用户名: 密码: 验证码:
库姆塔格沙漠东缘风沙活动及羽毛状沙丘剖面特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
库姆塔格沙漠东缘地理位置特殊,生态环境脆弱,是我国沙尘暴发生和发展的重要区域,同时历史文化名城敦煌位于其东侧,受到盛行西北风的影响,库姆塔格沙漠成为敦煌地区主要沙尘来源,而位于敦煌绿洲和库姆塔格沙漠之间的过渡带成为阻止沙尘侵害绿洲的天然屏障。因此通过对荒漠-绿洲过渡带的风沙活动特征以及典型风沙地貌的研究,对于完善区域风沙环境资料,揭示区域风沙地貌的形成具有重要的理论意义,同时也为敦煌地区防沙治沙工作提供理论参考。
     本文利用建立在库姆塔格沙漠东缘的国家林业局库姆塔格荒漠生态系统定位研究站实测数据,对库姆塔格沙漠东缘风沙活动特征以及“羽毛状沙丘”剖面特征进行研究,文章的主要结论如下:
     (1)库姆塔格沙漠东缘年平均风速在3.5m/s左右,风速主要分布在2m/s~5m/s之间,占全部风速的63.7%,起沙风(≥6m/s)约占全部风速的10%,风速随着高度的增加呈现幂函数方程V=aHb增加的趋,1970年以来平均风速有逐渐降低的趋势,起沙风主要发生在4~7月份,占全年起沙风的56.32%,起沙风在白天16~18(6%)时发生频率较高。
     (2)库姆塔格沙漠东缘荒漠绿洲过渡带白天多以西北风(NW)、北风(N)和东北风(NE)为主,夜间主要受到东南偏南风(SSE)控制。起沙风主要集中在西北偏西方向(WNW)和东北偏东方向(ENE),分布频率分别为22.62%和17.25%,起沙风风向昼夜变化不明显。
     (3)研究区输沙势主要集中在ENE和WNW方向上,输沙势分别为40.83VU和33.24VU,年合成输沙势(RDP)为54.73VU,合成输沙势方向为南方向(RDD为189°)。春季总输沙势(DP)和合成输沙势(RDP)最大,分别为71.68VU(其中四月份为43.31VU)和45VU(其中四月份为30.60VU)。
     (4)库姆塔格沙漠地区多风沙天气,年平均沙尘暴日数在6天以上,沙尘天气年内分布具有明显的季节特征,其中春季是沙尘天气的高发季节,其次为夏季,冬季和秋季发生沙尘天气日数相对较少;1950~2008年间,敦煌年沙尘暴发生日数、扬沙天气发生日数、浮尘天气发生日数均表现出逐渐减少的趋势。
     (5)24m高度范围内,沙尘水平通量随着高度的增加呈现幂函数递减的趋势,研究区1年内(2012年6月至2013年5月)通过1m(宽度)×24m(高度)断面的年总沙尘水平通量为1759kg,主要来自东北方向(NE)和西方向(W),分别占23.08%和19.97%,输沙量合成方向为S偏W1.36°,合成输沙量为465.47kg。
     (6)库姆塔格沙漠东缘荒漠绿洲过度带24m高度内收集的沙尘主要以细沙、极细沙和粉沙为主。沙粒的粒径级配随着高度的增加表现出明显的变化规律,在0~8m范围内,粉沙含量随着高度的增加呈现线性增加的趋势,细沙含量随着高度的增加表现出线性降低的趋势,当高度超过8m,各粒径沙粒比例变化不大。沙粒的偏度均为“正偏”,阶梯频率曲线为“单峰”曲线,沙粒分选系数随着高度的增加而增加。戈壁、沙丘迎风坡、沙丘丘顶、沙丘背风坡、林地和灌丛沙堆6种下垫面沙粒平均粒径在2.46~3.08φ之间,均以细沙(0.125~0.25mm)和极细沙(0.063~0.125mm)为主,因此不同下垫面均有提供沙物质的可能性。
     (7)库姆塔格沙漠东缘荒漠绿洲过渡带分布的灌丛、新月形沙丘链以及绿洲农田防护林具有显著的防风阻沙作用,荒漠绿洲过度带1m高处输沙量较荒漠地区降低了22.57%~48.54%,绿洲内1m高处输沙量较荒漠地区输沙量降低了89.64%~93.9%。
     (8)构成“羽毛状沙丘”羽轴的沙垄由首尾相连的“变形的”新月形沙丘构成,其走向为NE55°;新月形沙丘的平均高度为17.65m,西北翼角的平均长度为72m,均长于东南翼角。沙垄的纵断面(SW→NE)表现出明显的波动性,波长在50~100m之间,波高在10~25m之间。沙垄的平均宽度为127.69m,平均坡度为12.59°;西北坡平均坡长为71.74m,平均坡度为11.65°,东南坡平均坡长为59.05m,平均坡度为13.52°。“羽毛状”沙丘的“羽枝”部分是由地形平缓的穹状“大沙波”首尾相连构成,并未像遥感影像一样呈现出明暗相间的“羽毛状”图案。“大沙波”的平均宽度为641.34m,其纵断面相对平缓,2个“波峰”之间的距离在400m左右,“波峰”高度为1~3m,平均坡长为322.37m,平均坡度为1.28°,仅为沙垄的10%。
The edge of eastern Kumtag Desert’ location is a special region withfragile ecologicalenvironment, where is an important area with the sandstorms occurrence and development inour country. The historical and cultural city of Dunhuang is located in the east of KumtagDesert, so Kumtag Desert becomes a main source of dust to Dunhuang, and the ecotone locatedbetween Dunhuang Oasis and Kumtag Desert becomes a natural barrier to prevent dustinvasion Oasis. Therefore, to study the wind and sand activity characteristics and typicalaeolian geomorphology in desert-oasis ecotone is meaningful for revealing the formation ofregional aeolian landforms. It also provides theoretical reference for desertification combatingin Dunhuang. In this study a statistical analysis on wind regimes in the eastern marginal zoneof the Kumtag Desert and characteristics of profiles of “feather-like dunes” was carried outduring the period from2012to2013. The principle features and findings are listed as follows:
