用户名: 密码: 验证码:
高精度导星测量系统细分定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高精度导星测量系统是大口径空间天文望远镜稳像控制系统的重要组成部分,是最精密的角位置测量元件。它利用光学系统超长的焦距极其相关算法获得惯性角位置偏移信息,以图像的方式为精级稳像控制系统提供反馈信息。天文望远镜光学系统焦距确定的情况下,星点细分定位精度直接决定了导星测量系统的惯性角位置测量精度。本文以此为研究背景,主要研究适用于导星测量系统的细分定位技术,从软件算法的角度提高测量精度,实现精级稳像控制系统的闭环控制。
     提出了基于最小二乘支持向量机的系统误差校正算法,解决了CMOS探测器填充因子低,感光区形状影响细分定位精度的问题。分析研究统计学习理论,详细介绍最小二乘支持向量机回归数学模型,以此为理论基础建立星点定位系统误差校正的模型,利用蒙特卡罗数值仿真的方法,用带有高斯径向基函数核的最小二乘支持向量机进行回归分析,得到系统误差与星点质心的理想位置和感光区形状大小的非线性函数关系,并用此函数关系对质心估计值进行后校正。
     提出了基于自适应Kalman滤波的亚像元细分算法,解决了高动态条件下的导星跟踪问题并发挥CMOS探测器可任意开窗的特点。研究了Kalman滤波原理,提出了采用预测开窗和Kalman滤波相结合的星点定位方法。预测开窗方法利用陀螺输出的惯导信息得到星点的粗位置,星点的量测位置由星点预测位置较小的窗口范围内确定,用Kalman滤波器对粗位置滤波,输出高精度的星点位置。由于星点量测位置在小窗口内计算,提出的算法运算速度快,同时Kalman滤波器能有效的抑制随机噪声,也特别适合于导星测量系统这种高星等低信噪比星点图像,能提供高精度的星点位置信息。
     提出了迭代加权质心算法,解决了高星等低信噪比图像的细分定位及像移和像差使光斑椭圆化的问题。运用统计信号处理理论首先对光斑信号建模,推导出光斑中心的最大似然估计公式,由于最大似然估计是一个性能良好的无偏估计子,它构成了的理论基础;给出了采用迭代加权质心法的计算流程,用统计信号处理理论中Cramer-Rao下限推导出当迭代次数无穷大时,星点定位的极限精度。迭代加权质心法在算法收敛时,本质上是用一个高斯权函数对光强加权,增加了图像的信噪比,而且在两个方向可用不同的高斯宽度,适用于椭圆光斑,通过数值仿真实验验证了提出的算法具有良好的性能。
     搭建了导星测量地面实验系统,对提出的算法进行验证。介绍实验系统的组成和工作原理;对实验中相关器件的参数进行分析;分别通过系统误差补偿实验、静态精度测量实验和动态精度测量实验对提出的算法进行实验验证,取得了预期的实验效果。
     实验结果表明,在导星测量系统工作条件下,提出的算法的测量精度相比于传统的细分定位算法有很大提高。研究成果对我国空间天文望远镜高精度导星测量系统的研制具有一定的借鉴意义。
Fine guidance sensor is a high-precision measurement of large-aperture spacetelescope image stabilization important part of the control system, is the mostprecise angular position of the measuring element. It uses the main optical system isextremely long focal length correlation algorithm to obtain highly accurate inertialangular position offset information in a way to fine-level image stabilization controlsystem provides feedback information to achieve fine control level stabilization loopcontrol system. In the case of the primary optical system, the focal length of thetelescope determined, star point positioning accuracy subdivision directly determinethe angular position measurement accuracy inertial measurement guide star system.In this paper as a background, the main research guide star measurement systemsuitable for subdivision positioning technology.
