,余世孝.2006.森林景观格局研究中的尺度效应[J].应用于环境生物学报,12(3):304-307.
    [115]侯增谦,曲晓明,黄卫,等.2001.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带[J].中国地质,28(10):27-29.
    [116]侯增谦,曲晓明,王淑贤,等.2003.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学(D辑),33(7):609-618.
    [117]侯增谦.2004.斑岩Cu-Mo-Au矿床:新认识与新进展[J].地学前缘,11(1):131-144.
    [118]侯增谦,潘桂棠,王安建,等.2006a.青藏高原碰撞造山带:Ⅱ晚碰撞转换成矿作用[J].矿床地质,25(5):521-543.
    [119]侯增谦,莫宣学,杨志明,等.2006b.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J].中国地质,33(2):340-351.
    [120]侯增谦,曲晓明,杨竹森,等.2006c.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,25(6):629-651.
    [121]侯增谦,杨竹森,徐文艺,等.2006d.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用[J].矿床地质,25(4):337-358.
    [122]侯增谦,潘小菲,杨志明,等.2007.初论大陆环境斑岩铜矿[J].现代地质,21(2):332-351.
    [123]侯增谦.2010.大陆碰撞成矿论[J].地质学报,84(1):32-58.
    [124]黄志英,李光明.2004.西藏雅鲁藏布江成矿区斑岩型铜矿基本特征与找矿潜力[J].地质与勘探,40(1):1-6.
    [125]姜耀辉,蒋少涌,凌洪飞,等.2006.陆-陆碰撞造山环境下含铜斑岩岩石成因--以藏东玉龙斑岩铜矿带为例[J].岩石学报,2006,22(3):697-706.
    [126]荆凤,陈建平.2005.矿化蚀变信息的遥感提取方法综述[J].遥感信息,2:62-65.
    [127]阚明哲,田庆久,张宗贵.2005.新疆哈密三种典型蚀变矿物的HyMap高光谱遥感信息提取[J].国土资源遥感,63(1):37-40.
    [128]郎兴海,唐菊兴,陈毓川,等.2010.西藏谢通门县雄村斑岩型铜金矿集中区Ⅱ号矿体中辉钼矿Re-Os年代学及地质意义[J].矿物岩石,30(4):55-61.
    [129]李光明,芮宗瑶.2004.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄[J].大地构造与成矿学,28(2):165-170.
    [130]李光明,刘波,屈文俊,等.2005a.西藏冈底斯成矿带的斑岩-矽卡岩成矿系统:来自斑岩矿床和矽卡岩型铜多金属矿产的Re-Os同位素年龄证据[J].大地构造与成矿学,29(4):482-490.
    [131]李光明,芮宗瑶,王高明,等.2005b.西藏冈底斯成矿带甲马和知不拉铜多金属矿床的Re-Os同位素年龄及其意义[J].矿床地质,24(5):481-489.
    [132]李光明,李金祥,秦克章,等.2007.西藏班公湖带多不杂大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据[J].岩石学报,23(5):935-952.
    [133]李金祥,李光明,秦克章,等.2008.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约[J].岩石学报,24(3):531-543.
    [134]李胜荣,袁万明,屈文俊,等.2008.西藏墨竹工卡县甲马多金属矿床几组年龄数据的比较与成因研究[J].岩石学报,24(3):511-518.
    [135]李廷栋.1995.青藏高原隆升的过程而后机制[J].地球学报,34(1):1-9.
    [136]李小文.2005.定量遥感的发展与创新[J].河南大学学报(自然科学版),35(4):49-56.
    [137]李小文.2006.遥感科学与定量遥感[J].科学观察,1(5):45.
    [138]李长江,麻土仁.1999.矿产勘查中的分形、混沌与ANN[M].北京:地质出版社.
    [139]郦今敖,蔡宏渊,王建业,等.1982.斑岩铜矿床蚀变作用的演化历史以及蚀变分带模式[J].冶金工业部地质研究所所报,1:30-34.
    [140]梁华英.2002.青藏高原东南缘斑岩铜矿成岩成矿研究取得新进展[J].矿床地质,21:365.
    [141]梁华英,莫济海,孙卫东,等.2008.藏东玉龙超大型斑岩铜矿床成岩成矿系统时间跨度分析[J].岩石学报,24(10):2352-2358.
