用户名: 密码: 验证码:
不同涡粘性湍流底边界层特征量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湍流底边界层的物理性质和动力过程十分复杂,其水动力特征对于海洋工程、海洋生物等学科具有重要的研究意义和应用价值。但是由于其特殊的地理位置和复杂的动力系统,观测数据和理论模型非常难获得,一直是物理海洋学、海洋环境工程及生物学研究的热点之一。本论文主要的工作:一方面从理论上研究了海底悬浮液的有效粘性的消减机制;另一方面通过建立两种新的涡粘性参数化形式,建立湍流底边界层动力系统的理论模式并得到其解析解。研究内容可分为三个方面:
     1.在高浓度悬浮液的条件下,利用变换场理论,根据Stokes方程,研究了悬浮液的有效粘性随颗粒尺度的变化特征。统计结果表明:一定的颗粒浓度下(中或高),在一个元胞内增加颗粒的尺度或者减少单位体积内的颗粒数量,可大幅度地减小固体悬浮液的有效粘性。本工作揭示了固体颗粒尺度的变化可控制悬浮液的有效粘性的机制。
     2.给出新的参数化垂直涡粘性的三次多项式形式az2(1z/d),基于简化的Navier–Stokes方程,利用超几何函数的方法,得到了湍流粗糙底边界层的动力系统的解析解。另外,推导出湍流底边界层的其他的动力参数,如底剪应力,Ekman传输,Ekman抽吸及近底部速度分布场,从理论上研究了湍流底边界层特征量的分布特征。进一步,通过数值结果的分析,得出底边界层的总速度,亏损速度及其剪应力受平均流的角频率和地球自转影响比较大;而底边界层的动力结构对于底边界层顶部粗糙度不敏感。
     3.推导出在另一个新的涡粘性形式az (1z/d)2下的湍流底边界层的动力系统的解析解。并且通过数值分析得到:湍流底边界层的速度剖面同样对于平均流的角频率和地球自转影响之比依赖性较大;但是对于底边界层顶部粗糙度不敏感。通过和潮流的实际观测数据对比,在速度的振幅上拟合基本一致。
     本论文的工作从理论上研究了湍流边界层涡粘性的影响机制和参数化形式,是研究底边界层的动力影响因素重要的手段和方法。
The physical properties and dynamic processes of the oscillatory bottom boundarylayer that is a typical and important boundary layer are very complicated. Thehydrodynamic properties of turbulent bottom boundary layer are important researchand application value in marine engineering, marine biology and so on. However, theestablishment of the theory model of the ocean bottom boundary layer and itsanalytical solution are seldom. Observation experiment and theoretical research of theocean bottom boundary layer have also been the research hot spot for the physicaloceanography, marine environmental engineering and biology. In this paper, the mainwork is structured following: on the one hand, discusses the effective viscosityreduction behavior model of solid suspension in ocean bottom boundary layer; On theother hand, establish two different new forms of turbulent viscosity and research thedynamic of the turbulent bottom boundary layer theoretically. This paper is organizedinto three parts as follows.
     In the first part of the paper the transformation field method is used to model thereduction behaviour of effective viscosity of solid suspensions theoretically byenlarging the particle size at a given high concentration of particles based on theStokes equation. Under a simple shearing flow, the effective viscosity of solidsuspensions can be reduced by controlling the inclusion particle size or the number ofinclusion particles in a unit volume. With a lot of samples of random cubic particles ina unit cell, our statistical results show that at the same higher concentration, theeffective viscosity of solid suspensions can be reduced by increasing the particle sizeor reducing the number of inclusion particles in a unit volume. This work disclosesthe viscosity reduction mechanism of increasing particle size, which is observedexperimentally.
     In the second part of the paper the analytical solutions of the velocity distributionwithin the turbulent bottom boundary layer are deduced by supposed a new eddyviscosity of cubic polynomial form az2(1z/d). Based on the simplifiedNavier-Stokes equations, the property of the hypergeometric function is used to thismodel. Moreover, other dynamic parameters of bottom boundary layer are alsoobtained, such as the bottom shear stress, the Ekman transport, Ekman pumping and the velocity fields near the bottom. Thus the dynamic characteristics of well-mixedturbulent bottom boundary are discussed theoretically. Furthermore, numerical resultsshow that the total velocity profile, Ekman velocity and shear stress are sensitivenessto the ratio of the tidal frequency and the Coriolis parameter, but have been lessinfluenced on the roughness heights at the top of the bottom boundary layer.
     In the third part of the paper, we give another eddy viscosity of cubic polynomialform az (1z/d)2, and derive an analytical solution of velocity for turbulentrough bottom boundary layer. Furthermore, numerical results show that the velocityprofile in the bottom boundary layer is influenced strongly by the ratio of the tidalfrequency and the Coriolis parameter but is not sensitive to the roughness heights atthe top of the bottom boundary layer. Comparing with measured data of a tidal currentwithin bottom boundary layer, it indicates that the analytical model agrees well withobservation of the tidal current velocity magnitude.
     In this paper, we research theoretically the effective viscosity reduction behaviourof solid suspension and eddy viscosity parametric forms. They are important meansand methods in researching dynamic influence factors of bottom boundary layer.
引文
[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas,graphs, and mathematical tables, Washington, DC: national bureau of standards55(1972).
    [2] Abreu T., Sancho F., Silva P., Bottom shear stess formulations to computesediment fluxes in accelerated skewed waves, J Coastal Res, SI56(2009)453-457.
    [3] Absi R., Concentration profiles for fine and coarse sediments suspended by wavesover ripples: An analytical study with the1-DV gradient diffusion model, AdvWater Resour,33(2010)411-418.