     CMOS detectors for low fill factor, affecting the shape of the photosensitivearea subdivision positioning accuracy is proposed based on least squares supportvector machine algorithm for error correction system. First analysis of statisticallearning theory, detailing least squares support vector machine regressionmathematical model, then as a theoretical basis for the establishment of the starpoint positioning system error correction model, and finally, the numerical simulation using Monte Carlo method, with Gaussian radial basis function kernelleast squares support vector machine regression analysis, the non-linear function ofsystem errors and centroid location and the ideal size and shape of the light-sensitivearea, and use this as a function of the heart after a confrontation estimates corrected.
     Tracking for high dynamic conditions and guide star problems CMOS detectorcan play any windows features, is proposed based on adaptive Kalman filteringsub-pixel subdivision algorithm. First study the Kalman filter theory, the star pointpositioning method is proposed to predict window and using a combination ofKalman filtering. Coarse location prediction method uses the gyro output windowINS information is star point star point in the measurement position predicted by thesmaller star point range to determine the position of the window, and then, usingthe Kalman filter for filtering coarse location, high output Star point accuracy. Asthe star point measurement position calculation in a small window, the proposedfast algorithm, while the Kalman filter can effectively suppress random noise, isparticularly suitable for measuring guide star system of such high magnitude starpoint low SNR image, can provide highly accurate satellite position information.
     Low-noise ratio for high-magnitude image and the image shift and errands likeoval spot problems, the use of statistical signal processing theory first spot signalmodeling to derive maximum likelihood estimation formula spot center, because themaximum likelihood estimate is a good performance unbiased estimator, whichconstitutes the theoretical basis of the iterative centroid algorithm. Then proposed aniterative weighted centroid calculation processes, statistical signal processing theoryto derive the Cramer-Rao lower limit when the number of iterations to infinity, thestar point positioning accuracy limits. When iterative weighted centroid algorithmconverges, Essentially using a Gaussian weight function weighted light intensity,increasing the signal to noise ratio of the image, and can be used in two differentGaussian width direction for oval spot, and finally, through numerical simulationresults show that the proposed algorithm has good performance.
     Build a ground test measuring guide star system, the proposed algorithm for authentication. First introduced the composition and working principle experimentsystem; then experiment parameters related devices for analysis; finally werecompensated by the system error experiments, static and dynamic accuracy of themeasurement accuracy of the experimental measurement experiments conductedexperiments to verify the proposed algorithm achieved the expected experimentalresults.
     Experimental results show that, under operating conditions guide starmeasurement system, the measurement accuracy of the proposed method comparedto the conventional positioning subdivision algorithm greatly improved. Researchresults have certain significance for the development of China's space telescopeguide star precision measurement system.
引文
[1]苏定强,崔向群.主动光学—新一代大望远镜的关键技术[J].天文学进展,1999,17(1):1-14.
    [2] Davis L P, Wilson J F, Jewell R E, et al. Hubble space telescope reaction wheelassembly vibration isolation system[J]. NASA Marshall Space Flight Center,Huntsville, Alabama,1986,9.
    [3] Redding D C, Basinger S A, Lowman A E, et al. Wavefront sensing and controlfor a Next-Generation Space Telescope[C]//Astronomical Telescopes&Instrumentation. International Society for Optics and Photonics,1998:758-772.
    [4] Beals G A, Crum R C, Dougherty H J, et al. Hubble Space Telescope precisionpointing control system[J]. Journal of Guidance, Control, and Dynamics,1988,11(2):119-123.
    [5] Sabelhaus P A, Decker J E. An overview of the James Webb space telescope(JWST) project[C]//Astronomical Telescopes and Instrumentation. InternationalSociety for Optics and Photonics,2004:550-563.
    [6] Acton D S, Atcheson P D, Cermak M, et al. James Webb Space Telescopewavefront sensing and control algorithms[C]//Astronomical Telescopes andInstrumentation. International Society for Optics and Photonics,2004:887-896.
    [7] Nelan E P, Lupie O L, McArthur B, et al. Fine guidance sensors aboard theHubble Space Telescope: the scientific capabilities of theseinterferometers[C]//Astronomical Telescopes&Instrumentation. InternationalSociety for Optics and Photonics,1998:237-247.
