用户名: 密码: 验证码:
几种植物叶片气孔导度与植物激素对大气湿度的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物叶片的气孔在调节气体交换方面具有重要作用,他们控制着水分的流通和CO2的摄入。光照、温度、水分供应、大气CO2浓度以及植物激素等环境因子影响了气孔的行为,包括气孔的密度、气孔孔径和气孔开闭等。而这些因素进而影响了植物叶片对气体交换的调节能力。植物不仅通过进化具有能够适应全球气候变化的策略和机制,而且植物也在影响和推动着全球气候变化。
     植物叶片气孔行为是植物生理生态研究的热点问题,自上世纪七十年代以来,已有不少学者提出了叶片气孔导度对环境因子响应的气孔导度模型。发展至今,描述气孔导度的数学模型主要分为两大类。一类是经验模型,另一类模型是优化气孔导度模型。目前的研究结果普遍认为,叶片气孔导度与大气湿度或大气饱和蒸汽压差之间的关系主要表现为,当大气相对湿度下降或大气蒸汽压差升高时气孔导度逐渐降低,并且这种相关性呈现单一的变化趋势。气孔导度的模型虽然不断的被提出或修改,模型中叶片气孔导度(gs)与大气相对湿度(RH)/水汽压亏缺(VPD)之间的本质关系仍然呈单一的正相关/负相关。然而,近期的一些研究结果却发现,现在普遍流行的气孔导度模型,如Jarvis模型、BWB (Ball-Woodrow-Berry)模型和Leuning模型的模拟结果与实际测定结果均存在较大偏差。不少学者发现许多植物(花旗松和法国冬青等)的叶片气孔导度对VPD的响应表现出一个特别的响应特征,即单峰曲线的响应特征。
     除了环境因子对叶片气孔的功能产生影响,植物的内源激素也参与了叶片气孔对VPD的响应,例如脱落酸、赤霉素和吲哚乙酸等。由于叶片中脱落酸能够影响气孔的开闭,因此作为叶片气孔对环境因子(特别是逆境)响应的内在因素,脱落酸是目前研究植物叶片气孔对环境因子响应的热点。对于控制气孔功能,吲哚乙酸和赤霉素与脱落酸具有拮抗作用。
     本文研究了山东省济南市及新疆维吾尔自治区的乌鲁木齐市和吐鲁番市的多种落叶阔叶树种(白蜡树,新疆杨,毛白杨,胡杨,山樱花,日本晚樱,美洲黑杨I-107,欧美杨I-69,白玉兰,木瓜海棠,银杏,二球悬铃木,红叶樱桃李和银白杨)的叶片气体交换对水汽压亏缺的响应特征。比较了不同气候区在2010年8月份的四种植物(白蜡树,新疆杨,毛白杨,胡杨)的叶片气体交换对水汽压亏缺的响应特征,以及济南地区3种植物(白蜡树,新疆杨,毛白杨)在2010年三个季节(初夏、仲夏和晚秋)的气体交换对水汽压亏缺的响应特征,同时测定了4种植物(白蜡树,新疆杨,毛白杨,胡杨)的3种植物酸性激素(GA3, IAA和ABA),主要研究结果如下:
     1)对三个不同的气候区(山东省济南市,典型暖温带湿润/半湿润气候;新疆维吾尔自治区乌鲁木齐市,温带大陆荒漠干旱气候;新疆维吾尔自治区吐鲁番市,极端荒漠气候)的四种植物(白蜡树、新疆杨、毛白杨和胡杨)叶片气孔导度对VPD的响应研究发现:随着VPD的升高,植物叶片的气孔导度先升高后降低;在VPD的某个范围内,气孔导度达到一个最大值(gs-max);四种植物叶片气孔导度对VPD的响应模式在三个气候区均表现出了相似的响应特征。叶片气孔导度对VPD的响应曲线可以使用对数正态分布模型来描述(gs=a·exp(-0.5(ln(D/c)/b)2), D=VPD, R2=0.845-0.996)。植物叶片气孔导度出现最大值时的VPD/RH (gs-max-VPD/RH)可以通过模型的拟合结果计算得出,结果显示在温度相差不大的月份(8月),测定植物叶片气孔导度出现最大值的RH值(gs-max-RH)与所处生境的植物生长期(4月-10月)的平均相对湿度相关(R2>0.71):即在大气平均湿度高的地区,植物在高RH范围内出现gs-max;反之,在大气平均相对湿度低的地区,植物在低RH范围出现gs-max。根据气孔的最优化理论,对应于最大气孔导度的VPD/RH可称之为优化的VPD/RH。对植物在一定的VPD范围内测定的气孔导度数据进行均方根误差(Root Mean Square Error, RMSE, σ)的检验,σ的大小代表了叶片气孔导度对VPD响应敏感度的强弱。对四种植物叶片的三种内源激素(赤霉素,GA3;脱落酸,ABA;吲哚-3-乙酸,IAA)进行定量分析后可知,植物叶片气孔导度对VPD变化的敏感度与ABA浓度有关:ABA浓度越高,gs对VPD响应越敏感;ABA浓度越低,gs对VPD的响应越不敏感。这说明叶片的ABA水平可以作为气孔对VPD响应敏感度的指示之一。
     在VPD变化的过程中,济南地区的三种植物净光合速率(An)变化不大,说明此地区的三种植物A。对VPD响应不敏感。乌鲁木齐和吐鲁番市的3种植物的A。则随着VPD的升高而逐渐增大。三个地区的四种植物,其蒸腾速率(E)则均随着VPD的增加而逐渐增大。吐鲁番市植物的An和E增加的最为明显,这与此地植物的高GA3和IAA的含量以及高的GA3/ABA和IAA/ABA有关。四种植物的水分利用效率在三个不同气候区没有出现显著差异。对比在三个地区均有自然生长的白蜡树的测定结果,说明白蜡树在极端干旱的气候条件下能够表现出较好的气孔控制能力。
     同时,两种代表性的气孔导度模型对实验数据进行了模拟,并与实测值进行了比较。结果发现目前流行的经验模型(Leuning气孔导度模型)和优化气孔导度模型均无法较好的拟合本实验的测定结果。
     2)对济南地区3种植物(白蜡、新疆杨、毛白杨)进行的叶片气孔导度对VPD响应的季节变化(2010年6月初夏、8月仲夏、10月晚秋)的研究结果发现,随着VPD的逐渐增大,植物叶片气孔导度先升高,达到一个最大值(gs-max)后,再降低。三种植物在三个季节均表现出了这种气孔导度对VPD的响应特征。叶片气孔导度对VPD的响应,可用对数正态分布模型来描述(gs=a·exp(-0.5(ln(D/c)/b)2), D=VPD,R2=0.838-0.995了。三种植物在三个季节均表现出了较好的模拟效果,说明此三种植物的生长均存在一个优化的VPD/RH范围。这个优化值,可以通过对数正态分布模型的拟合结果计算得出。三个月份多年平均温度差异明显,降水量均较充足,各月多年平均空气相对湿度均高于55%。在大气相对湿度不是植物生长的限制性因子时,监测数据显示植物叶片气孔导度最大值所对应的RH (gs-max-RH)是与监测月份的平均温度有关(R2>0.81):即在平均温度高的月份,植物在高RH范围内出现gs-max;在平均温度低的月份,植物在低RH范围内出现gs-max。
     本实验使用经验模型(Leuning气孔导度模型)和优化气孔导度模型对实验数据进行了模拟,结果发现模拟值与实测值偏差较大。因此这两类模型依然不能很好的解释本实验的测定结果。
     对三种植物叶片的三种内源激素(GA3、ABA、IAA)进行定量分析后可知,不同季节的植物叶片气孔导度对VPD响应的敏感度与ABA浓度有关:ABA浓度越高,gs对VPD响应越敏感;ABA浓度越低,gs对VPD的响应越不敏感。敏感度的检验依然使用RMSE。
     随着VPD的逐渐升高,三种植物在三个月份的净光合速率的变化特征均未受到VPD的影响。这说明在降水充足地区生长的植物,其光合速率对VPD变化不敏感。但三种植物的蒸腾速率均随着VPD的升高而逐渐升高。水分利用效率(WUE)的变化特征与不同气候区植物的研究特征一致:随着VPD的逐渐升高,WUE逐渐下降。
     十月份时白蜡叶片叶绿素含量的显著降低,说明叶片出现了衰老。这个结果很好的解释了白蜡树在十月份时叶片气孔导度最大值所对应的RH显著降低的结果。
     3)本实验同时对济南地区10种落叶乔木的叶片气体交换对VPD的响应进行了研究(2009-2013年4-5月)。结果显示,10种植物叶片的气孔导度对VPD的响应特征,均符合单峰型的特征曲线,即随着VPD的变化,气孔导度先升高后降低。使用对数正态分布模型对10种植物叶片气孔导度对VPD的响应曲线进行模拟(gs=a·exp(-0.5(ln(D/c)/b)2), D=VPD, R2=0.885-0.987),得到了很好的拟合结果。这不仅证明我们对不同气候区植物的结论的正确性,也说明季节变化中3种植物的实验结果是正确的。
     结合上述各项结论可知,植物的生长存在一个优化的大气相对湿度(或水汽压亏缺),当大气环境中大气相对湿度(或水汽压亏缺)高于或低于此优化湿度(或水汽压亏缺)时,气孔导度即减小。多种植物的研究结果显示,植物叶片气孔导度对VPD的这种响应特征具有普遍性。同时,本研究发现当植物生长的限制性环境因子为大气相对湿度,而不是温度时(在适宜的温度调节下),植物叶片出现最大气孔导度所对应的RH值(gs-max-RH)与所处生境的植物生长期(四月-十月)的平均相对湿度相关(R2>0.71);当大气湿度适宜,温度成为植物生长的限制性因子时,植物叶片出现最大气孔导度所对应的RH值(gs-max-RH)与监测月份的平均温度有关(R2>0.81)。同时,植物激素很好的调节了叶片的气孔功能。
     气孔导度模型被经常用来模拟植物的气孔对环境因子的响应,预测全球植物的产量以及了解植物气孔响应对全球气候变化的影响。本文的研究结果显示,气孔导度对VPD/RH的响应使用目前普遍流行的气孔导度模型来模拟仍然是不全面的。并且使用这些模型进行全球植物产量的预测及研究植物对全球气候变化影响的模拟结果可能也是不准确的。因此,我们可能需要一个更加完善的、能够融合本研究结果的气孔导度模型。同时,植物叶片气孔导度对VPD响应的这种单峰特征曲线的响应机理亦是进一步研究的重点。
Stomata of leaves play a fundamental role in both acquiring carbon and limiting water loss. Stomatal conductance (gs) is influenced by light, temperature, water supply and the stomatal opening of closing is regulated by phytohormones. Plants have developed advanced strategies and mechanisms through evolution to adapt to local and global environmental changes by compromising photosynthesis and transpiration, and they also affect and promote local and global changes.