    [142]梁华英,莫济海,孙卫东,等.2009.玉龙铜矿带马拉松多斑岩体岩石学及成岩成 矿系统年代学分析[J].岩石学报,25(02):385-392.
    [143]林武,梁华英,张玉泉,等.2004.冈底斯铜矿带冲江含矿斑岩的岩石化学及锆石SHPIMP年龄特征[J].33(6):585-592.
    [144]刘成,金成洙,李笑梅,等.2003.利用混合像元线性分解模型提取卧龙泉地区粘土蚀变信息[J].地质找矿论丛,18(2):131-133.
    [145]刘福权.1996.浑江市幅区域化探异常遥感评价筛选研究[J].国土资源遥感,28(2):29-36.
    [146]刘燕君.1983.遥感图象中矿产信息的再现及其意义[J].科学通报,16:995-997.
    [147]刘燕君.1991.遥感找矿的原理和方法[J].北京:冶金工业出版社.
    [148]刘志杰,韩先菊,刘荫椿.1998.比值-特征主成份混合分析提取金矿蚀变信息--以赣南遂川地区威力[J].黄金地质,4(1):74-77.
    [149]吕凤军,郝跃生,王娟,等.2008.多光谱蚀变遥感异常提取方法研究[J].河北遥感,2:4-6.
    [150]吕凤军,郝跃生,石静,等.2009.ASTER遥感数据蚀变遥感异常提取研究[J].地球学报,30(2):271-276.
    [151]马霭乃.1984.遥感概论[M].北京:科学出版社.
    [152]马鸿文.1990.西藏玉龙斑岩铜矿带花岗岩类与成矿[M].北京:中国地质大学出版社.
    [153]马建文.1997.利用ETM数据快速提取含矿蚀变带方法研究[J].遥感学报,1(3):208-213.
    [154]马建文,马超飞.1999.基于空间角度理论的卫星光学遥感数据认知与挖掘[J].中国图象图形学报,4(11):918-923.
    [155]马建文,刘素红,马超飞.2001.遥感多维空间数据场特征的角度分析与应用[J].遥感学报,5(1):17-21.
    [156]毛晓长,刘文灿,杜建国,等.2005.ETM+和ASTER数据在遥感矿化蚀变信息提取应用中的比较——以安徽铜陵凤凰山矿田为例[J].现代地质,19(2):309-314.
    [157]孟祥金,侯增谦,高永丰,等.2003a.西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义[J].地质论评,49(6):660-666.
    [158]孟祥金,侯增谦,高永丰,等.2003b.西藏冈底斯东段斑岩铜钼铅锌成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re-Os年龄证据[J].矿床地质,22(3):246-252.
    [159]孟祥金.2004a.西藏碰撞造山带冈底斯中新世斑岩铜矿成矿作用研究[D].中国地质科学院博士学位论文.
    [160]孟祥金,侯增谦,高永丰,等.2004b.碰撞造山型斑岩铜矿蚀变分带模式——以西藏冈底斯斑岩铜矿带为例[J].地学前缘,11(1):201-214.
    [161]明冬萍,王群,杨建宇.2008.遥感影像空间尺度特性与最佳空间分辨率选择[J].遥感学报,12(04):529-537.
    [162]莫济海,梁华英,喻亨祥,等.2006.冈底斯斑岩铜矿带冲江及驱龙含矿斑岩体锆石ELA-ICP-MS及SHRMP定年对比研究[J].大地构造与成矿学,30(4):504-509.
    [163]潘保田,方小敏,李吉均,等.1998.晚新生代青藏高原隆升与环境变化[A].施雅风,李吉均,李炳元主编.青藏高原晚新生代隆升与环境变化[C].广州:广东科技出版社.
    [164]潘桂棠.1994.全球洋-陆转换中的特提斯演化[J].沉积于特提斯地质,18:23-40.
    [165]潘桂棠,徐强,侯增谦,等.2003.西南“三江”多岛弧造山过程成矿系统与资源评价[M].北京:地质出版社.
    [166]裴承凯,傅锦.2007.高光谱遥感技术在岩矿识别中的应用现状与前景[J].世界核 地质科学,24(1):32-38.
    [167]平仲良.1993.从陆地卫星TM数据提取胶东某地区某种类型金矿的围岩蚀变信息[J].国土资源遥感,18(4):42-45.