    [8] Rowlands N, Vila M B, Evans C, et al. JWST fine guidance sensor: guidingperformance analysis[C]//SPIE Astronomical Telescopes+Instrumentation.International Society for Optics and Photonics,2008:701036-701036-12.
    [9] Cole M, Balch K, Green D, et al. Hubble Space Telescope[M]. Enslow,1999.
    [10]Lallo M D. Experience with the Hubble Space Telescope:20years of anarchetype[J]. Optical Engineering,2012,51(1):011011-1-011011-18.
    [11]Gonzalez R C, Woods R E. Digital image processing[J].2002.
    [12]Liebe C C. Accuracy performance of star trackers-a tutorial[J]. Aerospace andElectronic Systems, IEEE Transactions on,2002,38(2):587-599.
    [13]GOSS W, SALOMON P. Amicroprocessor-controlled CCD star tracker[J].1976.
    [14]Van B R, Swanson D, Boyle P. Flight performance of the spitzer space telescopeAST-301autonomous star tracker[C]//28th Annual AAS Rocky MountainGuidance and Control Conference.2005.
    [15]李玉峰,郝志航.星点图像超精度亚像元细分定位算法的研究[J].光学技术,2005,31(5):666-671.
    [16]Li H, Song H, Rao C, et al. Accuracy analysis of centroid calculated by amodified center detection algorithm for Shack–Hartmann wavefront sensor[J].Optics Communications,2008,281(4):750-755.
    [17]Irwan R, Lane R G. Analysis of optimal centroid estimation applied toShack-Hartmann sensing[J]. Applied optics,1999,38(32):6737-6743.
    [18]Thomas S, Fusco T, Tokovinin A, et al. Comparison of centroid computationalgorithms in a Shack–Hartmann sensor[J]. Monthly Notices of the RoyalAstronomical Society,2006,371(1):323-336.
    [19]Berglund A J, McMahon M D, McClelland J J, et al. Fast, bias-free algorithm fortracking single particles with variable size and shape[J]. Optics express,2008,16(18):14064-14075.
    [20]Nobach H, Damaschke N, Tropea C. High-precision sub-pixel interpolation inparticle image velocimetry image processing[J]. Experiments in Fluids,2005,39(2):299-304.
    [21]Bar-Shalom Y, Shertukde H M, Pattipati K R. Precision target tracking for smallextended objects[C]//1989Orlando Symposium. International Society for Opticsand Photonics,1989:55-63.
    [22]Grossman S B, Emmons R B. Performance analysis and size optimization of focalplanes for point-source tracking algorithm applications[J]. Optical Engineering,1984,23(2):232167-232167.
    [23]Alexander B F, Ng K C. Elimination of systematic error in subpixel accuracycentroid estimation [J]. Optical Engineering,1991,30(9):1320-1331.
    [24]Fisher R B, Naidu D K. A comparison of algorithms for subpixel peakdetection[M]//Image Technology. Springer Berlin Heidelberg,1996:385-404.
    [25]周锐,房建成.图像测量中光斑尺寸优化及性能分析[J].仪器仪表学报,2000,21(2):177-179.
    [26]Van Altena W F, Auer L H. Digital image centering, I[M]//Image ProcessingTechniques in Astronomy. Springer Netherlands,1975:411-418.
    [27]Chiu L T G. Astrometric techniques with a PDS microdensitometer[J]. TheAstronomical Journal,1977,82:842-848.
    [28]Auer L H, Van Altena W F. Digital image centering. II[J]. The AstronomicalJournal,1978,83:531-537.
    [29]Stone R C. A comparison of digital centering algorithms[J]. The AstronomicalJournal,1989,97:1227-1237.
    [30]Saleh B E A. Estimation of the location of an optical object with photodetectorslimited by quantum noise[J]. Applied optics,1974,13(8):1824-1827.
    [31]Hagen N, Kupinski M, Dereniak E L. Gaussian profile estimation in onedimension[J]. Applied optics,2007,46(22):5374-5383.
    [32]Chun-Lin L. Digital image centering with the maximum likelihood method[J].Astronomy and astrophysics,1993,275(1):349-352.