    [4] Absi R., Marchandon S., Lavarde M., Turbulent diffusion of suspended particles:analysis of the turbulent Schmidt number, Defect and Diffusion Forum, TransTech Publications (2011)312-315.
    [5] Adams C.E., Weatherly G.L., Some effects of suspended sediment stratificationon an oceanic bottom boundary layer. J Geophys Res,86(1981)4161-4172.
    [6] Agrawal Y.C., Terray E.A., Donelan M.A., Hwang P.A., Wiliams A.J., DrennanW.M., Kahma K.K., Krtaigorodskii S.A., Enhanced dissipation of kinetic energybeneath surface waves, Nature,359(1992)219-220.
    [7] Arbic B.K, Shriver J.F., Hogan P.J., Hurlburt H.E., McClean J.L., Metzger E.J.,Scott R.B., Sen A., Smedstad O.M., Wallcraft A.J., Estimates of bottom flowsand bottom boundary layer dissipation of the oceanic general circulation fromglobal high-resolution models, J Geophys Res-Oceans,114(2009).
    [8] Awaji T., Kunish H., A dispersion equation and dispersion coefficient for materialtransport in inland seas, J Oceanogr Soc Jpn,39(1983)1–8.
    [9] Bailey B.N., Stoll R., Turbulence in sparse, organized vegetative canopies: Alarge-eddy simulation study, Bound-Lay Meteorol,147(2013)369-400.
    [10] Barth J.A., Wheeler P.A., Introduction to special section: coastal advances inshelf transport, J Geophys Res-Oceans,110(2005).
    [11] Batchelor G.K., The stress system on a suspension of force-free and torque-freeparticles, J Fluid Mech,41(1970)545-570.
    [12] Beach R.A., Sternberg R.W., Suspended sediment transport in the surf zone:response to cross-shore infragravity motion. Marine Geology,80(1988)61-79.
    [13] Blackadar A.K., The vertical distribution of wind and turbulent exchange in theneutral atmosphere, J Geophys Res,67(1962)3095–3102.
    [14] Boyd T., Levine M.D., Kosro P.M., Gard S.R., Waldorf W., Observations frommoorings on the Oregon continental shelf, May–August2001, Data Rep.1902002-6, Oregon State Univ, Corvallis.
    [15] Brereton G.J., Mankbadi R. R., Review of recent advances in the study ofunsteady turbulent internal flows, Appl Mech Re,48(1995)189–212.
    [16] Brevik I., Oscillatory rough turbulent boundary layers, J Waterw Port CoastalOcean Div, ASCE,107(1981)175–188.
    [17] Brink K.H., On the effect of bottom friction on internal waves, Cont Shelf,8(1988)397–403.
    [18] Brink K.H., Lentz S.J., Buoyancy arrest and bottom Ekman transport. Part I:steady flow, J Phys Oceanogr,40(2010)621-635.
    [19] Brink K.H., Lentz S.J., Buoyancy arrest and bottom Ekman transport. Part II:oscillating flow, J Phys Oceanogr,40(2010)636-655.
    [20] Brors B., Eidsvik K.J., Oscillatory boundary layer flows modelled with dynamicReynolds stress turbulence closure, Cont Shelf Res,14(1994)1455–1475.
    [21]Cacchione, D. A., Drake, D. E., Measurements of storm-generated bottomstresses on the continental shelf. J. Geophys. Res.87(C3)(1982)1952-61.
    [22] Caldwell D.R., Chriss T.M., The viscous sublayer at the sea floor, Science,205(1979)1131–1132.
    [23] Caldwell D.R., Van Atta C.W., Helland K.N., A laboratory study of the turbulentEkman layer, Geophys, Fluid Dyn,3(1972)125–160.
    [24] Celik I., Rodi W., Simulation of free-surface effects in turbulent channel flows,Phys Chem Hydrodyn,5(1984)217–227.
    [25] Chapman D.C., Lentz S.J., Acceleration of a stratified current over a slopingbottom, driven by an alongshelf pressure gradient, J Phys Oceanogr,35(2005)1305-1317.
    [26] Chen J.Y., Fan Z., Modeling of rheological behaviour of semisolid metal slurriespart1-Theory, Mater Sci Technol,18(2002)237-242.
    [27] Chen J., Katz J., Meneveau C., Implication of mismatch between stress andstrain-rate in turbulence subjected to rapid straining and destraining on dynamicLES models, J Fluid Eng-T Asme,127(2005)840-850.
    [28] Chriss T.M., Caldwell D.R., Evidence for the influence of form drag on bottomboundary layer flow, J Geophys Res,87(1982)4148–4154.
    [29]Clarke, A. L., Brink, K. H., The response of stratified, frictional Ilow of shelf andslope waters to Iluctuating large scale low frequency wind forcing, J. Phys.Oceanogr,15(4)(1985)439-53.
    [30] Coceal O., Dobre A., Thomas T.G., Unsteady dynamics and organized structuresfrom DNS over an idealized building canopy, Int J Climatol,27(2007)1943-1953.
    [31] Coceal O., Dobre A., Thomas T.G., Belcher S.E., Structure of turbulent flowover regular arrays of cubical roughness, J Fluid Mech,589(2007)375-409.
    [32] Csanady G.T., Shaw P.T., The evolution of a turbulent Ekman layer, J. Geophys.Res,85,(1980)1537–1547.
    [33] Cushman-Roisin B., Introduction to geophysical fluid dynamics, Prentice Hall,1994.
    [34] Cushman-Roisin B., Mala i V., Bottom Ekman pumping with stress-dependenteddy viscosity, J Phys Oceanogr,27(1997)1967–1975.
    [35] Davies A.G., A mathematical model of sediment in suspension in a uniformreversing tidal flow, Geophys J Roy Astron Soc,51(1977)503–529.