    [168]秦建华,丁俊,刘才泽,等.2010.我国西南地区斑岩矿床区域成矿环境[J].大地构造与成矿学,34(2):216-223.
    [169]曲晓明,侯增谦,黄卫.2001.冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?[J].矿床地质,20(4):354-366.
    [170]曲晓明,侯增谦,李振清.2003.冈底斯铜矿带含矿斑岩的40Ar/39Ar年龄及地质意义[J].地质学报,77(2):245-252.
    [171]曲晓明,辛洪波.2006.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J].地质通报,25(7):794-799.
    [172]曲晓明,辛洪波,徐文艺.2007a.三个锆石U-Pb SHRIMP年龄对雄村特大型铜金矿床容矿火成岩时代的重新厘定[J].矿床地质,26(5):512-518.
    [173]曲晓明,辛洪波,徐文艺.2007b.西藏雄村特大型铜金矿床容矿火山岩的成因及其对成矿的贡献[J].地质学报,81(7):964-971.
    [174]芮宗瑶,黄崇轲,齐国明,等.1984.中国斑岩铜(钼)矿床[M].北京:地质出版社.
    [175]芮宗瑶,李光明,王龙生,等.2002a.西藏斑岩铜矿[J].西藏地质,21(2):3-12.
    [176]芮宗瑶,刘玉琳,王龙生,等.2002b.新疆东天山斑岩型铜矿带及其大地构造[J].地质学报,76(1):83-94.
    [177]芮宗瑶,侯增谦,曲晓明,等.2003a.冈底斯斑岩铜矿成矿时代及青藏高原隆升[J].矿床地质,2(3):217-225.
    [178]芮宗瑶,陆彦,李光明,等.2003b.西藏斑岩铜矿的前景展望[J].中国地质,30(3):302-308.
    [179]芮宗瑶,李光明,张立生,等.2004a.西藏斑岩铜矿对重大地质事件的响应[J].地学前缘,11(1):145-152.
    [180]芮宗瑶,张立生,陈振宇,等.2004b.斑岩铜矿的源岩或源区探讨[J].岩石学报,20(2):229-238.
    [181]佘宏全,丰成友,张德全,等.2005.西藏冈底斯中东段矽卡岩铜-铅-锌多金属矿床特征及成矿远景分析[J].矿床地质,24(5):508-520.
    [182]佘宏全,李进文,马东方,等.2009.西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义[J].矿床地质,28(6):737-746.
    [183]申维.2002.分形混沌与矿产预测[M].北京:地质出版社.
    [184]施俊法,李友枝,金庆花,等.2006.世界矿情(亚洲卷)[M].北京:地质出版社.
    [185]苏理宏,李小文,黄裕霞.2001.遥感尺度问题研究进展[J].地球科学进展,16(4):544-548.
    [186]唐菊兴.2003.西藏玉龙斑岩Cu(Mo)矿成矿作用与矿床定位预测研究[D].成都理工大学博士学位论文.
    [187]唐菊兴,黄勇,李志军,等.2009a.西藏谢通门县雄村铜金矿床元素地球化学特征[J].28(1):15-28.
    [188]唐菊兴,张丽,黄勇,等.2009b.西藏谢通门县雄村铜金矿主要地质体的40Ar/39Ar年龄及地质意义[J].矿床地质,28(6):759-769.
    [189]唐菊兴,黎风估,李志军,等.2010a.西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据[J].矿床地质,29(3):461-475.
    [190]唐菊兴,王登红,汪雄武,等.2010b.西藏甲玛铜多金属矿矿床地质特征及其矿床模型[J].地球学报,31(4):495-506.
    [191]唐仁锂,罗怀松,李荫清,等.1995.西藏玉龙斑岩铜(钼)矿带地质[M].北京:地质出版社.
    [192]童庆禧等.1990.中国典型地物波谱及其特征分析[M].北京:科学出版社.
    [193]王成辉,唐菊兴,陈建平,等.2009.西藏玉龙铜钼矿同位素年代学研究[J].地质学报,83(10):1445-1455.
    [194]王成辉,唐菊兴,侯可军,等.2011.西藏玉龙铜矿矿区斑岩体Hf同位素特征及其地质意义[J].矿床地质,30(2):292-304.
    [195]王登红,应汉龙,梁华英,等.2006.西南三江地区新生代大陆动力学过程与大规模成矿[M].北京:地质出版社.