     Stomatal behavior of plant is a hot topic of research on plant physiological ecology. A number of models on stomatal conductance response to different environmental factors have been developed since1970's. The main stomatal models until now could be divided into two types. One is empirical model, The other type of stomatal model is based on the theory of optimal stomatal behavior. The prevailing pattern regarding the relationship between gs and atmospheric water content is that increasing vapor pressure deficit (VPD) or decreasing relative humidity (RH) lead to reduction of gs. Although different stomatal conductance models are proposed or modified continuously, the essential relationship between gs and VPD (or RH) does not change. Some of present stomatal conductance models had shown poor function compared with measured data. For example, Jarvis' model and Ball-Woodrow-Berry (BWB) model poorly predated values of gs under high RH condition,and Leuning model may not be appropriate for measured data analysis and ecosystem simulation applications in arid and semiarid zones by comparing the predicted data with measured data of three major species in a semi-arid site. Pseudotsuga menziesii and Selaginella bryopteris et al.showed one top lines'pattern of gs to VPD. All these findings showed diverse and different response patterns of gs to VPD.
     The response of stomata to environmental and physiological factors is complex. The phytohormone is the important factor to affect stomatal regulation, like abscisic acid (ABA), indole-3-acetic acid (IAA) and Gibberellins (GAS). Increased level of ABA when plant is under stress promotes stomatal closure and/or inhibits stomata opening in order to avoid excess water loss. The other phytohormone, including IAA and GAs are known to antagonize the effects of ABA on stomatal behavior.
     In this study, the responsive patterns of stomatal conductance to air humidity in three contrasting sites in China:Jinan (N36°35'-36°40', E116°54'-117°02'), Shandong Province; Turpan (N41°12'-43°40',E87°16'-91°55') and Urumqi (N42°45'-45°00', E86°37'-88°58') in Xinjiang Uygur Autonomous Region. More than10temperate tree species were measured, including(Fraxinus chinensis Roxb., Populus alba L. var. pyramidalis Bge., Populus tomentosa Carr., Populus euphratica, Cerasus serrulata (Lindl.) G. Don ex London, Prunus serrulata var. lannesiana (Carr.) Rehd., Populus x euramericana 'Neva', Populus deltoides, Magnolia denudata Desr., Chaenomeles cathayensis (Hemsl.) Schneid., Ginkgo biloba Linn., Platanus x acerifolia(Ait.) Willd., Prunus cerasifera Ehrhar f. atropurpurea (Jacq.) Rehd, Populus alba Linn.). Four tree species (F chinensis, P. alba var., P. tomentosa, P. euphratica) were measured to research the response patterns of stomatal conductance to VPD under very different climate conditions (Jinan, Urumqi, Trupan). Three tree species (F. chinensis, P. alba var., P. tomentosa) were measured to research the response patterns of stomatal conductance to VPD in different seasons (early summer, midsummer, late autumn). Meanwhile, three kinds of phytohormones (abscisic acid, ABA; gibberellic acid, GA3; indole-3-acetic acid, IAA) in leaves of four tree specie (F. chinensis, P. alba var., P. tomentosa, P. euphratica) in three sites were also measured with high performance liquid chromatography. In addition, the two stomatal models (Leuning model and the optimal stomatal model) were tested and compared between the predicted and measured stomatal conductance values in the leaves of the trees.
     1) Response of stomatal conductance to VPD in four species of trees (F. chinensis, P. alba var., P. tomentosa, P. euphratica) in three different climate zones (Jinan with typical warm humid/semi-humid climate, Urumqi with temperate continental arid climate, Turpan with extreme arid desert climate) were measured. The results showed that:the response of gs to a gradient, of increasing VPD in four tree species in three sites performed peak curves that could be fitted with a Log Normal Model (gs=a·exp(-0.5(ln(D/c)/b)2), D=VPD, R2=0.845-0.996) using measured data in this study. The VPD/RH values corresponding to the maximum of gs (gs-max-VPD/RH) can be calculated using the fitting models for four tree species in three sites. We found that the gs-max-VPD correlated negatively with air relative humidity in three sites during the plant growth season (April-October,2010).