    [36] Davies A.G., A model of oscillatory rough turbulent boundary layer flow,Estuarine Coastal Shelf Sci,23(1986)353–374.
    [37] Defant A., Physical Oceanography, Pergamon, Oxford U.K.,2(1961).
    [38] De Jong J., Cao L., Woodward S.H., Salazar J.P.L.C., Collins L.R., Meng H.,Dissipation rate estimation from PIV in zero-mean isotropic turbulence, ExpFluids,46(2009)499-515.
    [39] Dewey R.K., Crawford W.R., Bottom stress estimates from vertical dissipationrate profiles on the continental shelf, J Phys Oceanogr,18(1988)1167–1177.
    [40] Dickey T.D., Van Leer J.C., Observations and simulation of a bottom Ekmanlayer on a continental shelf, J Geophys,89(1984)1983–1988.
    [41] Doron P., Bertuccioli L., Katz J., Osborn T.R., Turbulence characteristics anddissipation estimates in the coastal ocean bottom boundary layer from PIV data,J Phys Oceanogr,31(2001)2108-2134.
    [42] Drazen D.A., Melville W.K., Turbulence and mixing in unsteady breakingsurface waves, J Fluid Mech,628(2009)85-119.
    [43] Dubos T., Barthlott C., Drobiski P., Emergence and secondary instability ofEkman layer rolls, J Atmos Sci,65(2008)2326–2342.
    [44] Dubrulle B., Frisch U., Eddy viscosity of parity-invariant flow, Phys Rev A,3(1991)5355–5364.
    [45] Einstein A., Eine neue bestimmung der molek ldimensionen annln, Phys(Leipaig),19(1906)289-306.
    [46] Ekman V.W., On the influence of the earth’s rotation on ocean currents, Arkivfor Matematlk, Astronomi och Fysik,2(1905)1-53.
    [47] Ellison T.H., Batchelor G.K., Davies R.M. Atmospheric turbulence, in Surveysin Mechanics, Cambridge Univ Press, New York (1956).
    [48] Eremeev V.N., Kushnir V.M., Bottom boundary layer in the Black Sea: Basicresults and prospects of investigations, Physical Oceanography,10(1999)61-84.
    [49] Eshelby J D The determination of the elastic field of an ellipsoidal inclusion, andrelated problems, Prod R Soc Lond A,241(1957)376-396.
    [50] Ezer T., Weatherly G.L., A numerical study of the interaction between a deepcold jet and the bottom boundary layer of the ocean, J Phys Oceanogr,20(1990)801–816.
    [51] Fan Z., Chen J.Y., Modeling of rheological behaviour of semisolid metal slurriespart2-steady state behaviour, Mater Sci Technol,18(2002)243-249.
    [52] Freidrichs C.T., Wright L.D., Sensitivity of bottom stress and bottom roughnessestimates to density stratification, Erckernfjorde Bay,southern Baltic Sea, JGeophys Res,102(1997)5721–5732.
    [53] Fredsoe J., Deigaard R., Mechanics of coastal sediment transport, WorldScientific,(1992).
    [54] Garratt J.R., The atmospheric boundary layer, Cambridge University Press,(1992).
    [55] Garrett C., MacCready P., Rhines P., Boundary mixing and arrested Ekmanlayers: Rotating stratified flow near a sloping boundary, Annu Rev Fluid Mech,25(1993)291–323.
    [56] Gelfenbaum G., Smith J.D., Experimental evaluation of a generalizedsuspended-sediment transport theory, In Shelf Sands and Sandstones (Knight, R.J. and McLean, J. R., eds.), Canadian Society of Petroleum Geologists, Memoir,(1986),133–144.
    [57] Gerbi G.P., Trowbridge J.H., Edson J.B., Plueddemann A.J., Terray E.A.,Fredericks J.J., Measurements of momentum and heat transfer across the air-seainterface, J Phys Oceanogr,38(2008)1054-1072.
    [58] Gill A.E., Atmosphere and Ocean Dynamics, Academic,(1982).
    [59] Glenn S.M., Grant W.D., A suspended sediment correction for combined waveand current flows, J Geophys Res,92(1987)8244–8246.
    [60] Gloor M., Wüest A., Imboden D.M., Dynamics of mixed bottom boundary layersand its implications for diapycnal transport in a stratified, natural water basin, JGeophys Res,105(2000)8629–8646.
    [61] Gloor M., Wüest A., Münnich M., Benthic boundary mixing and resuspensioninduced by internal seiches, Hydrobiologia,284(1994)59–68.
    [62] Grant W.D., Bottom friction factor under waves in the presence of a weakcurrent: Its relationship to coastal sediment transport, Sc.D. thesis, MassachusettsInstitute of Technology,(1977).
    [63]Grant, W. D., Williams, A. J.3rd, Glenn, S. M., Bottom stress estimates and theirprediction on the northern California continental shelf during CODE-I; Theimportance of wave-current interaction. J. Phys. Oceanagr.14(3)(1984)506-527.
    [64] Grant W.D., Madsen O.S., Combined wave and current interaction with a roughbottom, J Geophys Res,84(1979)1797–1808.
    [65] Grant W.D., Madsen O.S., The continental-shelf bottom boundary layer, AnnuRev Fluid Mech,18(1986)265–305.
    [66] Gu G.Q., Hui P.M., Xu C., Woo W.C., Field transformation approach to photonicband structure calculations, Solid State Commun,120(2001)483-486.
    [67] Gu G.Q., Tao R., New method for evaluating the dc effective conductivities ofcomposites with periodic structure, Phys Rev B,37(1988)8612-8617.