     (1) The average wind velocity is3.5m/s in the eastern marginal zone of the KumtagDesert, the winds of2-5m/s account for63.7%of all winds, and the wind more than6m/saccounts for10%. Wind velocity increases with the height as a power function. The averagewind velocity has gradually decreased since the1970. Sand-moving wind in the study areaoccurs mainly in April to July and the frequency is56.32percent, and the frequency ofsand-moving wind during16:00to18:00was6percent.
     (2) This region is affected predominantly by NW and NNE winds during the daytime, andSSE winds during the night, there is a higher accumulated frequency of sand-moving windswith22.62percent in the WNW and17.25percent in the ENE. Finally, sand-moving windsdo not change significantly in daytime and nighttime.
     (3) There is a higher sand-transport potential in the ENE and WNW directions, and thesand-transport potential is40.83VU and33.24VU, resultant sand-transporting potential (RDP)54.73VU, resultant sand-transporting direction (RDD)189°S. There is a higher drift potential (DP) with71.68VU and sand-transporting potential (RDP) with45VU in the spring, and theRDPis43.31VU and the DP30.6VU in April.
     (4) The average annual sandstorm days have6days, and spring and summer are theseasons with more dust weather, the sandstorm days and jansa days and dust weather show adecreasing trend during1950to2008.
     (5) Horizontal aeolian dust flux decays with height in power exponentiation, the totalhorizontal aeolian dust flux through the transect with a height of24m and width of1m is1,759kg a year, of which23.08percent of the total horizontal aeolian dust flux comes from NEand19.97percent from W, and the resultant sand-transporting direction is181.36°S, theresultant sand-transporting465.47kg.
     (6) The dust is mainly composed of fine sand, very fine sand and silts at the height of0--24m in the eastern marginal zone of the Kumtag Desert. The particle size distribution curvecan be divided into2parts:0-8m is the lower part, where the percentage content of siltsincreased with height, but the percentage content of fine sand decreased with the increase ofheight;8-24m is the upper part, where the percentage content of silts and the percentagecontent of fine sand change little with height. The skewness of dust is “positively biased”,and the frequency curve “single peak curve”, the sorting coefficient of the dust increases withheight. The fine sand and very fine sand take a large proportion in different land surfaces, theaverage grain diameter is in the range from2.46φ to3.08φ in six surfaces, which all the sixsurfaces can supply dust to air potentially.
     (7) The shrubs and barchan dunes in the eastern marginal zone of the Kumtag Desertand the farmland shelterbelt in oasis have significant effects on wind-provention andsand-stabilization, the horizontal aeolian dust flux in transitional zone and in oasis are reducedby22.57percent to48.54percent than that in desert, and89.64percent to93.9percent,respectively.