    [33]Salomon P M. Charge-coupled device (CCD) trackers for high-accuracy guidanceapplications[J]. Optical Engineering,1981,20(1):201135-201135.
    [34]Shalom E, Alexander J W, Stanton R H. Acquisition and track algorithms for theASTROS star tracker[C]//Guidance and Control1985.1985,1:375-398.
    [35]McAloon K J. Design considerations for imaging charge-coupled device (ICCD)star sensors[C]//1981Los Angeles Technical Symposium. International Societyfor Optics and Photonics,1981:186-202.
    [36]Stanton R H, Alexander J W, Dennison E W, et al. ASTROS: A sub-arcsec CCDstar tracker[C]//28th Annual Technical Symposium. International Society forOptics and Photonics,1984:256-282.
    [37]Shalom E, Alexander J W, Stanton R H. Acquisition and track algorithms for theASTROS star tracker[C]//Guidance and Control1985.1985,1:375-398.
    [38]Stanton R H, Alexander J W, Dennison E W, et al. Optical tracking usingcharge-coupled devices[J]. Optical Engineering,1987,26(9):269930-269930.
    [39]Seitz P. Optical Superresolution Using Solid-State Cameras And Digita; SignalProcessing[J]. Optical Engineering,1988,27(7):277535-277535.
    [40]Fillard J P. Sub-pixel accuracy location estimation from digital signals[J]. OpticalEngineering,1992,31(11):2465-2471.
    [41]Fillard J P, Lussert J M, Castagné M, et al. Computer simulation ofsuper-resolution point source image detection[J]. Optical Engineering,1993,32(11):2936-2944.
    [42]Rufino G, Accardo D. Enhancement of the centroiding algorithm for star trackermeasure refinement[J]. ActaAstronautica,2003,53(2):135-147.
    [43]Hancock B R, Stirbl R C, Cunningham T J, et al. CMOS active pixel sensorspecific performance effects on star tracker/imager positionaccuracy[C]//Symposium on Integrated Optics. International Society for Opticsand Photonics,2001:43-53.
    [44]Abdou I E. Effect of signal truncation on centroid location error estimation[J].Optical Engineering,1996,35(4):1221-1222.
    [45]张辉,袁家虎,刘恩海. CCD噪声对星敏感器星点定位精度的影响[J].红外与激光工程,2006,35(5).
    [46]张辉,钟建勇,袁家虎,等.电路噪声对星敏感器星点定位精度的影响[J].光学精密工程,2006,14(6):1052.
    [47]Winick K A. Cramer-Rao lower bounds on the performance ofcharge-coupled-device optical position estimators[J]. JOSA A,1986,3(11):1809-1815.
    [48]Chen H, Rao C. Accuracy analysis on centroid estimation algorithm limited byphoton noise for point object[J]. Optics Communications,2009,282(8):1526-1530.
    [49]冯新星,张丽艳,叶南,等.二维高斯分布光斑中心快速提取算法研究[J].光学学报,2012,32(5):70-77.
    [50]杨勇,王琰蕾,李明,等.高精度数字图像相关测量系统及其技术研究[J].光学学报,2006,26(2):197-201.
    [51]李朋,高立民,吴易明,等.加权质心法亚像元定位误差研究[J].电子测量技术,2011,34(6):43-46.
    [52]王晓东,郝志航.大视场高精度星敏感器技术研究[D].北京:中国科学院研究生院,2003.
    [53]李杰. APS星敏感器关键技术的研究[D].北京:中国科学院研究生院,,2005.
    [54]魏新国,张广军,江洁.星敏感器中星图图像的星体细分定位方法研究[J].北京航空航天大学学报,2004,29(9):812-815.
    [55]谢伦治,卞洪林,王振华.面阵探测器的像点亚像素定位研究[J].光学与光电技术,2003,1(2):51-56.
    [56]Nicolle M, Fusco T, Rousset G, et al. Improvement of Shack-Hartmannwave-front sensor measurement for extreme adaptive optics[J]. Optics letters,2004,29(23):2743-2745.