    [68] Gu G.Q., Tao. R.B., A new method for evaluating the dc effective conductivitiesof composites with periodic structure, Phys Rev B,37(1988)8612-8617.
    [69] Gu G.Q., Tao. R.B., A first principle approach to effective viscosity of periodicsuapension, Science in China,(series A)32(1989)1186-1194.
    [70] Gu G.Q., Yu K.W., Applied Mathematics Mechanics, A theoretical research toeffective viscosity of colloidal dispersions,21(2000)275-282.
    [71] Hackett E.E., Luznik L., Katz J., Osborn T.R., Effect of finite spatial resolutionon the turbulent energy spectrum measured in the coastal ocean bottom boundarylayer, J Atmos Ocean Tech,26(2009)2610-2625.
    [72] Hagatun K., Eidsvik K.J., Oscillating turbulent boundary layer with suspendedsediments, J Geophys Res,91(1986)13045–13055.
    [73] Hanert E., Deleersnijder E., Blaise S. Remacle, J.F., Capturing the bottomboundary layer in finite element ocean models, Ocean Modelling,17(2007)153-162.
    [74] Hanjalic K., Advanced turbulent closure models, Int J Heat Fluid Flow,15(1994)178–208.
    [75]Hannan, C. A., Planktonic larvae may act like passive particles in turbulent nearbottom flows. Limnol. Oceanogr.29(1984)108-106
    [76] Hay A.E., Bowen A.J., Space–time variability of sediment suspension in thenearshore zone, Proc Coastal Dynamics, Barcelona, Spain, ASCE,94(1994)962–975.
    [77] Howroyd G.C., Slawson P.R., The characteristics of a laboratory producedturbulent Ekman layers, Boundary Layer Meteorol,8(1975)201–219.
    [78] Hoyas S., Jiménez J., Scaling of velocity fluctuations in turbulent channels up toReτ=2003, Phys Fluids,18(2006)011702.
    [79] Hong J., Katz J., Meneveau C., Schultz M.P., Coherent structures and associatedsubgrid-scale energy transfer in a rough-wall turbulent channel flow, J FluidMech,712(2012)92-128.
    [80] Hong J.R., Katz J., Schultz M.P., Near-wall turbulence statistics and flowstructures over three-dimensional roughness in a turbulent channel flow, J FluidMech,667(2011)1-37.
    [81] Hsu T.W., Jan C.D., Calibration of Businger-Arya type of eddy viscosity modelsparameters, J Waterw Port Coast Oc-ASCE,124(1998)281-284.
    [82] Inoue T., Nakamura Y., Sayama M., A new method for measuring flow structurein the benthic boundary layer using an acoustic Doppler velocimeter, J AtmosOcean Tech,25(2008)822-830.
    [83] Ishizu M., Kitade Y., Observation of the bottom boundary layer off the Soyawarm current, J Oceanogr,65(2009)639-645.
    [84] Ivey G.N., Nokes R.I., Vertical mixing due to the breaking of critical internalwaves on sloping boundaries, J Fluid Mech,204(1989)479–500.
    [85] Jensen B.L., Experimental investigation of turbulent oscillatory boundary layers,Series paper No.45, Institute of Hydrodynamics and Hydraulic Engineering,Technical University of Denmark,(1989).
    [86] Jensen B.L., Sumer B.M., Freds e J., Turbulent oscillatory boundary layers athigh Reynolds numbers, J Fluid Mech,206(1989)265–297.
    [87] Johns B., A boundary layer method for the determination of the viscous dampingof small amplitude gravity waves, Q J Mech Appl Math,21(1968)93–103.
    [88] Johnson G.C., Lueck R.G., Sanford T.B., Stress on the Mediterranean outflowplume: Part II. Turbulent dissipation and shear measurements, J Phys Oceanogr,24(1994b)2084–2092.
    [89] Johnson G.C., Sanford T.B., Baringer M.O., Stress on the Mediterranean outflowplume: Part I. Velocity and water property measurements, J Phys Oceanogr,24(1994a)2072–2083.
    [90] Jones N.L., Monismith S.G., The influence of whitecapping waves on the verticalstructure of turbulence in a shallow estuarine embayment, J Phys Oceanogr,38(2008)1563–1580.
    [91] Jonsson I.G., Carlsen N.A., Experimental and theoretical investigations in anoscillatory turbulent boundary layer, J Hydraul Res,14(1976)45–60.
    [92] Justesen P., Turbulent wave boundary layer. Series paper No.43, Institute ofHydrodynamics and Hydraulic Engineering, Technical University of Denmark,(1988).
    [93] Justesen P., A note on turbulence calculations in the wave boundary layer, JHydrau. Res,29(1991)699–711.
    [94] Kajiura K., A model ofthe bottom boundary layer in water waves, BullEarthquake Res Inst,46(1968)75–123.
    [95] Kemp P H, Simons R R., The interaction between waves and a turbulentcurrent:waves propagating with the current. J. Fluid Mech.116(1982)227-250.
    [96] Kemp P H, Simons R R., The interaction of waves and a turbulent current:wavespropagating against the current. J. Fluid Mech.130(1983)73-89
    [97] Klebano P.S., Characteristics of turbulence in a boundary layer with zeropressure gradient, Technical Note TN3178, NACA,(1954).
    [98] Kundu P.K., Ekman veering observed near the ocean bottom, J Phys Oceanogr,6(1976)238–242.
    [99] Kunze E., MacKay C., McPhee-Shaw E.E., Morrice K., Girton J.B., Terker S.R.,Turbulent mixing and exchange with interior waters on sloping boundaries, JPhys Oceanogr,42(2012)910-927.
    [100] Kushnir V.M., Bottom boundary layer in the Black Sea: Experimental data,turbulent diffusion, and fluxes, Oceanology,47(2007)33-41.