     (8) The direction of “quill” of “feather-like dunes” is NE55°, and the “quill” composesof crescent dunes ridges with the average height of17.65m, whichthe average length of northwest wing is generally72m, longer than their southeast wing. Great fluctuation is foundfrom the profile of the “quill”: the wave length is50-100m, and the wave height10-25m.The average width and slop of the “quill” are127.69m and12.59°, respectively. The averagelength and slop of northwest slope were71.74m and11.65°, respectively. The average lengthand slop of southeast slope were50.09m and13.52°, respectively. The “plume” of “feather-likedunes” is composed of large dome-like sand dune waves, not a “feathery” pattern of light anddark hues as shown in remote sensing images. The average width of the large dome sand dunewaves is641.34m, with a relatively flat profile. The distance between two waves is about400m, and the wave height ranges in1-3m, the average slop length and average gradient are322.37m and1.28°, respectively.
引文
Al-Awadhia J M, Al-He A, Al-Enezi A. Sand drift potential in the desert of Kuwait. Journal of AridEnvironments,2005,63:425~438
    Aufrere L. Essai sur les dunes du Sahara algerien. Geographical Annals,1935,17:481~500
    Aufrere L. L’orientations des dunes et la direction des vents. Comptes Rendus Académie des Sciences,1928,187:833~835
    Bagnold R A. The physics of blown sand and desert dunes. Methuen, London,1941:104
    Bagnold R A. The Physics of Blown Sand and Deser Dunes. London: Methuen,1941,25~41
    Bagnold R A. The surface movement of blown sand in relation to meteorology. Research Council of IsraelSpecial Publication,1953,2:89~96
    Bagnold R A. The size grading of sand by wind. Proceedings of the Royal Society of London, Series A,1937,163:250~264
    Bagnold R A. The movement of desert sand. Geographical Journal,1935,85:343~369
    Bagnold R A. The Physies of blown sand and desert dunes. Methuen, London.1941:1~25
    Blanford W T. Geological notes on the Great Indian Desert between Sind and Rajputana, Records of theIndian Geological Survey,1877,10(1):10~21
    Bullard J E. A note on the use of the “Fryberger method”for evaluating potential sand transport by wind.Journal of Sedimentary Research,1997,67:499~501
    Butterfield G R. Near-bed mass flux profiles in aeolian sand transport: High-resolution measurements in awind tunnel. Earth Surface Processes and Landforms,1999,24(5):393~412
    Chepil W S. Dynamics of wind erosion: Ⅱ. Initiation of soil movement. Soil Science,1945,60:397~411
    Chepil W S. Dynamics of wind erosion: I. Nature of movement of soil by wind. Soil Science,1945,60:305~320
    Clements F E. Research Methods in Ecology. Lincoln, UK: Univ. Publ.,1905
    Cornish V. Limits of formand magnitude of desert dunes. Nature,1928,121:620~622