     The test of the sensitivity of gs to VPD in four tree species in three different climate zones was carried out using Root Mean Square Error (RMSE, σ) of stomatal conductance along the gradient of increasing VPD. Some measured data was chosen to test RMSE of stomatal conductance within the same certain range of VPD in four trees in three sites. The larger a related to the higher sensitivity of gs to VPD. The test demonstrated that the sensitivity in response of gs to VPD showed positively correlation with the concentration of ABA in four trees in three sites, which implied that the ABA level in leaves could be used as one of indicators of sensitivity of stomatal response to VPD.
     Net photosynthesis rate (An) did not show a significant variation with increasing VPD in four tree species in Jinan, but steadily increased with increasing VPD in Xinjiang. Transpiration rates (E) in four trees remained constantly increasing following an increase in VPD in three sites. P. alba var. in Turpan has the higher An, E and gs than F. chinensis in Trupan and the four trees in the other two sites. The water use efficiency (WUE) in four trees did not show obvious difference under very different climatic conditions, especially F. chinensis could perform good control ability of the stomatal regulation even under extremely arid climate zone.
     The prevailing empirical model of stomatal conductance to VPD (Leuning stomatal model) and optimal stomatal behavior model could not properly simulate our measurement data with F-test.
     2) The role of vapor pressure deficit (VPD) in regulating leaf gas exchange of three species of trees (Fraxinus chinensis Roxb., Populus alba L. var. pyramidalis Bge. and Populus tomentosa Carr.) was investigated in Jinan, China. Experiments were performed in early summer (June), midsummer (August) and late autumn (October). Three kinds of phytohormones (GA3, IAA, ABA) in the leaves of the three trees were determined with measured gas exchange. The responses of stomatal conductance (gs) to a gradient of increasing VPD in the leaves of the three trees exhibited a peak curve under different seasons, which differed from the prevailing response pattern of gs to VPD in mostly literature. The peak curves could be fitted with a Log Normal Model (gs=a·exp(-0.5(ln(D/c)/b)2), D=VPD, R2=0.838-0.995). The VPD/RH values of corresponding maximum of gs (gs-max-VPD/RH) could be calculated by fitted models of peak curves of gs to VPD. The RH values, corresponding the gs-max, positively correlated with the mean monthly temperature (R2>0.81) in2010.
     Two typical stomatal models (Leuning stomatal model and the optimal stomatal model), were used to estimate gs values, and they were poorly performed the prediction of gs in three trees with F-test.
     The test of the sensitivity of gs to VPD in three tree species was carried out using RMSE, too. Some measured data was chosen to test RMSE of stomatal conductance within the same certain range of VPD in three trees in three seasons. The larger σ related to the higher sensitivity of gs to VPD. The test demonstrated that the concentration of ABA was positively correlated to sensitivity in response of stomatal conductance to VPD in leaves of species of trees under different seasons, which also implied that the ABA level in leaves could be used as one of indicators of sensitivity of stomatal response to VPD.
     Assimilation continued undiminished in spite of the declined gs at low and high VPD, which demonstrated An was not sensitive to VPD when they growed up in plentiful rainfall area. Transpiration rates (E) in three trees remained constantly increasing following an increase in VPD in three seasons, and the water use efficiency did not show obvious difference under different seasons. These results were same to the result of the first part.
     However, An of F.chinensis in October decreased sharply. This founding was associated with the senescence in plant leaves. The Chlorophyll concentration of F.chinensis decreased significantly in October, and it's lower than the other trees'.
     3) Ten decideous tree species (C. serrulata, P. lannesiana,1-69,1-107, M. denudata, C. cathayensis, G. biloba, P. acerifolia, P. cerasifera, P. alba) were measured to study the response of gs to vapor pressure deficit in April to May,2009-2013. The result showed that the responses of gs to increasing VPD in leaves of ten trees also exhibited a peak curve, which could be fitted with a Log Normal Model (gs=a-exp(-0.5(ln(D/c)/b)2), D=VPD, R2=0.885-0.987). These results proved our findings about the one peak curve in the response of gs to VPD in different climate zones and in different seasons.
     Taken together, our results reveal that there is an optimal RH/VPD to plant. The stomatal conductance of leaves will decrease when RH/VPD is higher or lower than the optimal RH/VPD. The same results of more than ten tree species in the response of gs to VPD we gotted here, illustrated that this response characteristic of stomatal conductance to RH/VPD could have the universality to plant. However, this result did not conform to the current popular stomatal model of response of gs to VPD. Stomatal conductance models were widely used to simulate the response of gs to environmental factors in trees, predict the vegetation growth of the world terrestrial ecosystem, and predict the impaction on global climatic change. However, this result of the response of gs to VPD showed that the current popular models of stomatal conductance could not predict the global terrestrial vegetation productivity perfectly. The prediction of response of gs to VPD might be incomplete with the two current popular models; the prediction of the plant production in the world and global climatic change might also be inaccurate with current popular model. Therefore, a more perfect gs model which could be able to integrate this founding was needed. Meanwhile, the stomatal response mechanism of one peak curves on gs to VPD could be the focus of further research.
引文
[1]Humidity Control in greenhouses. [Online] available: http://autogrow. com/index.php?option=com_content&view=article&id=31&Itemid= 165.2006,10,3.
    [2]Fanju L, Jones H G Rapid stomatal responses to humidity[J]. Planta,1982,154(2): 135-138.
    [3]Schulze E D, Lange O, Evenari M, Kappen L, Buschbom U. The role of air humidity and temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions[J]. Oecologia,1975,19(4):303-314.
    [4]Turner N C, Kramer P J. Adaptation of plants to water and high temperature stress. Department of Plant Biology[M]. California:John Wiley & Sons, Inc.1978.
    [5]汤章城.植物干旱生态生理的研究[J].生态学报,1983,3(3):196-204.
    [6]汤章城.水分胁迫和植物的气孔运动[J].植物生理生化进展,1986,4:43-50.
    [7]汤章城.植物对水分胁迫的反应和适应性.Ⅱ植物对干旱的反应和适应性[J].植物生理学通讯,1983,4:1-7.
    [8]Cowan I R, Farquhar G D. Stomatal function in relation to leaf metabolism and environment[J]. Symposia Society for Experimental Biology,1977,31:471-505.
    [9]Farquhar G Feedforward responses of stomata to humidity[J]. Functional Plant Biology,1978,5(6):787-800.
    [10]刘建伟,胡新生,王世绩.不同环境条件下气孔和光合作用模型:4个杨树无性系对光照,温度和相对湿度的反应(英文)[J].中国林学(英文版),1997,6(1):19-33.
    [11]Schulze E. Soil water deficits and atmospheric humidity as environmental signals[J]. Water Deficits:Plant Responses from Cell to Community,1993:129-145.
    [12]Franks P, Farquhar G A relationship between humidity response, growth form and photosynthetic operating point in C3 plants[J]. Plant, Cell and Environment,1999, 22(11):1337-1349.