    [101] Lavelle J.W., Mofjeld H.O., Effects of time-varying viscosity on oscillatoryturbulent channel flow, J Geophys Res,88(1983)7607–7616.
    [102] Lemckert C., Antenucci J., Saggio A., Imberger J., Physical properties ofturbulent benthic boundary layers generated by internal waves, J Hydraul Eng,130(2004)58–69.
    [103] Lenn Y.D., Chereskin T.K., Observations of Ekman Currents in the SouthernOcean, J Phys Oceanogr,39(2009)768-779.
    [104] Lewis D.M., Blecher S.E., Time-dependent, coupled, Ekman boundary layersolutions incorporating Stokes drift, Dyn Atmos Oceans,37(2004)313–351.
    [105] Li J.W., Ma Y.G., Ma G.L., Effects of bulk viscosity on hadron spectra and theHanbury-Brown Twiss radius by causal viscous hydrodynamics, Chinese Phys B,18(2009)4786-4790.
    [106] Li M., Garret C., Is Langmuir circulation driven by surface waves or surfacecooling?, J Phys Oceanogr,25(1995)64–76.
    [107] Li Z., Davies A.G., Towards predicting sediment transport in combinedwave–current flow, J Waterw Port Coastal Ocean Eng,122(1996)157–164.
    [108] Lorke A., Boundary mixing in the thermocline of a large lake, J Geophys Res,112(2007).
    [109] Lorke A., Peeters F., Wüest A., Shear-induced convective mixing in bottomboundary layers on slopes, Limnol Oceanogr,50(2005)1612–1619.
    [110] Lorke A., Umlauf L., Mohrholz V., Stratification and mixing on slopingboundaries, Geophys Res Lett,35(2008) DOI:10.1029/2008GL034607.
    [111] Lozovatsky I., Figueroa M., Roget E., Fernando H.J.S., Shapovalov S.,Observations and scaling of the upper mixed layer in the North Atlantic, JGeophys Res-Oceans,110(2005) DOI:10.1029/2004JC002708.
    [112] Lueck R.G., Lu Y., The logarithmic layer in a tidal channel, Cont Shelf Res,14(1997)1785–1801.
    [113] Lundgren H., Turbulent currents in the presence of waves, Proceedings of13thInternational Conference on Coastal Engineering, ASCE,(1972)623-634.
    [114] Luznik L., Gurka R., Nimmo Smith W.A.M., Zhu W., Katz J., Osborn T.R.,Distribution of energy spectra, Reynolds stresses, turbulence production, anddissipation in a tidally driven bottom boundary layer, J Phys Oceanogr,37(2007)1527-1550.
    [115] Madsen O.S., A realistic model of the wind-induced Ekman boundary layer, JPhys Oceanogr,7(1977)248–255.
    [116] Madsen O.S., Wikramanayake P.N., Simple model for turbulent wave-currentbottom boundary layer flow, Contract Rep DRP-91-1, U.S. Army Corps ofEngineers, Coastal Engineering Research Center, Vicksburg, MS,(1991).
    [117] Madsen O.S., Salles P., Eddy viscosity models for wave boundary layers,Proceedings of26th International Conference on Coastal Engineering, ASCE,(1998)2615-2627.
    [118] Malarkey J., Davies A.G., Modelling wave–current interaction in roughturbulent bottom boundary layers, Ocean Eng,25(1998)119–141.
    [119] Mathisen P.P., Madsen O.S., Waves and currents over a fixed rippled bed.1.Bottom and apparent roughness experienced by currents in the presence of waves,J Geophys Res,101(1996a)16533–16542.
    [120] Mathisen P.P., Madsen O.S., Waves and currents over a fixed rippled bed.2.Bottom roughness experienced by waves in the presence and absence of currents,J Geophys Res,101(1996b)16543–16550.
    [121] McComb W.D., The physics of fluid turbulence, Oxford Univ Press, New York,(1990).
    [122] McLean S.R., Turbulence and sediment transport measurements in a North Seatidal inlet (The Jade), North Sea Dynamics,C. Sundermann and W. Lentz Eds,Springer-Verlag,(1983)436–452.
    [123] McLean S.R., On the calculation of suspended load for noncohesive sediments.J Geophys Res-Ocean,97(1992)5759-5770.
    [124] McPhee M., Smith J.D., Measurement of the turbulent boundary layer underpack ice, J Phys Oceanogr,6(1976)696–711.
    [125] McWilliams J.C., Huckle E., Ekman layer rectification, J Phys Oceanogr,36(2006)1646–1659.
    [126] McWilliams J.C., Huckle E., Shchepetkin A.F., Buoyancy effects in a stratifiedEkman layer, J Phys Oceanogr,39(2009)2581-2599.
    [127] Mei C.C., Chian, C., Dispersion of small suspended particles in a waveboundary layer, J Phys Oceanogr,24(1994)2479–2495.
    [128] Mei C.C., Fan S., Jin K., Resuspension and transport of3ne sediments by waves,J Geophys Res,102(1997)15807–15821.
    [129] Mellor G.L., The large Reynolds number asymptotic theory of turbulentboundary layers, Int J Eng Sci,11(1972)851–873.
    [130] Mellor G. L., One-dimensional, ocean surface layer modeling: A problem and asolution, J Phys Oceanogr,31(2001)790–809.
    [131] Mellor G.L., Yamada T., Development of a turbulence closure model forgeophysical fluid problems, Rev Geophys Space Phys,20(1982)851–875.
    [132] Mercado A., Van Leer J. Near bottom velocity and temperature profilesobserved by cyclesonde, Geophys Res Lett,3(1976)633–636.