    Cornish V. On Kumatology. Geographical Journal,1899,13:618~624
    Dong Z B, Liu X P, Wang H T, et al. The flux profile of a blowing sand cloud: a wind tunnlel investigation.Geomorphology,2002,49:219~230
    Dong Z B, Qian G Q, Luo W Y, et al. Analysis of the mass flux profiles of an aeolian saltating cloud.Journal of Geophysical Research-Atmospheres,2006,111(D16): Art.No.D16111
    Dong Z B, Qu J J, Wang X M, et al. Pseudo-feathery dunes in the Kumtagh Desert. Geomorphology,2008,100:328~334
    Dong Z B, Wei Z H, Qian G Q, et al.“Raked”linear dunes in the Kumtagh Desert, China.Geomorphology,2010,23(1/2):122~128
    Dubief J. Les vent de sable dans le Sahara Francais. Colloques Internationaux CNRS,1953,35:45~70
    Folk R L, Ward W C. Brazos River bar: a study in the significance of grain size parameters. Journal ofSedimentary Petrology,1957,27:3~26
    Folk R L. A review of grain-size parameters. Sedimentology,1966,6:73~93
    Fryberger S G. Dune forms and wind regime. In Mckee E D(Ed.). A study of Global Sand Seas. USGeological Survey and United States National Aeronautics and Space Administration, Washington D C.USGS Professional Paper,1979,1052:137~169
    Fryrear D W, Saleh. Field wind erosion: vertical distribution.soil science,1993,155(4):294~300
    Gillette D A, Fryrear D W, Xiao J B, et al. Large-scale variability of wind erosion mass flux rates at Owenlake1. vertical profiles of horizontal mass fluxs of wind~eroded particles with diameter greater than50μm, Journal of Geophys Research,1997,102:25977~25987
    Glennie K W. Desert sedimentary environments. Developments in sedimentology,1970,14:222
    Goossens D, Gross J, Spaan W. Aeolian dust dynamics agricultural land areas in lower Saxony, Germany.Earth Surferce and Process and Landforms,2001,26:701~720
    Hack J T. The dunes of western Navajo county. Geographical Review,1941,31:240~362
    Hanna S R. The formation of longitudinal sand dunes by large helical eddies in the atmosphere. Journal ofApplied Meteorology,1969,8:874~883
    Hesp P A, Hastings K. Width, height and slope relationships and aerodynamic maintenance of barchans.Geomorphology,1998,22,193~204
    Kawamura, R. Study on sand movement by wind. Report of institute Sci.&Tech. Univ.Tokyo,1951,5(3):95~112
    Krumbein W C. Application of logarithmic moments to size frequency disrtibution of sediments. Journal ofsedimentary Petrology,1936,6:35~47
    Krumbein W C. Size frequency distribution of sediments and the normal phicurve. Journal of sedimentaryPetrology,1938,8:84~90
    Krumbein W C. Size frequency distribution of sediments. Journal of Sedimentary Petrology,1934,4:65~77
    Lancaster N. Wind and sand movement in the Namib sand sea. Earth Surface Processes and Landforms,1985,10:607~619