    [196]王亮亮,莫宣学,李冰,等.2006.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学[J].岩石学报,22(04):1001-1008.
    [197]王倩,陈建平.2009.基于分形理论的遥感蚀变异常提取和分级[J].地质通报,28(2~3):285-288.
    [198]王青华,王润生,郭小方.2000.高光谱遥感技术在岩石识别中的应用[J].国土资源遥感,46(4):39-43.
    [199]王润生,丁谦,张幼莹,等.1999.遥感异常分析的协同优化策略[J].地球科学(中国地质大学学报),24(5):488-502.
    [200]王小春,晏子贵,周维德,等.2002.初论西藏冈底斯带中段尼木西北部斑岩铜矿地质特征[J].地质与勘探,38(1):5-8.
    [201]王晓鹏,谢志清,伍跃中.2002.西昆仑塔什库尔干地区遥感找矿异常提取方法研究[J].地质找矿论丛,17(2):136-139.
    [202]王之田.1994.大型铜矿地质与找矿[M].北京:冶金工业出版社.
    [203]王祖洪,韩先菊,刘荫春,等.1996.利用TM数据进行金矿化蚀变信息提取方法探讨[J].黄金地质,2(3):46-51.
    [204]邬建国.2000.景观生态学——格局、过程、尺度与等级[M].北京:高度教育出版社.
    [205]吴德文,张远飞,朱谷昌.2002.遥感图像岩石信息提取的最优密度分割方法[J].国土资源遥感,54(4):51-51.
    [206]吴德文,袁继明,张远飞,等.2005.遥感与化探数据融合处理技术方法及应用研究[J].国土资源遥感,65(3):44-47.
    [207]吴德文.2006.遥感与地面观测数据的找矿信息提取和处理技术及应用[D].中国地质大学(北京)博士学位论文.
    [208]吴昀昭,田庆久,陈骏,等.2004.新疆哈密黄山地区多金属矿床遥感地质信息提取与找矿模式研究[J].高校地质学报,10(1):114-119.
    [209]西藏地质矿产局.2000.西藏自治区区域地质志[M].北京:地质出版社.
    [210]西藏玉龙铜业股份有限公司.2009.西藏自治区江达县玉龙矿区铜矿勘探报告[R].西藏:昌都.
    [211]夏斌,涂光炽,陈根文,等.2000.超大型斑岩铜矿床形成的全球地质背景[J].矿物岩石地球化学通报,19(4):406-408.
    [212]相爱芹,朱谷昌,杨自安,等.2006.多光谱遥感蚀变信息提取的新方法应用研究[J].矿产与地质,20(6):656-658.
    [213]向运川,任天祥,牟绪赞,等.2010.全国矿产资源潜力评价技术要求系列丛书,化探资料应用技术要求[M].北京:地质出版社.
    [214]肖波,李光明,秦克章,等.2008.冈底斯驱龙斑岩铜钼矿床的岩浆侵位中心和矿 化中心:破裂裂隙和矿化强度证据[J].矿床地质,27(2):200-208.
    [215]肖波,秦克章,李光明,等.2011.冈底斯驱龙斑岩铜-钼矿外围矽卡岩型铜矿的分布、特征及深部找矿意义[J].地质与勘探,47(1):43-53.
    [216]谢淑云,鲍征宇.2003.多重分形与地球化学元素的分布规律[J].地质地球化学,31(3):97-102.
    [217]辛洪波,曲晓明,王瑞江,等.2009.藏西班公湖斑岩铜矿带成矿斑岩地球化学及Pb、Sr、Nd同位素特征[J].矿床地质,28(6):785-792.
    [218]徐春燕,冯学智.2007.TM图像大气校正及其对地物光谱响应特征的影像分析[J].南京大学学报(自然科学),43(3):309-317.
    [219]徐文艺,曲晓明,侯增谦,等.2006.西藏雄村大型铜金矿的特征、成因和动力学背景[J].地质学报,80(9):1392-1406.
    [220]徐希孺.2005.遥感物理[M].北京:北京大学出版社.
    [221]燕守勋,张兵,赵永超,等.2003.矿物与岩石的可见-近红外光谱特性综述[J].遥感技术与应用,18(4):191-199.
    [222]杨波,李京,陈云浩,等.2005a.甘肃鹰嘴山地区岩体和隐伏岩体遥感信息提取研究[J].现代地质,19(3):464-470.