    [133] Mofjeld H.O., Depth dependence of bottom stress and quadratic drag coefficientfor barotropic pressure-driven currents, J Phys Oceanogr,18(1988)1658–1669.
    [134] Mofjeld H.O., Effects of vertical viscosity on Kelvin waves, J Phys Oceanogr,10(1980)1039–1050.
    [135] Mofjeld H.O., Lavelle J.W., Setting the length scale in a second-order closuremodel of the unstratified bottom boundary layer, J Phys Oceanogr,14(1984)833–839.
    [136] Moum J.N., Caldwell D.R., Nash J.D., Gunderson, G.D., Observations ofboundary mixing over the continental slope, J Phys Oceanogr,32(2002)2113–2130.
    [137] Moum J.N., Perlin A., Klymak J.M., Levine M.D., Boyd T., Kosro P.M.,Convectively driven mixing in the bottom boundary layer, J Phys Oceanogr,34(2004)2189–2202.
    [138] Myrhaug D., On a theoretical model of rough turbulent wave boundary layers.Ocean Eng,9(1982)547-565.
    [139] Nemat-Nasser S., Taya M., On effective moduli of an elastic body containingperiodically distributed voids: comments and corrections, Q Appl Math,43(1985)187-188.
    [140] Nezu I., Nakagawa H., Turbulence in open-channel flows, A. A. Balkema, ed(1993).
    [141] Nezu I., Rodi W., Open-channel flow measurements with a laser Doppleranemometer, J Hydraul Eng,112(1986)335–355.
    [142] Ng C.O., Mass transport in a two-layer wave boundary layer, Ocean Eng,28(2001)1393–1411.
    [143] Nielsen P., On the structure of oscillatory boundary layers, Coastal Eng,9(1985)261–276.
    [144] Nielsen P., Coastal bottom boundary layers and sediment transport, WorldScientific,(1992).
    [145] Nimmo Smith W.A.M., Katz J., Osborn T.R., On the structure of turbulence inthe bottom boundary layer of the coastal ocean, J Phys Oceanogr,35(2005)72-93.
    [146] Nunan K.C., Keller J.B., Effective viscosity of a periodic suspension, J FluidMech,142(1984)269-287.
    [147] Ostendorf D.W., The rotary bottom boundary layer, J Phys Oceanogr-Ocean,89(1984)10461–10467.
    [148] Perlin A., Moum J.N., Klymak J.M., Levine M.D., Boyd T., Kosro P.M., Amodified law-of-the-wall applied to oceanic bottom boundary layers, J PhysOceanogr-Ocean,110(2005) C10S10.
    [149] Perlin A., Moum J.N., Klymak J., Response of the bottom boundary layer overa sloping shelf to variations in alongshore wind, J Geophys Res,110(2005).
    [150] Perlin A., Moum J.N., Klymak J.M., Levine M.D., Boyd T., Kosro P.M.,Organization of stratification, turbulence, and veering in bottom Ekman layers, JPhys Oceanogr-Ocean,112,(2007) C05S90.
    [151] Perrie W., Tang C.L., Hu Y., DeTracy B.M., The impact of waves on surfacecurrents, J Phys Oceanogr,33(2003)2126-2140.
    [152] Petrie C.J.S., Extensional viscosity: A critical discussion, J Non-NewtonianFluid Mech,137(2006)15-23.
    [153] Pingree R.D., Griffiths D.K., The turbulent boundary layer on the continentalshelf, Nature,250(1974)720–722.
    [154] Pingree R.D., Griffiths D.K., The bottom mixed layer on the continental shelf,Estuarine Coastal Mar Sci,5(1977)399–413.
    [155] Pollard R.T., Rhines P.B., Thompson R.O.R.Y., The deepening of thewind-mixed layer, Geophys Fluid Dyn,3(1973)381–404.
    [156] Pope S.B, Turbulent flows, Cambridge University Press, Cambridge,(2000).
    [157] Prandle D., The vertical structure of tidal currents. Geophys Astrophys FluidDynam,22(1982)29–49.
    [158] Price J.F., Sundermeyer M.A., Stratified Ekman layers, J Geophys Res,104(1999)20467–20494.
    [159] Richard K.J., Modelling the benthic boundary layer, J Phys Oceanogr,12(1982)428–439.
    [160] Romanou A., Weatherly G.L., Numerical simulations of buoyant Ekman layersin the presence of variable stratification. Part I: Constant interior forcing, J PhysOceanogr,31(2001)3096-3120.
    [161] Romanou A., Weatherly G.L., Numerical simulations of buoyant Ekman layers.Part II: Rectification in zero-mean, time-dependent forcing, and feedback on theinterior flow, J Phys Oceanogr,34(2004)1050-1066.
    [162] Sabban L., Van Hout R., Measurements of pollen grain dispersal in still air andstationary, near homogeneous, isotropic turbulence, J Aerosol Sci,42(2011)867-882.
    [163] Sakamoto K., Akitomo K., The tidally induced bottom boundary layer in therotating frame: development of the turbulent mixed layer under stratification, JFluid Mech,619(2009)235-259.
    [164] Sanford T.B., Lien R.-C., Turbulent properties in a homogeneous tidal bottomboundary layer, J Geophys Res,104(1999)1245–1257.
    [165] Saylor J.H., Studies of bottom Ekman layer processes and mid-lake upwellingin the Laurentian Great Lakes, Water Pollut Res J Can,29(1994)233–246.
    [166] Saylor J.H., Miller G.M., Observation of Ekman veering at the bottom of LakeMichigan, J Great Lakes Res,14(1988)94–100.
    [167] Schlichting H., Boundary Layer Theory, McGraw-Hill,(1979),817.