    [13]吴月燕.高湿和弱光对葡萄叶片某些光合特性的影响[J].园艺学报,2003,30(4):443-435.
    [14]石雪晖,陈祖玉,刘昆玉,杨国顺,钟晓红.空气相对湿度对野生葡萄的生理影响研究[J].中国生态农业学报,2005,13(4):65-67.
    [15]Slavik B. Transpiration resistance in leaves of maize grown in humid and dry air[C]. Beltsville:Plant Response to Climatic Factors Proceedings of theuppsala Symposium. 1973:267-269.
    [16]Hoffinan G, Rawlins S, Garber M, Cullen E. Water relations and growth of cotton as influenced by salinity and relative humidity[J]. Agronomy journal,1971,63(6): 822-826.
    [17]Meinzer F, Hinckley T, Ceulemans R. Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy[J]. Plant, Cell and Environment,1997, 20(10):1301-1308.
    [18]Bunce J. Effects of humidity on short-term responses of stomatal conductance to an increase in carbon dioxide concentration[J]. Plant, Cell and Environment,1998,21(1): 115-120.
    [19]杨惠敏,张晓艳.低水平叶-气水气压差条件下气孔导度对其小尺度变化的响应[J].兰州大学学报:自然科学版,2006,42(5):32-36.
    [20]Cunningham S C. Stomatal sensitivity to vapour pressure deficit of temperate and tropical evergreen rainforest trees of Australia[J]. Trees,2004,18(4):399-407.
    [21]Nakahashi C D. The determinants and significance of stomatal responses to vapor pressure deficit in native Hawaiian wet and dry forest species. Los Angeles:The 94th ESA Annual Meeting.2009:91-168.
    [22]Howard A R, Donovan L A, Van Iersel M. Stomatal conductance responses to changing vapor pressure deficit:Do daytime patterns of regulation apply at night? Washington, DC:The 93rd ESA Annual Meeting.2008:84-131.
    [23]Black V, Unsworth M. Stomatal responses to sulphur dioxide and vapour pressure deficit[J]. Journal of Experimental Botany,1980,31(2):667-677.
    [24]Sheriff D, Kaye P. Responses of diffusive conductance to humidity in a drought avoiding and a drought resistant (in terms of stomatal response) legume[J]. Annals of botany,1977,41(3):653-655.
    [25]刘世平,邓雄,蔡楚雄,曹洪麟,叶万辉.4种木瓜新品种光合作用日变化以及气孔导度-VPD响应[J].中山大学学报:自然科学版,2003,42(A19):215-218.
    [26]Yong J, Wong S, Farquhar G. Stomatal responses to changes in vapour pressure difference between leaf and air[J]. Plant, Cell and Environment,1997,20(10): 1213-1216.
    [27]Sheriff D. The effect of humidity on water uptake by, and viscous flow resistance of, excised leaves of a number of species:Physiological and anatomical observations [J]. Journal of Experimental Botany,1977,28(6):1399-1407.
    [28]Grantz D. Plant response to atmospheric humidity[J]. Plant, Cell and Environment, 1990,13(7):667-679.
    [29]Brinckmann E, Hartun G W, Watringer M. Abscisic acid of individual leaf cells[J]. Plant Physiology,1990,80:51-54.
    [30]Daeter W, Hartung W. Stress-dependent redisbuation of abscisic acid in Hordeum vulgare L. leaves:the role of epidermal ABA metabolism, tonoplastic transport and the cuticle[J]. Plant, Cell and Environment,1995,18:1367-1376.
    [31]Bunce J. Does transpiration control stomatal responses to water vapour pressure deficit?[J]. Plant, Cell and Environment,1997,20(1):131-135.
    [32]Moriana A, Villalobos F, Fereres E. Stomatal and photosynthetic responses of olive (Olea europaea L.) leaves to water deficits[J]. Plant, Cell and Environment,2002, 25(3):395-405.
    [33]Nejad A R, Van Meeteren U. The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative air humidity[J]. Journal of experimental botany,2007,58(3):627-636.
    [34]Nejad A R, Van Meeteren U. Stomatal response characteristics of Tradescantia virginiana grown at high relative air humidity[J]. Physiologia Plantarum,2005, 125(3):324-332.
    [35]Trejo C L, Clephan A L, Davies W J. How do stomata read abscisic acid signals?[J]. Plant Physiology,1995,109(3):803-811.
    [36]Soar C J, Speirs J, Maffei S, Penrose A, McCarthy M G, Loveys B. Grape vine varieties Shiraz and Grenache differ in their stomatal response to VPD:apparent links with ABA physiology and gene expression in leaf tissue[J]. Australian Journal of Grape and Wine Research,2006,12(1):2-12.
    [37]Kerstiens G. Cuticular water permeance of European trees and shrubs grown in polluted and unpolluted atmospheres, and its relation to stomatal response to humidity in beech (Fagus sylvatica L.)[J]. New Phytologist,1995,129(3):495-503.
    [38]Meinzer F, Goldstein G, Jackson P, Holbrook N, Gutierrez M, Cavelier J. Environmental and physiological regulation of transpiration in tropical forest gap species:the influence of boundary layer and hydraulic properties[J]. Oecologia,1995, 101(4):514-522.
    [39]Ball J T. Calculations related to gas exchange[J]. Stomatal function,1987:445-476.
    [40]Schulze E D, Lange O, Buschbom U, Kappen L, Evenari M. Stomatal responses to changes in humidity in plants growing in the desert[J]. Planta,1972,108(3):259-270.
    [41]Sandford A, Jarvis P. Stomatal responses to humidity in selected conifers[J]. Tree Physiology,1986,2(1-2-3):89-103.
    [42]Day M E. Influence of temperature and leaf-to-air vapor pressure deficit on net photosynthesis and stomatal conductance in red spruce (Picea rubens)[J]. Tree Physiology,2000,20(1):57-63.
    [43]El-Sharkaway M A, Cock J H. Water use efficiency of cassava. I. Effects of air humidity and water stress on stomatal conductance and gas exchange[J]. Crop Science,1984,24(3):497-502.
    [44]Turner NC, Schulze E D, Gollan T. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content[J]. Oecologia,1984,63(3): 338-342.
    [45]邓雄,李小明.多枝柽柳气体交换特性研究[J].生态学报,2003,23(1):180-187.
    [46]郑炳松,郑勇平.仙客来叶片光合特性及其与环境因子的关系[J].浙江林学院学报,2001,18(4):366-370.
    [47]李向义,赵强,何兴元,林丽莎.策勒绿洲前沿两种植物的水分生理生态特征[J].干旱区研究,2004,21(2):171-174.
    [48]房用,慕宗昭,王月海,鲍玉海,孙蕾.16个杨树无性系蒸腾特性及其影响因子研究[J].山东大学学报:理学版,2007,41(6):168-172.
    [49]邓雄,李小明.塔克拉玛干4种荒漠植物气体交换与环境因子的关系初探[J].应用与环境生物学报,2002,8(5):445-452.
    [50]Cowan I. Regulation of water use in relation to carbon gain in higher plants[M]. Heidelberg:Physiological Plant Ecology II:Springer.1982:589-613.
    [51]Jarvis P, Morison J. The control of transpiration and photosynthesis by the stomata[J]. Stomatal physiology,1981,8:247.
    [52]Zeiger E, Gotow K, Mawson B, Taylor S. The guard cell chloroplast:properties and function[M]. Dordrecht:Progress in Photosynthesis Research:Springer. 1987:273-280.