    [57]Prieto P M, Vargas-Martin F, Goelz S, et al. Analysis of the performance of theHartmann–Shack sensor in the human eye[J]. JOSAA,2000,17(8):1388-1398.
    [58]赵丹培.频域下的目标跟踪方法及其在DSP中的实现[D].中国科学院研究生院(长春光学精密机械与物理研究所),2006.
    [59]刘智. CMOS图像传感器在星敏感器中应用研究[D].长春:中国科学院长春光学精密机械与物理研究所,2004.
    [60]敬辉,达尊,吉祥.物理光学教程[M].北京理工大学出版社,2005.
    [61]刘海波,谭吉春,沈本剑,等.像差对星敏感器星点定位精度的影响[J].光学技术,2009(3):471-473.
    [62]贾辉,杨建坤,李修建,等.星敏感器高精度星点提取系统误差分析及补偿方法研究[J].中国科学:技术科学,2011,41(1):69-76.
    [63]杨君,张涛,宋靖雁,等.星点质心亚像元定位的高精度误差补偿法[J].光学精密工程,2010,18(4):1002-1010.
    [64]李航.统计学习方法[M].清华大学出版社,2012.
    [65]Vapnik V. The nature of statistical learning theory[M]. springer,2000.
    [66]Suykens J AK, Vandewalle J. Least squares support vector machine classifiers[J].Neural processing letters,1999,9(3):293-300.
    [67]刘南南,徐抒岩,胡君,等.基于非下采样Contourlet变换和映射最小二乘支持向量机的高精度星点定位方法[J].光学学报,2013(5):113-122.
    [68]Welch G, Bishop G. An introduction to the Kalman filter[J].1995.
    [69]申逸. Kalman滤波技术在目标跟踪中的应用研究[D].国防科学技术大学,2006.
    [70]刘南南,徐抒岩,曹小涛,等. Kalman滤波算法在高精度星点定位中的应用[J].光学学报,2013,33(11):1115001.
    [71]最优状态估计与系统辨识[M].西北工业大学出版社,2004.
    [72]Kay S M. Fundamentals of statistical signal processing: detection theory[J].1998.
    [73]Poor H V. An introduction to signal detection and estimation[M]. Springer,1994.
    [74]Van Trees H L. Detection, estimation, and modulation theory[M]. John Wiley&Sons,2004.
    [75]贾辉.高精度星敏感器星点提取与星图识别研究[D].国防科学技术大学,2010.
    [76]龚德铸,王艳宝,卢欣.基于星敏感器的CCD47—20航天应用[J].控制工程(北京),2007(6):42-50.
    [77]Kawano H, Shimoji H, Yoshikawa S, et al. Suppression of sun interference in thestar sensor baffling stray light by total internal reflection[C]//Optical SystemsDesign2005. International Society for Optics and Photonics,2005:59621R-59621R-10.
    [78]van Bezooijen R W H. SIRTF autonomous star tracker[C]//AstronomicalTelescopes and Instrumentation. International Society for Optics and Photonics,2003:108-121.
    [79]De Vries W H, Olivier S S, Asztalos S J, et al. Image ellipticity from atmosphericaberrations[J]. TheAstrophysical Journal,2007,662(1):744.
    [80]李展,彭青玉,韩国强. CCD图像数字定心算法的比较[J].天文学报,2009(3):340-348.
    [81]Anderson J, King I R. Toward High‐Precision Astrometry with WFPC2. I.Deriving an Accurate Point‐Spread Function[J]. Publications of theAstronomical Society of the Pacific,2000,112(776):1360-1382.
    [82]Lindegren L. High-accuracy positioning: astrometry[M]//Observing Photons inSpace. Springer New York,2013:299-311.
    [83]Quine B M, Tarasyuk V, Mebrahtu H, et al. Determining star-image location: Anew sub-pixel interpolation technique to process image centroids[J]. ComputerPhysics Communications,2007,177(9):700-706.
    [84]Li H, Song H, Rao C, et al. Accuracy analysis of centroid calculated by amodified center detection algorithm for Shack–Hartmann wavefront sensor[J].Optics Communications,2008,281(4):750-755.