    [168] Schlichting H., Gertsen K., Boundary-layer theory. Springer Verlag, Berlin,(2000),801.
    [169] Sherwood J.D., Cell models for suspension viscosity. Chem Eng Sci,61(2006)6727-6731.
    [170] Shaw W.J., Trowbridge J.H., The direct estimation of near-bottom turbulentfluxes in the presence of energetic wave motions, J Atmos Ocean Tech,18(2001)1540-1557.
    [171] Shearman R.K., Observations of near-inertial current variability on the NewEngland shelf, J Geophys Res-Oceans,110(2005) DOI:10.1029/2004JC002341.
    [172] Shearman R.K., Lentz S.J., Observations of tidal variability on the NewEngland shelf, J Geophys Res-Oceans,109(2004) DOI:10.1029/2003JC001972.
    [173] Shimizu K., An analytical model of capped turbulent oscillatory bottomboundary layers, J Geophys Res–Ocean,115(2010).
    [174] Shimizu K., J Imberger., Damping mechanisms of internal waves incontinuously stratified rotating basins, J Fluid Mech,637(2009)137–172.
    [175] Shroyer E.L., Moum J.N., Nash J. D., Energy transformations and dissipation ofnonlinear internal waves over New Jersey’s continental shelf, Nonlinear ProcGeoph,17(2010)345–360.
    [176] Sleath J.F.A., Seabed boundary layers, The Sea LeMehaute B., Hanes D.M.,Eds., Ocean Engineering Science, Wiley and Sons9(1990)239–292.
    [177] Sleath J.F.A., Seabed boundary layers, The Sea, Ocean Engineering Science,MéhautéB.L., Hanes D.M.,(Eds.),9(1990)693-728.
    [178] Sleath J.F.A., Turbulent oscillatory flow over rough beds, J Fluid Mech,182(1987)369–409.
    [179] Smith J.D., Modeling of sediment transport on continental shelves, MarineModelling, The Sea, Coldberg E.D., et al. Eds., Wiley and Sons,6(1977)539–578.
    [180] Soulsby R.L., The bottom boundary layer of shelf seas, in PhysicalOceanography of Coastal and Shelf Seas, edited by Johns B., Elsevier,Amsterdam,(1983)189–266.
    [181] Soulsby R.L., Tidal-current boundary layers, The Sea, LeMehaute B., HanesD.M., Eds., Wiley-Interscience,(1990)523–566.
    [182] Soulsby R.L., Hamm L., Klopman G., Myrhaug D., Simons R.R., Thomas G.P.,Wave–current interaction within and outside the bottom boundary layer, CoastalEng,21(1993)41–69.
    [183] Spalart P.R., Direct simulation ofa turbulent boundary layer up to R2=1410, JFluid Mech187(1988)61–98.
    [184] Speziale C.G., Analytical methods for the development of Reynolds-stressclosures in turbulence, Annu Rev Fluid Mech,23(1991)107–157.
    [185] Styles R., Glenn S.M., Modeling bottom roughness in the presence ofwave-generated ripples, J Geophys Res-Oceans,107(2002).
    [186] Suntoyo, Tanaka H., Effect of bed roughness on turbulent boundary layer andnet sediment transport under asymmetric waves, Coastal Eng,56(2009)960-969.
    [187] Tao R., Electrorheology for efficient energy production and conservation, J IntelMat Syst Str,22(2011)1667-1671.
    [188] Tao R., Huang K., Reducing blood viscosity with magnetic fields, Phy Rew E,81(2011)011905.
    [189] Tao R., Xu X., Reducing the viscosity of crude oil by pulsed electric ormagnetic field, Energy Fuels,20(2006)2046-2051.
    [190] Taylor G.I., The viscosity of a fluid containing small drops of another fluid,Proc Roy Soc A,138(1931)41-48.
    [191] Taylor J.R., Sarkar S., Stratification effects in a bottom Ekman layer, J PhysOceanogr,38(2008)2535–2555.
    [192] Thwaites F.T., Williams A.J., BASS measurements of currents, waves, stress,and turbulence in the North Sea bottom-boundary layer, Ieee J Oceanic Eng,26(2001)161-170.
    [193] Tolman H.L., Wind waves and moveable-bed bottom friction, J Phys Oceanogr,24(1994)994–1009.
    [194] Trowbridge J., Wave-induced turbulent ow near a rough bed: implications of atime-varying eddy viscosity, Sc D Thesis, MIT,(1983).
    [195] Trowbridge J. H., Geyer W.R., Bowen M.M., Williams III.A.J., Near-bottomturbulence measurements in a partially mixed estuary: Turbulent energy balance,velocity structure, and along-channel momentum balance, J Phys Oceanogr,29(1999)3056–3072.
    [196] Trowbridge J.H., Lentz S.J., Dynamics of the bottom boundary layer on thenorthern California shelf, J Phys Oceanog.,29(1998)2075–2093.
    [197] Trowbridge J.H., Lentz S.J., Asymmetric behavior of an oceanic boundary layerabove a sloping bottom, J Phys Oceanogr,21(1991)1171–1185.
    [198] Trowbridge J., Madsen O.S., Turbulent wave boundary layer:1. Modelformulation and3rst-order solution, J Geophys Res,89(1984a)7989–7997.
    [199] Trowbridge J., Madsen O.S., Turbulent wave boundary layer:2. second-ordertheory and mass transport, J Geophys Res,89(1984b)7999–8007.
    [200] Umlauf L., Burchard H., Diapycnal transport and mixing efficiency in stratifiedboundary layers near sloping topography, J Phys Oceanogr,41(2011)329-345.
    [201] Van Doorn T., Experimenteel onderzoek naar het snelheidsveld in de turbulentebodemgrenslaag in een oscillerende stroming in een golftunnel, Delft HydraulicsLaboratory Rep, M1562-1b, Delft, Netherlands,(1982).