    Lancaster N. Development of linear dunes in the southwestern Kalahari, Southern Africa. Journal of aridenvironments,1988,14:233~244
    Lancaster N. Dune of the Gran Desierto sand sea, Sonora, Mexico. Earth Surface Processes and Landforms,1987,12:277~288
    Lancaster N. The formation of seif dunes from barchans-supporting evidence for Bagnold’s model from theNamib Desert. Zeitschrift für Geomorphologie NF,1980,24:160~167
    Lancaster N.The dynamics of star dunes: an example from the Gran Desierto, Mexico. Sedimentology,1989,36:273~289
    McKenna N C, Lancaster N, Nickling W G. The effect of unsteady winds on sediment transport on the stossslope of a transverse dune, Silver Peak, NV, USA. Sedimentology,2000,47:211~226
    Nicking W G. Eolian sediment transport during dust storms: Slims River Valley, Yukon Territory, Canada.Can. J.Earth Sci.,1978,15:1069~1084
    Offer Z Y, Goossens D. Thirteen years of aeolian dust dynamicsin a desert region (Negev desert, Israel):analysis of horizontal and vertical dust flux, vertical dust distribution and dust grain size. Journal ofArid Environments,2004,57:117~140
    Parker S G J. Observations regarding the movement of barchan sand dunes in the Nazca to Tanaca ofsouthern Peru. Geomorphology,1999,27:279~293
    Pearce K I, Walker I J. Frequency and magnitude biases in the “Fryberger”model, with implications forcharacterizing geomorphically effective winds. Geomorphology,2005,68:39~55
    Saqqa A S, Saqqa A W. A computer program(WDTSRP) designed for computation of sand driftpotential(DP) and plotting sand roses. Earth surface progress and landforms,2007,32:832~840
    Sharp R P. Kelso dunes, Mohave Desert, California. Bulletin Geological Society of America,1966,77:1045~1074
    Simon J D, Huang X W, Skidmore E L, et al. Wind erosion from military training lands in the MojaveDesert, California, U.S.A. journal of arid environments,2003,54:687~703
    Skidmore E L. Soil erosion by wind[A]. In El-Baz F, Hassan M H A. Physics of desertification. MartinusNijhoff Publishers: Dordrecht.1986:261~273
    Sorensen M. Estimation of some aeolian saltation transport parameters from transport rate profiles. In:Barndorff-Nielsen O E (eds.). Proceedings of International Workshop on the Physics of Blown Sand.Aarhus University, Denmark,1985:141~190
    Thomas B A. Journey into Rub. alKhali the Southern Arabian Desert. Geographical Journal,1931,80:1~37
    Tosar H, Moller J T. The role of vegetation in the formation of linear sand dunes.In Nickling(Ed.), AeolianGeomorphology, Allen and Unwin, Boston,1986,75~95
    Udden J A. Mechanical composition of some clastic sediments. Geological Society of America, Bulletin,1914,25:655~744