    [85]Roddier, Fran ois.Adaptive optics in astronomy[M]. Cambridge university press,1999.
    [86]Zhang H, Sang H, Shen X. Adouble-FOV star sensor for high dynamic spacecraftnavigation[C]//Sixth International Symposium on Multispectral Image Processingand Pattern Recognition. International Society for Optics and Photonics,2009:74940X-74940X-7.
    [87]Chmielowski M, Klein L. A high-precision, real-time position-locating algorithmfor CCD-based sun and star trackers[J]. Publications of the Astronomical Societyof the Pacific,1993:114-116.
    [88]Tao Z, Jing-Yan S, Hai-Long Z. A New sub-pixel subdivision location algorithmfor star image[C]//Image and Signal Processing,2009. CISP'09.2nd InternationalCongress on. IEEE,2009:1-5.
    [89]Denq T C, Bergen T L. Accuracy of position estimation by centroid[C]//Societyof Photo-Optical Instrumentation Engineers (SPIE) Conference Series.1988,848:141-150.
    [90]Zhang W, Quan W, Guo L. Blurred star image processing for star sensors underdynamic conditions[J]. Sensors,2012,12(5):6712-6726.
    [91]Wurtz R, Olivier S, Riot V, et al. Centroid precision as a function of total countsin a windowed CMOS image of a point source[C]//SPIE AstronomicalTelescopes+Instrumentation. International Society for Optics and Photonics,2010:774228-774228-7.
    [92]Barrett H H, Dainty C, Lara D. Maximum-likelihood methods in wavefrontsensing: stochastic models and likelihood functions[J]. JOSA A,2007,24(2):391-414.
    [93]Arines J, Ares J. Minimum variance centroid thresholding[J]. Optics letters,2002,27(7):497-499.
    [94]Zheng S, Tian Y L, Tian J, et al. Facet-based star acquisition method[J]. OpticalEngineering,2004,43(11):2796-2805.
    [95]Salomon P M, Glavich T A. Image signal processing in sub-pixel accuracy startrackers[C]//24th Annual Technical Symposium. International Society for Opticsand Photonics,1980:64-74.
    [96]Samaan M A, Mortari D, Pollock T, et al. Predictive centroiding for single andmultiple FOVs star trackers[J]. Advances in the Astronautical Sciences,2002,112:59-71.
    [97]Mortari D, Romoli A. StarNav III: a three fields of view startracker[C]//Aerospace Conference Proceedings,2002. IEEE. IEEE,2002,1:1-57.
    [98]熊刚,丁天怀,王鹏.应用属性距离加权平均滤波提高CCD光斑的亚像素定位精度[J].光学精密工程,2012,20(5):1102-1109.
    [99]Hagen N, Kupinski M, Dereniak E L. Gaussian profile estimation in onedimension[J]. Applied optics,2007,46(22):5374-5383.
    [100]Hagen N, Dereniak E L. Gaussian profile estimation in two dimensions[J].Applied optics,2008,47(36):6842-6851.
    [101]刘智,翟林培,郝志航.互补金属氧化物半导体图像传感器亚像元细分精度实验研究[J].中国激光,2007,34(1):118-124.
    [102]孙婷,邢飞,尤政.高精度星敏感器光学系统误差分析[J].光学学报,2013(3):253-261.
    [103]王海涌,周文睿,林浩宇,等.静态像点高斯灰度扩散模型参数估计方法[J].光学学报,2012,32(3):267-272.
    [104]刘海波,谭吉春,郝云彩,等.环境温度对星敏感器测量精度的影响[J].光电工程,2009,35(12):40-44.
    [105]钟红军,杨孟飞,卢欣.星敏感器标定方法研究[J].光学学报,2010(5):1343-1348.
    [106]张辉,田宏,袁家虎,等.星敏感器参数标定及误差补偿[J].光电工程,2006,32(9):1-4.
    [107]贺鹏举,梁斌,张涛,等.大视场星敏感器标定技术研究[J].光学学报,2011,31(10):192-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700