    [202] Van Haren H., Details of stratification in a sloping bottom boundary layer ofGreat Meteor Seamount, Geophys Res Lett,32(2005).
    [203] Van Haren H., Internal wave-turbulence pressure above sloping sea bottoms, JGeophys Res-Oceans,116(2011), DOI: Artn C12004.
    [204] Van Rijn L.C, Principles of sediment transport in river, estuaries and coastalseas, Aqua Publishing, Amsterdam,(1993).
    [205] Van Rijn L.C., Unified view of sediment transport by currents and waves II:Suspended transport, J Hydraul Eng, ASCE,133(2007)668-689.
    [206] Vittori G., Verzicco R., Direct simulation oftransition in an oscillatoryboundary layer, J Fluid Mech,371(1998)207–232.
    [207] Wang X.H., Tide-induced sediment resuspension and the bottom boundarylayer in an idealized estuary with a muddy bed, J Phys Oceanogr,32(2002)3113-3131.
    [208] Weatherly G.L., Blumsack S.L., Bird A.A., On the effect of diurnal tidalcurrents in determining the thickness of the turbulent Ekman bottom boundarylayer, J Phys Oceanogr,10(1980)297–300.
    [209] Weatherly G.L., Martin P.J., On the structure and dynamics of the oceanicbottom boundary layer, J Phys Oceanogr,8(1978)557–570.
    [210] Weber S.L., Bottom friction for wind sea and swell in extreme depth-limitedsituations, J Phys Oceanogr,21(1991)149–172.
    [211] Wei E.B., Poon Y.M., Shin F.G., Gu G.Q., Effective properties of piezoelectriccomposites with periodic structure, Phys Rev B,74(2006).
    [212] Weller R.A., Plueddemann A.J., Observations of the vertical structure of theoceanic boundary layer, J Geophys Res,101(1996)8789–8806.
    [213] Werner S.R., Beardsley R.C., Lentz S.J., Hebert D.L., Oakey N.S.,Observations and modeling of the tidal bottom boundary layer on the southernflank of Georges Bank, J Geophys Res-Oceans,108(2003)8005.
    [214] Wilcox D.C., Reassessment of the scale-determining equation for advancedturbulent models, AIAA Journal,26(1988)1299-1310.
    [215] Wilcox D.C., Turbulence modeling for CFD,2nd Edition, DCW Industries,California,(2000)540.
    [216] Wu J.X., Liu H., Ren J., Deng J.J., Cyclonic spirals in tidally acceleratingbottom boundary layers in the Zhujiang (Pearl River) Estuary, J Phys Oceanogr,41(2011)1209-1226.
    [217] Wirth A., On the Ekman spiral with an anisotropic eddy viscosity, BoundaryLayer Mete,137(2010)327–331.
    [218] Wirth A., Gama S., Frisch U., Eddy viscosity of three-dimensional flow, J FluidMech,288(1995)249–264.
    [219] You Z.J., Wilkinson D.L., Nielsen P., Velocity distribution in turbulentoscillatory boundary layer, Coastal Eng,18(1992)21-38.
    [220] Young I.R., Gorman R.M., Measurements of the evolution of ocean wavespectra due to bottom friction, J Geophys Res,100(1995)10987–11004.
    [221] Zhu W., Van Hout R., Katz J., PIV measurements in the atmospheric boundarylayer within and above a mature corn canopy. Part II: Quadrant-hole analysis, JAtmos Sci,64(2007)2825-2838.
    [222] Zhu W., Van Hout R., Luznik L., Kang H.S., Katz J., Meneveau C., Acomparison of PIV measurements of canopy turbulence performed in the fieldand in a wind tunnel model, Exp Fluids,41(2006)309-318.
    [223] Zou Q.P., An analytical model of wave bottom boundary layers incorporatingturbulent relaxation and diffusion effects, J Phys Oceanogr,32(2002)2441–2456.
    [224]曹祖德,王桂芬,波浪掀沙、潮流输沙的数值模拟,海洋学报,15(1993)107-118.
    [225]费祥俊,浆体与粒状物料输送水力学,清华大学出版社,北京,(1994)30-34.
    [226]费祥俊,高浓度浑水的宾汉极限剪切力,泥沙研究,3(1981)19-28.
    [227]费祥俊,朱程清.高含沙水流运动中的宾汉切应力,泥沙研究,4(1991)13-23.
    [228]厚宇德,超几何函数在量子力学上的应用,哈尔滨商业大学学报(自然科学版),18(2002)334-336.
    [229]李后强,艾南山,苟兴华,段家河流域泥石流发育的渗流(percolation)模型,中国地质灾害与防治学报,4(1993)35-41.
    [230]李明悝,侯一筠,乔方利,潮致垂直涡动粘性系数的参数化,自然科学进展,16(2006)55-60.
    [231]刘志宇,魏皓,黄海潮流底边界层内湍动能耗散率与底应力的估计,自然科学进展,17(2007)362-369.
    [232]罗文锋,李后强,艾南山,泥石流研究中的渗流模型及分形方法,中国地质灾害与防治学报,8(1997)8-12.
    [233]钱宁,高含沙水流运动,清华大学出版社,北京,(1989).
    [234]汪亚平,高抒,贾建军,海底边界层水流结构及底移质搬运研究进展,海洋地质与第四纪地质,20(2000)101-106.
    [235]魏皓,赵亮,刘广山等,浅海底边界层动力过程与物质交换研究,地球科学进展,21(2006)1180-1184.
    [236]朱嘉麟,超几何方程的解在函数展开中的应用,计算物理,5(1988)455-465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700