    Von Kármán T. Some aspects of the turbulence problem, Proceedings of the4th International Congress onApplied Mechanics, Cambridge,1935,54~91
    Wasson R J, Hyde R. A test of granulometric control of desert dune geometry. Earth Surface Processes andLandforms,1983,8:301~312
    White B R. Laboratory simulation of Aeolian sand transport tand physical modeling of flow around dunes.Annals of Arid Zone,1996,35(3):187~214
    Williams G. Some aspects of the eolian saltation load. Sedimentology,1964,3:257~287
    Wu Zheng, Ling Yuquan. A preliminary study of wind-blown sand movement and sand disaster prevention.Research of sand disaster prevention,1965,7:7~14
    Xu Z W, Lu H Y, Zhao C F, et al. Composition, origin and weathering process of surface sediment inKumtagh Desert, Northwest China. Journal of Geographical Sciences,2011,21(6):1062~1076
    陈渭南.塔克拉玛干沙漠84°沿线沙物质的粒度特征.地理学报,1993,48(1):33~46
    丁国栋,赵廷宁,董智等.风沙物理学(第2版).北京:中国林业出版社,2010:226
    董治宝,屈建军,卢琦等.关于库姆塔格沙漠“羽毛状”风沙地貌的讨论.中国沙漠,2008,28(6):399~405
    董治宝,屈建军,陆锦华等.1:35万《库姆塔格沙漠地貌图》的编制.中国沙漠,2010,30(3):483~491
    董治宝,屈建军,钱光强等.库姆塔格沙漠风沙地貌区划.中国沙漠,2011,31(4):805~814
    董治宝,苏志珠,钱广强等.库姆塔格沙漠风沙地貌.北京:科学出版社,2011:217~218
    董治宝.羽毛状沙丘辨析.科技导报,2009,27(20):69~75
    高振荣,邵亮,李光林.敦煌地区沙尘天气特征分析.干旱气象,2010,28(1):59~64
    哈斯,王贵勇,董光荣.腾格里沙漠南缘格状沙丘表面气流及其地貌意义.中国沙漠,2000,20(1):30~34
    何清,杨兴华,霍文等.库姆塔格沙漠粒度分布特征及环境意义.中国沙漠,2009,29(1):18~22
    胡泽勇,黄荣辉,卫国安等.2000年6月4日沙尘暴过境时敦煌地面气象要素及地表能量平衡特征的变化.大气科学,2002,26(1):1~8
    黄翠华,张伟民,李爱敏.莫高窟窟顶风况及输沙势研究.中国沙漠,2006,26(3):394~398
    黄翠华,王涛,张伟民等.沙质地表与砾质戈壁风沙运动对比研究.干旱区研究,2007,24(4):556~562
    黄富祥,牛海山,王明星等.毛乌素沙地植被覆盖率与风蚀输沙量定量关系.地理学报,2001,5(66):700~710
    霍文,何清,刘新春等.塔克拉玛干沙漠及其大气降尘点粒度特征分析.水土保持研究,2009,16(4):207~211
    霍文,何清,杨兴华等.2007~2008年库姆塔格沙漠沙尘天气特征与天气分型.中国沙漠,2011a,31(4):1037~1045
    霍文,何清,杨兴华等.中国北方主要沙漠沙尘粒度特征比较研究.水土保持研究,2011b,8(6):6~11
    库姆塔格沙漠综合科学考察队.库姆塔格沙漠研究.北京:科学出版社,2012:118~121,155
    廖空太,李耀辉,刘虎俊等.库姆塔格沙漠羽毛状沙垄风沙活动强度特征.中国沙漠,2008,28(3):399~404
    廖空太.库姆塔格沙漠羽毛状沙丘形成过程研究.中国科学院研究生院博士学位论文,2009,15~18
    凌裕泉,吴正,刘绍中.新月形沙丘形态的模拟实验研究.地理研究,1997,17(2):88~93
    凌裕泉,吴正,刘绍中等.新月形沙丘形态的模拟实验研究.地理科学,1998,18(1):88~93
    刘虎俊,王继和,廖空太等.库姆塔格沙漠“羽毛状沙丘”形态的示量特征.干旱区地理,2006,29(3):314~319
    刘虎俊,王继和,廖空太等.库姆塔格沙漠的“羽毛状沙丘”形态的观测.地学前缘,2007,14(3):190~196
    刘虎俊,王继和,廖空太等.库姆塔格沙漠梭梭沟区域(92°E)的风积地貌类型及分布.干旱区地理,2009,32(1):87~94
    刘虎俊,赵明,王继和等.库姆塔格沙漠南部的风积地貌特征.干旱区资源与环境,2005,19(7):130~134
    刘立超,沈志宝,王涛.敦煌地区沙尘气溶胶质量浓度的观测研究.高原气象,2005,24(5):765~771
    刘贤万.实验风沙物理与风沙工程.北京:科学出版社,1995:1~20
    刘振兴.关于风沙问题的研究(Ⅱ):在风力作用下沙丘移动规律性的初步研究.气象学报,1962,31:84~91
    鹿化煜,安芷生.黄土高原红黏土与黄土古土壤粒度特征对比:红黏土风成成因的新证据.沉积学报,1999,17(2):226~232
    吕萍,董治宝.库姆塔格沙漠春季近地面风场、温度场特征.中国沙漠,2012,32(2):442~446
    马世威,马玉明,姚洪林等.沙漠学.呼和浩特:内蒙古人民出版社,1998:326~328
    毛东雷.策勒绿洲-沙漠过渡带风沙前沿风沙流结构研究.现代农业科技,2011,15:266~269
    庞营军,雷加强,曾凡江等.新疆维吾尔自治区策勒县绿洲-沙漠过渡带小气候特征.水土保持通报,2011,31(5):240~245
    钱广强,董治宝,罗万银等.巴丹吉林沙漠地表沉积物粒度特征及区域差异.中国沙漠,2011,31(6):1357~1364