    [223]杨波,吴德文,陈云浩,等.2005b.矿化信息提取的混合蚀变遥感模型——以鹰嘴山金矿区为例[J].国土资源遥感,63(1):20-24.
    [224]杨武年.1983.根据遥感图象资料试论环形构造与矿产之关系[J].成都地质学院学报,4:101-108.
    [225]杨校军,陈雨,张晔.2008FLAASH模型输入参数对校正结果的影响[J].遥感信息,6:32-37.
    [226]杨长保,姜琦刚,刘万崧,等.2009.基于ASTER数据的内蒙古东乌珠穆沁北部地区遥感蚀变信息提取[J].吉林大学学报(地球科学版),39(6):1163-1167.
    [227]杨长保,姜琦刚.2007.辽东地区矿化蚀变遥感信息提取的研究和应用[J].遥感信息,4:20-23.
    [228]杨志明.2008.西藏驱龙超大型斑岩铜矿床--岩浆作用及矿床成因[D].北京:中国地质科学院博士学位论文.
    [229]杨自安,徐国瑞,邹林,等.2003.化探与遥感信息在青海两兰地区找矿预测中的应用[J].地质与勘探,39(6):42-45.
    [230]杨自安.2005.西部高寒山区遥感与化探信息综合找矿定位预测研究[D].中国地质大学(北京)博士学位论文.
    [231]冶金工业地质研究所.1984.中国斑岩铜矿[M].北京:科学出版社.
    [232]叶发旺,赵英俊,涂育红.CBERS-02B数据在砂岩型铀矿勘查中的应用及其数据评价/http://www.cresda.com/n16/index.html
    [233]易桂花.2011.东昆仑五龙沟金矿集中区化探异常与遥感异常响应及成矿预测[D].成都理工大学博士学位论文.
    [234]应立娟,唐菊兴,王登红,等.2009.西藏甲玛铜多金属矿床矽卡岩中辉钼矿铼-锇同位素定年及其成矿意义[J].岩矿测试,28(3):265-268.
    [235]应立娟,王登红,唐菊兴,等.2010.西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义[J].地质学报,84(8):1165-1174.
    [236]应丽娟,唐菊兴,王登红,等.2011.西藏甲玛超大型铜矿区斑岩脉成岩时代及其与成矿的关系[J].岩石学报,27(07):2095-2102.
    [237]游丽平,林广发,杨陈照,等.2008.景观指数的空间尺度效应分析——以厦门岛 土地利用格局为例[J].地球信息科学,10(1):74-79.
    [238]翟裕生,姚书振,林新多,等.1992.长江中下游地区铁铜(金)成矿规律[M].北京:地质出版社.
    [239]张刚阳,郑有业,龚福志,等.2008.西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束[J].岩石学报,24(3):473-479.
    [240]张洪瑞,侯增谦,宋玉财,等.2009.斑岩铜矿床在东特提斯成矿域中的时空分布特征[J].地质学报,83(12):1818-1837.
    [241]张建国,杨自安,胡祥昭,等.2004.基于光谱特征的遥感信息提取及成矿预测[J].矿产与地质,18(4):346-349.
    [242]张金树,多吉,何政伟,等.2009.西藏驱龙斑岩型铜(钼)矿床矿化特征及远景预测[J].世界地质,28(4):460-466.
    [243]张满郎,郑兰芬.1996aLandsat TM及JERS-1 SAR数据在金矿探测中的应用研究[J].环境遥感,11(4):260-266.
    [244]张满郎.1996b.金矿蚀变信息提取中的主成份分析[J].遥感技术与应用,11(3):1-6.
    [245]张廷斌.2006.西藏谢通门县铜金矿带遥感图像蚀变信息提取及多源数据融合在成矿预测中的应用[D].成都理工大学硕士学位论文.
    [246]张廷斌,别小娟,吴华,等.2012.斑岩型铜矿找矿预测中环形构造的示矿作用——以玉龙-马拉松多子区为研究区[J].国土资源遥感,92(1):143-149.
    [247]张廷斌,唐菊兴,黄丁发.2009a.矿化蚀变信息提取的TM/ETM+遥感影像模式[J].遥感信息,2:47-51.
    [248]张廷斌,钟康慧,易桂花,等.2009b.东昆仑五龙沟金矿集中区遥感地质信息提取与找矿预测[J].地质与勘探,45(4):444-449.