    [53]Carlson B E. Outcomes of physical abuse and observation of marital violence among adolescents in placement[J]. Journal of Interpersonal Violence,1991,6(4):526-534.
    [54]Jarvis P. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transactions of the Royal Society of London B, Biological Sciences,1976,273(927):593-610.
    [55]Ball J T, Woodrow I E, Berry J A. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions[M]. Dordrecht:Progress in photosynthesis research:Springer. 1987:221-224.
    [56]Leuning R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants[J]. Plant, Cell and Environment,1995,18(4):339-355.
    [57]Medlyn B E, Duursma R A, Eamus D, Ellsworth D S, Prentice I C, Barton C V, et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance[J]. Global Change Biology,2011,17(6):2134-2144.
    [58]Heroult A, Lin Y S, Bourne A, Medlyn B E, Ellsworth D S. Optimal stomatal conductance in relation to photosynthesis in climatically contrasting Eucalyptus species under drought[J]. Plant, cell and environment,2013,36(2):262-274.
    [59]Tuzet A, Perrier A, Leuning R. A coupled model of stomatal conductance, photosynthesis and transpiration[J]. Plant, Cell and Environment,2003,26(7): 1097-1116.
    [60]Farquhar G D, Dubbe D R, Raschke K. Gain of the feedback loop involving carbon dioxide and stomata theory and measurement[J]. Plant physiology,1978,62(3): 406-412.
    [61]Field C, Berry J, Mooney H. A portable system for measuring carbon dioxide and water vapour exchange of leaves[J]. Plant, Cell and Environment,1982,5(2): 179-186.
    [62]Hall A, Schulze E D. Stomatal response to environment and a possible interrelation between stomatal effects on transpiration and CO2 assimilation[J]. Plant, Cell and Environment,1980,3(6):467-474.
    [63]Williams W E. Optimal water-use efficiency in a California shrub[J]. Plant, Cell and Environment,1983,6(2):145-151.
    [64]Tardieu F, Davies W. Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants[J]. Plant, Cell and Environment,1993,16(4):341-349.
    [65]Dewar R. The Ball-Berry-Leuning and Tardieu-Davies stomatal models:synthesis and extension within a spatially aggregated picture of guard cell function[J]. Plant, Cell and Environment,2002,25(11):1383-1398.
    [66]Buckley T, Mott K, Farquhar G A hydromechanical and biochemical model of stomatal conductance[J]. Plant, Cell and Environment,2003,26(10):1767-1785.
    [67]于强,王天铎.光合作用-蒸腾作用-气孔导度的耦合模型及C3植物叶片对环境因子的生理响应[J].植物学报:英文版,1998,40(8):740-754.
    [68]Yu Q, Zhang Y, Liu Y, Shi P. Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes [J]. Annals of Botany,2004,93(4): 435-441.
    [69]叶子飘,于强.植物气孔导度的机理模型[J].植物生态学报,2009,33(4):772-782.
    [70]Ye Z P. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J]. Photosynthetica,2007,45(4):637-640.
    [71]叶子飘.光响应模型在超级杂交稻组合-Ⅱ优明86中的应用[J].生态学杂志,2007,26(8):1323-1326.
    [72]叶子飘,赵则海.遮光对三叶鬼针草光合作用和叶绿素含量的影响[J].生态学杂志,2009,28(1):19-22.
    [73]王玉辉,周广胜.羊草叶片气孔导度对环境因子的响应模拟[J].植物生态学报,2000,24(6):739-743.
    [74]刘颖慧,高琼,贾海坤.半干旱地区3种植物叶片水平的抗旱耐旱特性分析-两个气孔导度模型的应用和比较[J].植物生态学报,2006,30(1):64-70.
    [75]Park S Y, Furukawa A. Photosynthetic and stomatal responses of two tropical and two temperate trees to atmospheric humidity[J]. Photosynthetica,1999,36(1-2):181-186.
    [76]Soni D K, Ranjan S, Singh R, Khare P B, Pathre U V, Shirke P A. Photosynthetic characteristics and the response of stomata to environmental determinants and ABA in Selaginella bryopteris, a resurrection spike moss species[J]. Plant Science,2012, 191:43-52.
    [77]Woodruff D, Meinzer F, McCulloh K. Height-related trends in stomatal sensitivity to leaf-to-air vapour pressure deficit in a tall conifer[J]. Journal of experimental botany, 2010,61(1):203-210.
    [78]Wang S, Yang Y, Trishchenko AP, Barr AG, Black T, McCaughey H. Modeling the response of canopy stomatal conductance to humidity[J]. Journal of hydrometeorology,2009,10(2):521-532.
    [79]何炎红.乌兰布和沙漠植被与水资源相互影响的研究[D].呼和浩特:内蒙古农业大学.2006.
    [80]Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual review of plant physiology,1982,33(1):317-345.
    [81]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    [82]刘志民,杨甲定.青藏高原几个主要环境因子对植物的生理效应[J].中国沙漠,2000,20(3):309-313.
    [83]Bunce J A. The temperature dependence of the stimulation of photosynthesis by elevated carbon dioxide in wheat and barley[J]. Journal of Experimental Botany, 1998,49(326):1555-1561.
    [84]Fry D, Phillips I. Photosynthesis of conifers in relation to annual growth cycles and dry matter production[J]. Physiologia plantarum,1977,40(4):300-306.
    [85]黄儒珠,李机密,郑怀舟,王健,周延锋.福建长汀重建植被马尾松与木荷光合特性比较[J].Acta Ecologica Sinica,2009,29(11):6120-6130.
    [86]洪丽,卓丽环.不同季节茶条槭光合特性的差异[J].东北林业大学学报,2008,36(8):16-18.
    [87]Iio A, Fukasawa H, Nose Y, Kakubari Y. Stomatal closure induced by high vapor pressure deficit limited midday photosynthesis at the canopy top of Fagus crenata Blume on Naeba mountain in Japan[J]. Trees,2004,18(5):510-517.
    [88]林伟宏,白克智.大气CO2浓度和温度升高对水稻叶片及群体光合作用的影响[J]. 植物学报:英文版,1999,41(6):624-628.
    [89]林金科,赖明志,詹梓金.茶树叶片净光合速率对生态因子的响应[J].生态学报,2000,20(3):404-408.
    [90]杨金艳,杨万勤,王开运,孙建平.木本植物对CO2浓度和温度升高的相互作用的响应[J].2003,27(3):304-310.
    [91]李芸瑛,窦新永,彭长连.三种濒危木兰植物幼树光合特性对高温的响应[J].生态学报,2008,28(8):3789-3797.
    [92]刘建,叶露,周坚,于敬修,项东云.夜间低温对2种桉树幼苗光合特性的影响[J].西北植物学报,2007,27(10):2024-2028.
    [93]张小全,徐德应.温度对杉木中龄林针叶光合生理生态的影响[J].林业科学,2002,38(3):27-33.
    [94]Battaglia M, Beadle C, Loughhead S. Photosynthetic temperature responses of Eucalyptus globulus and Eucalyptus nitens[J]. Tree Physiology,1996,16(1-2):81-89.
    [95]芦站根,赵昌琼,韩英,谈锋.不同光照条件下生长的曼地亚红豆杉光合特性的比较研究[J].西南师范大学学报(自然科学版),2003,28(1):117-121.