    屈建军,廖空太,董光荣等.库姆塔格沙漠羽毛状沙垄形态及其在分类系统中的位置.中国科学:地球科学,2011,41(8):1150~1159
    屈建军,廖空太,俎瑞平等.库姆塔格沙漠羽毛状沙垄形成机理研究.中国沙漠,2007,27(3):349~355
    屈建军,凌裕泉,井哲帆等.包兰铁路沙坡头段风沙运动规律及其与防护体系的相互作用.中国沙漠,2007,27(4):529~533
    屈建军,凌裕泉.金字塔沙丘形成机制的初步观测与研究.中国沙漠,1992,12(3):20~28
    屈建军,张伟民,彭期龙等.论敦煌莫高窟的若干风沙问题.地理学报,1996,51(5):419~425
    屈建军,郑本兴,俞祁浩等.罗布泊东阿奇克谷地雅丹地貌与库姆塔格沙漠形成的关系.中国沙漠,2003,24(3):294~300
    屈建军,左国朝,张克存等.库姆塔格沙漠形成演化与区域新构造运动关系研究.干旱区地理,2005,28(4):424~428
    申彦波,沈志宝,杜明远等.敦煌春季沙尘天气过程中某些参量和影响因子的变化特征.高原气象,2003,22(4):378~384
    宋阳,刘连友,严平等.中国北方5种下垫面对沙尘暴的影响研究.水土保持学报,2005,19:15~18
    孙其诚,王光谦.风沙运动的计算机模拟.科学通报,2001,46(3):254~256
    唐进年,王继和,苏志珠等.库姆塔格沙漠羽毛状沙丘表面沙粒度分布特征.干旱区地理,2008,31(6):918~925
    汪万福,王涛,樊锦诗等.敦煌莫高窟顶尼龙网栅栏防护效应研究.中国沙漠,2005,25(5):640~648
    汪万福,张伟民.敦煌莫高窟窟顶风沙环境综合治理回顾与展望.敦煌研究,2007,5:98~103
    王超,韦志刚,李振朝.敦煌戈壁地区近地层风的变化特征.高原气象,2011,30(2):299~308
    王继和,袁宏波,廖空太等.库姆塔格沙漠植物区系组成及地理成分.中国沙漠,2008,28(5):860~867
    王萍,王燕.民勤荒漠-绿洲过渡带不同下垫面条件的土壤风蚀特征.农业工程学报,2012,28(11):138~145
    王树基.罗布泊洼地及周边新构造运动的初步研究.见:中国科学院新疆分院罗布泊综合科学考察队.罗布泊科学考察与研究.北京:科学出版社,1987:37~51
    王涛.我国绿洲化及其研究的若干问题初探.中国沙漠,2010,30(5):995~998
    王涛.中国沙漠与沙漠化.石家庄:河北科学技术出版社,2003:689~698
    王雪芹,胡永锋,杨东亮等.绿洲-沙漠过渡带骆驼刺群落的防风阻沙作用.干旱区地理,2011,34(6):919~925
    王永胜,杨文斌,李永华等.库姆塔格沙漠羽毛状沙丘剖面特征.中国沙漠,2014,34(2):318~324
    王永兴,张小雷.绿洲地域关系及其演变规律的初步研究.干早区地理,1999,22(l):62~68
    魏怀东,王继和,徐先英等.库姆塔格沙漠各沙丘类型沙粒粒度分析.甘肃科技,2007,23(5):85~88
    吴波,李秀梅,苏志珠等.库姆塔格沙漠地区景观格局与动态研究.中国沙漠,2013,33(1):1~8
    吴晋峰,郭峰,王鑫等.库姆塔格沙漠风沙地貌遗产的旅游开发.中国沙漠,2012,32(4):1163~1168
    吴晋峰,王鑫,郭峰等.库姆塔格沙漠风沙地貌遗产美学价值评价.中国沙漠,2012,32(5):1451~1456
    吴正,凌裕泉.风沙运动的若干规律及防治风沙危害问题的初步研究.见:治沙研究第七号.北京:科学出版社,1965,7~14
    吴正.风沙地貌与治沙工程学.北京:科学出版社,2003:91~361
    夏训诚.库姆塔格沙漠的基本特征//中国科学院新疆分院罗布泊综合科学考察队.罗布泊科学考察与研究.北京:科学出版社,1987:78~94
    徐志伟,鹿化煜,赵存法等.库姆塔格沙漠地表物质组成、来源和风化过程.地理学报,2010,65(1):53~64
    杨红艳,戴晟懋,乐林等.不同分布格局低覆盖度油蒿群丛防风效果.林业科学,2008,44(5):11~16
    杨文斌,赵爱国,王晶莹等.低覆盖度沙蒿群丛的水平配置结构与防风固沙效果研究.中国沙漠,2006,26(1):108~111
    杨文斌,丁国栋,王晶莹等.行带式柠条固沙林防风效果.生态学报,2006,26(12):4106~4112
    曾淑玲,巩崇水,尚可政等.基于实地观测的库姆塔格沙漠风场时空变化特征研究.中国沙漠,2011,31(1):28~33
    张华,李锋瑞,李玉霖等.科尔沁沙地奈曼旗近5年来风况及合成输沙势.中国沙漠,2004,24(5):623~627
    张伟民,李孝泽,屈建军等.金字塔沙丘地表气流场及其动力学过程研究.中国沙漠,1998,18(3):215~220
    张伟民,王涛,薛娴等.敦煌莫高窟风沙危害综合防护体系探讨.中国沙漠,2000,20(4):409~414
    张正偲,董治宝,赵爱国.腾格里沙漠东南部近地层沙尘水平通量和降尘量随高度的变化特征.环境科学研究,2010,23(2):165~169
    张正偲,董治宝,赵爱国等.库姆塔格沙漠风沙活动特征.干旱区地理,2010,33(6):939~946
    张正偲,董治宝,赵爱国等.库姆塔格沙漠昼夜风向变化特征.干旱区资源与环境,2010,24(8):126~130
    赵明,詹科杰,杨自辉等.民勤沙漠~绿洲低空沙尘暴结构特征研究.中国科学:地球科学,2011,41(2):234~242.
    周廷儒.新疆第四纪陆相沉积的主要类型及其和地貌气候发展的关系.地理学报,1963,29:109~129
    朱震达,吴正,刘恕等.中国沙漠概论.北京:科学出版社,1980:79~81
    朱震达.塔克拉玛干沙漠西南地区绿洲附近沙丘的移动规律.地理学报,1964,30:33~47
    朱震达.中国沙漠、沙漠化、荒漠化及其治理对策.北京:中国环境出版社,1999:33~37
    俎瑞平,张克存,屈建军等.塔克拉玛干沙漠风况特征研究.干旱区地理,2005,28(2):167~170

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700