    [249]张廷斌,唐菊兴,郭娜,等.2009c.西藏谢通门县铜金矿带TM遥感影像线性体统计分析[J].成都理工大学学报(自然科学版),36(4):409-414.
    [250]张维宸.2008.基于ETM的遥感矿化蚀变信息提取研究综述[J].河北遥感,4:19-22.
    [251]张雯华.1990.岩石(矿石)的反射光谱特性及其应用/童庆禧等.中国典型地物波谱及其特征分析[M].北京:科学出版社.
    [252]张玉君,杨建民.1998.基岩裸露区蚀变岩遥感信息的提取方法[J].国十资源遥感,36(2):46-53.
    [253]张玉君,杨建民,陈薇.2002ETM+(TM)蚀变遥感异常提取方法研究与应用——地质依据和波谱前提[J].国土资源遥感,54(4):30-36.
    [254]张玉君,曾朝铭,陈薇.2003ETM+(TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程[J].国土资源遥感,56(2):44-49.
    [255]张玉君,杨建民,姚佛军.2006aASTER-TIR用于岩性填图的初步研究[C].环境遥感学术年会-新型对地观测技术与应用论文集:622-627.
    [256]张玉君,杨建民,姚佛军.2006b.用ASTER数据进行不同类型矿床蚀变异常提取研究[J].矿床地质,25(增刊):507-510.
    [257]张玉君,杨建民,姚佛军.2007.多光谱遥感技术预测矿床资源的潜能——以蒙古国欧玉陶勒盖铜金矿床为例[J].地学前缘,14(5):63-70.
    [258]张玉君,姚佛军.2009.应用多光谱ASTER数据对ETM遥感异常的定性判别研究——以东昆仑五龙沟为例[J].岩石学报,25(4):963-970.
    [259]张云国,周朝宪.2011.斑岩铜矿床研究进展[J].地球科学进展,26(11):1173-1190.
    [260]张宗贵,王润生,郭小方,等.2003.基于地物光谱特征的成像光谱遥感矿物识别方法[J].地学前缘,10(2):437-443.
    [261]张宗贵,王润生,郭大海,等.2006.成像光谱岩矿识别方法技术研究和影响因素分析[M].北京:地质出版社.
    [262]章文毅.2004.我站停止接收Landset-7数据[Z].中国遥感卫星地面站,用户简讯,(3,总第58期):9.
    [263]赵元洪,张福祥,陈南峰.1991.波段比值的主成份复合在热液蚀变信息提取中的应用[J].国土资源遥感,9(3):12-16.
    [264]郑伟,曾志远.2004.遥感图像大气校正方法综述[J].遥感信息,4:66-67.
    [265]郑有业,薛迎喜,程力军,等.2004.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义[J].地球科学,29(1):103-108.
    [266]郑有业,高顺宝,张大全,等.2006.西藏朱诺斑岩铜矿发现的重大意义及启示[J].地学前缘,13(4):233-239.
    [267]郑有业,张刚阳,许荣科,等.2007a.西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束[J].科学通报,52(21):2542-2548.
    [268]郑有业.2007b.西藏冈底斯斑岩铜矿带成矿规律及勘查选区研究[D].中国地质大学(武汉)博士学位论文.
    [269]中国地质调查局.2011.勘查技术支撑找矿突破计划方案[R].北京.
    [270]中华人民共和国国务院.2006a.国务院关于加强地质工作的决定[M].北京:地质出版社.
    [271]中华人民共和国国务院.2006b.国家中长期科学和技术发展规划纲要(2006-2020年)[M].北京:中国法制出版社.
    [272]周正武,张建枢,王卫东.1996.大型斑岩铜矿的遥感信息探讨[J].国土资源遥感,28(2):10-20.
    [273]朱嘉伟,张天义,盛吉虎.1996.金矿遥感异常信息自动提取方法研究及其应用[J].国土资源遥感,30(4):45-50.
    [274]朱小鸽.2000.多重主成份分析及在地质构造信息提取中的应用[J].遥感学报,4(4):299-303.
    [275]祝向平,陈华安,马东方,等.2011.西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义[J].岩石学报,27(7):2159-2164.
    [276]邹林,杨自安,朱谷昌,等.2006.多光谱遥感蚀变信息提取新方法研究[J].地质与勘探,42(6):71-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700