    [96]王孟本,李洪建,柴宝峰,冯彩平.树种蒸腾作用、光合作用和蒸腾效率的比较研究[J].植物生态学报,1999,23(5):401-410.
    [97]郭俊荣,杨培华.银杏光合与蒸腾特性的研究[J].西北植物学报,1997,17(4):505-510.
    [98]柯世省,金则新.水分胁迫和温度对夏蜡梅叶片气体交换和叶绿素荧光特性的影响[J].应用生态学报,2008,(1):43-49.
    [99]Vazquez M, Barcelo J, Poschenrieder C, Madico J, Hatton P, Baker A, et al. Localization of Zinc and Cadmium in Thlaspi caerulescens (Brassicaceae), a Metallophyte that can Hyperaccumulate both Metals[J]. Journal of Plant Physiology, 1992,140(3):350-355.
    [100]Dai Z, Edwards G E, Ku M S. Control of photosynthesis and stomatal conductance in Ricinus communis L.(castor bean) by leaf to air vapor pressure deficit[J]. Plant Physiology,1992,99(4):1426-1434.
    [101]王静,程积民,万惠娥,方锋,布都会.黄土高原芨芨草光合与蒸腾作用的初步研究[J].草业学报,2004,12(6):47-52.
    [102]陶汉之,严子范.茶树叶片蒸腾速率,气孔导度和水分利用率的研究[J].安徽农业大学学报,1992,(1):33-38.
    [103]Cock J H, Porto M, El-Sharkawy M A. Water use efficiency of cassava. III. Influence of air humidity and water stress on gas exchange of field grown cassava[J]. Crop Science,1985,25(2):265-272.
    [104]梁建生,张建华.根系逆境信号ABA的产生和运输及其生理作用[J].植物生理学通讯,1998,34(5):329-338.
    [105]Guan L, Scandalios J G. Effects of the plant growth regulator abscisic acid and high osmoticum on the developmental expression of the maize catalase genes[J]. Physiologia Plantarum,1998,104(3):413-422.
    [106]Davies W J, Zhang J. Root signals and the regulation of growth and development of plants in drying soil[J]. Annual review of plant biology,1991,42(1):55-76.
    [107]Harris M J, Outlaw W H. Rapid adjustment of guard-cell abscisic acid levels to current leaf-water status[J]. Plant physiology,1991,95(1):171-173.
    [108]刘红娟,刘洋,刘琳.脱落酸对植物抗逆性影响的研究进展[J].生物技术通报, 2008,6:7-9.
    [109]廖书娟,李华钧,吉当玲.干旱胁迫对茶树内源ABA的影响[J].福建茶叶,2005,(4):26-27.
    [110]王学臣,任海云,娄成后.干旱胁迫下植物根与地上部间的信息传递[J].植物生理学通讯,1992,28(6):397-402.
    [111]Zhang J, Davies W. Does ABA in the xylem control the rate of leaf growth in soil-dried maize and sunflower plants?[J]. Journal of Experimental Botany,1990,41(9): 1125-1132.
    [112]王臣立.干旱胁迫下沙地樟子松脱落酸变化及生理响应[J].东北林业大学学报,2001,29(1):40-43.
    [113]Davies WJ, Wilkinson S, Loveys B. Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture[J]. New phytologist,2002,153(3):449-460.
    [114]Blackman P, Davies W. Root to shoot communication in maize plants of the effects of soil drying[J]. Journal of Experimental Botany,1985,36(1):39-48.
    [115]Liang J, Zhang J, Wong M. How do roots control xylem sap ABA concentration in response to soil drying?[J]. Plant and cell physiology,1997,38(1):10-16.
    [116]何威,武应霞,冯建灿,李继东,王念,毕会涛,郭建设,司长征.外源ABA对女贞光合及蒸腾速率的影响[J].河南农业大学学报,2005,39(2):167-170.
    [117]Raschke K, editor Involvement of abscisic acid in the regulation of gas exchange: evidence and inconsistencies[C]. Aberystwyth:Academic Press.1982.
    [118]Tardieu F, Davies W J. Stomatal response to abscisic acid is a function of current plant water status[J]. Plant physiology,1992,98(2):540-545.
    [119]Beardsell M F, Cohen D. Relationships between leaf water status, abscisic acid levels, and stomatal resistance in maize and sorghum[J]. Plant Physiology,1975,56(2): 207-212.
    [120]Wright S, Hiron R. (+)-Abscisic acid, the growth inhibitor induced in detached wheat leaves by a period of wilting[J]. Nature,1969,224:719-720.
    [121]Wright S. Phytohormones and stress phenomena[J]. Phytohormones and related compounds:a comprehensive treatise,1978,2:495-536.
    [122]Van Rensburg L, Kruger H, Breytenbach J, Coetzee J, Van der Merwe C, Van Aswegen G, et al. Immunogold localization and quantification of cellular and subcellular abscisic acid, prior to and during drought stress[J]. Biotechnic and histochemistry, 1996,71(1):38-43.
    [123]Pastor A, Lopez-Carbonell M, Alegre L. Abscisic acid immunolocalization and ultrastructural changes in water-stressed lavender (Lavandula stoechas L.) plants[J]. Physiologia Plantarum,1999,105(2):272-279.
    [124]Slovik S, Baier M, Hartung W. Compartmental distribution and redistribution of abscisic acid in intact leaves[J]. Planta,1992,187(1):14-25.
    [125]Gowing D, Jones H, Davies W. Xylem-transported abscisic acid:the relative importance of its mass and its concentration in the control of stomatal aperture[J]. Plant, Cell and Environment,1993,16(4):453-459.
    [126]Heckenberger U, Schurr U, Schilze E. Stomatal response to abscisic acid fed into the xylem of intact Helianthus annuus (L.) plants[J]. Journal of experimental botany, 1996,47(9):1405-1412.
    [127]Liu L, McDonald A, Stadenberg I, Davies W J. Stomatal and leaf growth responses to partial drying of root tips in willow[J]. Tree physiology,2001,21(11):765-770.
    [128]Zhang J, Jia W, Zhang D P. Effect of leaf water status and xylem pH on metabolism of xylem-transported abscisic acid[J]. Plant Growth Regulation,1997,21(1):51-58.
    [129]Thomas D, Eamus D. The influence of predawn leaf water potential on stomatal responses to atmospheric water content at constant Ci and on stem hydraulic conductance and foliar ABA concentrations[J]. Journal of Experimental Botany,1999, 50(331):243-251.
    [130]Jarvis P G, McNaughton K. Stomatal control of transpiration:scaling up from leaf to region[J]. Advances in Ecological Research,1986,15(1):49.
    [131]杨建昌,乔纳圣.水分胁迫对水稻叶片气孔频率,气孔导度及脱落酸含量的影响[J].作物学报,1995,21(5):533-539.
    [132]于海秋,武志海,沈秀瑛,徐克章.水分胁迫下玉米叶片气孔密度,大小及显微结构的变化[J].吉林农业大学学报,2003,25(3):239-242.
    [133]张晓艳,杨惠敏,侯宗东,王根轩.土壤水分和种植密度对春小麦叶片气孔的影响[J].植物生态学报,2003,27(1):133-136.
    [134]梁建生.脱落酸与蒸汽压亏缺对向日葵气孔导度的影响[J].扬州大学学报:自然科学版,1999,2(3):41-45.
    [135]Okada K, Ueda J, Komaki M K, Bell C J, Shimura Y. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation[J]. The Plant Cell Online,1991,3(7):677-684.
    [136]Fischer C, Neuhaus G Influence of auxin on the establishment of bilateral symmetry in monocots[J]. The Plant Journal,1996,9(5):659-669.
    [137]Carland FM, McHale NA. LOP1:a gene involved in auxin transport and vascular patterning in Arabidopsis[J]. Development,1996,122(6):1811-1819.
    [138]李保珠,赵翔,安国勇.赤霉素的研究进展[J].中国农学通报,2011,27(1):1-5.
    [139]张国华,张艳洁,丛日晨,赵琦,董克奇,古润泽.赤霉素作用机制研究进展[J].西北植物学报,2009,29(2):412-419.
    [140]马庆虎,谭志一,焦述平.简评植物激素的几种测定方法[J].植物生理学通讯,1987,1:7-11.
    [141]李素梅,张自立,姚彦如.植物激素检测技术的研究进展(综述)[J].安徽农业大学学报,2003,30(2):227-230.
    [142]陈雪梅,王沙生.HPLC法定量分析植物组织中ABA, IAA和NAA[J].植物生理学通讯,1992,28(5):368-371.
    [143]罗正荣,朱丽华,吴谋成,章文才.植物组织中赤霉酸含量的高效液相色谱测定[J].植物生理学通讯,1990,2:50-52.
    [144]Crozier A, Loferski K, Zaerr J B, Morris R O. Analysis of picogram quantities of indole-3-acetic acid by high performance liquid chromatography-fluorescence procedures[J]. Planta,1980,150(5):366-370.
    [145]Gamoh K, Okamoto N, Takatsuto S, Tejima I. Determination of traces of natural brassinosteroids as dansylaminophenylboronates by liquid chromatography with fluorimetric detection[J].Analytica Chimica Acta,1990,228:101-105.
    [146]Dobrev P, Havlicek L, Vagner M, Malbeck J, Kaminek M. Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography[J]. Journal of Chromatography A,2005,1075(1):159-166.
    [147]Kowalczyk M, Sandberg G Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis[J]. Plant Physiology,2001,127(4):1845-1853.
    [148]Matsuda F, Miyazawa H, Wakasa K, Miyagawa H. Quantification of indole-3-acetic acid and amino acid conjugates in rice by liquid chromatography-electrospray ionization-tandem mass spectrometry[J]. Biosci Biotechnol Biochem,2005,69(4): 778-783.
    [149]Pan X, Welti R, Wang X. Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry[J]. Phytochemistry,2008,69(8):1773-1781.
    [150]Schmelz E A, Engelberth J, Alborn H T, O'Donnell P, Sammons M, Toshima H, et al. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants[J]. Proceedings of the National Academy of Sciences,2003, 100(18):10552-10557.
    [151]Li J, Wu Z Y, Xiao L T, Zeng G M, Huang G H, Shen G L, et al. A Novel piezoelectric biosensor for the detection of phytohormone b-indole acetic acid[J]. Analytical Sciences,2002,18(4):403-408.
    [152]李劲.植物内源激素等物质的电化学生物传感技术研究[D].长沙:湖南大学.2003.
    [153]李雨薇,肖浪.植物激素检测技术的现状和发展[J].生命科学仪器,2008,5(12):10-14.
    [154]Rada F, Garcia-Nunez C, Boero C, Gallardo M, Hilal M, Gonzalez J, et al. Low-temperature resistance in Polylepis tarapacana, a tree growing at the highest altitudes in the world[J]. Plant, Cell and Environment,2001,24(3):377-381.
    [155]周瑞莲,程国栋.高寒山区牧草根丙二醛、渗透调节物、多胺季节动态与抗冻力关系的研究[J].植物生态学报,2000,24(5):554-559.
    [156]李淑娟,詹亚光,杨传平,吴志萍,任苓,徐晓妍,葛苏洁.混合盐胁迫对引种绒毛白蜡及相关生理指标的影响[J].东北林业大学学报,2010,38(1):15-17.
    [157]Charest C, Ton Phan C. Cold acclimation of wheat (Triticum aestivum):Properties of enzymes involved in proline metabolism[J]. Physiologia Plantarum,1990,80(2): 159-168.
    [158]殷红,郭巍,毛晓艳,张涛.增强的UV-B辐射对水稻光合作用的影响[J].作物杂志,2009,4:41-45.
    [159]徐彩霞,赵忠,陈明涛.水分胁迫对5个树种苗木根系部分生理指标的影响[J].西北农林科技大学学报:自然科学版,2009,(8):109-114.
    [160]史玉炜,王燕凌,李文兵,高述民,李霞.水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J].新疆农业大学学报,2007,30(2):5-8.
    [161]Anchordoguy T J, Rudolph A S, Carpenter J F, Crowe J H. Modes of interaction of cryoprotectants with membrane phospholipids during freezing[J]. Cryobiology,1987, 24(4):324-331.
    [162]Green D. Soluble sugar changes occurring during cold hardening of spring wheat, fall rye and alfalfa[J]. Canadian Journal of Plant Science,1983,63(2):415-420.
    [163]Osonubi O, Davies W. Solute accumulation in leaves and roots of woody plants subjected to water stress[J]. Oecologia,1978,32(3):323-332.
    [164]Eamus D, Cole S. Diurnal and seasonal comparisons of assimilation, phyllode conductance and water potential of three Acacia and one Eucalyptus species in the wet-dry tropics of Australia[J]. Australian Journal of Botany,1997,45(2):275-290.
    [165]Eamus D, Taylor D T, MACINNIS-NG C M, Shanahan S, De Silva L. Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature:feedback mechanisms are able to account for all observations[J]. Plant, Cell and Environment,2008,31(3):269-277.
    [166]Chang J C, Lin T S. Gas exchange in litchi under controlled and field conditions[J]. Scientia horticulturae,2007,114(4):268-274.
    [167]李吉跃.太行山区主要造林树种耐旱特性的研究[J].北京林业大学学报,1991,13(2):230-279.
    [168]沈国舫,李吉跃,武康生.京西山区主要造林树种抗旱特性的研究[C].造林论文集北京:中国林业出版社,1990.
    [169]Jordan W R, Ritchie J T. Influence of soil water stress on evaporation, root absorption, and internal water status of cotton[J]. Plant physiology,1971,48(6):783-788.
    [170]Blake J, FERRELL W K. The Association between Soil and Xylem Water Potential, Leaf Resistance, and Abscisic Acid Content in Droughted Seedlings of Douglas-fir (Pseudotsuga menziesii)[J]. Physiologia Plantarum,1977,39(2):106-109.
    [171]Walton D, Galson E, Harrison M. The relationship between stomatal resistance and abscisic-acid levels in leaves of water-stressed bean plants[J]. Planta,1977,133(2): 145-148.
    [172]刘桂丰,杨传平.盐逆境条件下三个树种的内源激素变化[J].东北林业大学学报,1998,26(1):1-3.
    [173]王三根.细胞分裂素在植物抗逆和延衰中的作用[J].植物学通报,2000,17(2):121-126.
    [174]欧阳琳,洪亚辉,黄丽华,王若仲,肖浪涛.不同逆境胁迫信号对超级稻幼苗生理生化影响及植物激素变化的初步研究[J].农业现代化研究,2007,28(1): 104-106.
    [175]Reddy K, Tucker J. Productivity and nutrient uptake of water hyacinth, Eichhornia crassipes I. Effect of nitrogen source[J]. Economic Botany,1983,37(2):237-247.
    [176]Shirke P, Pathre U. Diurnal and seasonal changes in photosynthesis and photosystem 2 photochemical efficiency in Prosopis juliflora leaves subjected to natural environmental stress[J]. Photosynthetica,2003,41(1):83-89.
    [177]高俊凤.植物生理学实验指导.北京:高等教育出版社.2006.
    [178]Wang D, Poss J, Donovan T, Shannon M, Lesch S. Biophysical properties and biomass production of elephant grass under saline conditions[J]. Journal of Arid Environments, 2002,52(4):447-456.
    [179]Markwell J, Osterman J C, Mitchell J L. Calibration of the Minolta SPAD-502 leaf chlorophyll meter[J]. Photosynthesis Research,1995,46(3):467-472.
    [180]Moran R, Porath D. Chlorophyll determination in intact tissues using N, N-dimethylformamide [J]. Plant physiology,1980,65(3):478-479.
    [181]Moran R. Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide[J]. Plant physiology,1982,69(6):1376-1381.
    [182]Prenger J J, Ling P P. Greenhouse Condensation Control Understanding and Using Vapor Pressure Deficit (VPD)[J]. Columbus:The Ohio State University, Extension Fact Sheet.2001, AEX-084:1-4.
    [183]Hetherington A M, Woodward F I. The role of stomata in sensing and driving environmental change[J]. Nature,2003,424(6951):901-908.
    [184]Aphalo P, Jarvis P. Do stomata respond to relative humidity?[J]. Plant, Cell and Environment,1991,14(1):127-132.
    [185]王玉辉,周广胜.羊草叶片气孔导度对环境因子的响应模拟[J].植物生态学报,2000,6:739-743.
    [186]Liu Y H, Gao Q, Jia H K. Leaf-scale drought resistance and tolerance of three plant species in a semi-arid environment:application and comparison of two stomatal conductance models[J]. Chinese Journal of Plant Ecology,2006,30(1):64-70.
    [187]Leung J, Giraudat J. Abscisic acid signal transduction[J]. Annual Review of Plant Biology,1998,49(1):199-222.
    [188]Finkelstein R R, Gampala S S, Rock C D. Abscisic acid signaling in seeds and seedlings[J]. The Plant Cell,2002,14(suppl 1):S15-S45.
    [189]Outlaw J, William H. Integration of cellular and physiological functions of guard cells[J]. Critical Reviews in Plant Sciences,2003,22(6):503-529.
    [190]Snaith P, Mansfield T. Stomatal sensitivity to abscisic acid:can it be defined?[J]. Plant, Cell and Environment,1982,5(4):309-311.
    [191]Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S. Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis[J]. Journal of Experimental Botany,2006,57(10): 2259-2266.
    [192]Prioul J, Chartier P. Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation:a critical analysis of the methods used[J]. Annals of Botany,1977,41(4):789-800.
    [193]Arve L E, Terfa M T, Gisler(?)d H R, Olsen J E, Torre S. High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves[J]. Plant, cell and environment,2013,36(2):382-392.
    [194]Farquhar G D, Von Caemmerer S, Berry JA. Models of photosynthesis[J]. Plant Physiology,2001,125(1):42-45.
    [195]Torre S, Fjeld T, Gisler(?)d H R, Moe R. Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate or high air humidity[J]. Journal of the American Society for Horticultural Science,2003,128(4):598-602.
    [196]Ludlow M. Adaptive significance of stomatal responses to water stress[M]. In:Turner N, Kramer P. Adaptation of plants to water and high temperature stress. New York: Wiley.1980:123-138.
    [197]Sakurai N, Akiyama M, Kuraishi S. Roles of abscisic acid and indoleacetic acid in the stunted growth of water-stressed, etiolated squash hypocotyls[J]. Plant and Cell Physiology,1985,26(1):15-24.
    [198]Acharya B R, Assmann S M. Hormone interactions in stomatal function[J]. Plant Molecular Biology,2009,69(4):451-462.
    [199]毕桂红,吴耕西.苹果幼树内源生长素,脱落酸的周年变化[J].山东农业大学学报:自然科学版,1995,26(1):98-102.
    [200]Saibo N J, Vriezen W H, Beemster G T, Van Der Straeten D. Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins[J]. The Plant Journal,2003,33(6):989-1000.
    [201]Oren R, Sperry J, Katul G, Pataki D, Ewers B, Phillips N, et al. Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit[J]. Plant, Cell and Environment,1999,22(12):1515-1526.
    [202]Oren R, Sperry J, Ewers B, Pataki D, Phillips N, Megonigal J P. Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest:hydraulic and non-hydraulic effects[J]. Oecologia,2001,126(1): 21-29.
    [203]Berry J A, Beerling D J, Franks P J. Stomata:key players in the earth system, past and present[J]. Current Opinion in Plant Biology,2010,13(3):232-239.
    [204]Schimel D S. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biology, 1995,1(1):77-91.
    [205]Monteith J. A reinterpretation of stomatal responses to humidity[J]. Plant, Cell and Environment,1995,18(4):357-364.
    [206]Borner A, Plaschke J, Korzun V, Worland A. The relationships between the dwarfing genes of wheat and rye[J]. Euphytica,1996,89(1):69-75.
    [207]Hoffmann B S, Kende H. On the role of abscisic acid and gibberellin in the regulation of growth in rice[J]. Plant Physiology,1992,99(3):1156-1161.
    [208]Prior L, Eamus D, Duff G. Seasonal and diurnal patterns of carbon assimilation, stomatal conductance and leaf water potential in Eucalyptus tetrodonta saplings in a wet-dry savanna in northern Australia[J]. Australian Journal of Botany,1997,45(2): 241-258.
    [209]Corlett J E, Wilkinson S, Thompson A J. Diurnal control of the drought-inducible putative histone H1 gene in tomato (Lycopersicon esculentum Mill. L.)[J]. Journal of Experimental Botany,1998,49(323):945-952.
    [210]Hensel L L, Grbic V, Baumgarten D A, Bleecker A B. Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis[J]. The Plant Cell,1993,5(5):553-564.
    [211]Lee R H, Wang C H, Huang L T, Chen S C G. Leaf senescence in rice plants:cloning and characterization of senescence up-regulated genes[J]. Journal of Experimental Botany,2001,52(358):1117-1121.
    [212]马绪亮,李合松.杂交水稻早衰机理研究进展[J].湖南农业科学,2007,(3):59-61.
    [213]魏道智,戴新宾.植物叶片衰老机理的几种假说[J].广西植物,1998,18(1):89-96.
    [214]Potter J R, Breen P J. Maintenance of high photosynthetic rates during the accumulation of high leaf starch levels in sunflower and soybean[J]. Plant Physiology, 1980,66(3):528-531.
    [215]苏培玺,张立新,杜明武,毕玉蓉,赵爱芬,刘新民.胡杨不同叶形光合特性,水分利用效率及其对加富CO2的响应[J].植物生态学报,2003,27(1):34-40.
    [216]夏江宝.北方主要木质藤本植物光合效率及其对水分与光照的响应[D].泰安:山东农业大学.2007.
    [217]赵曦阳,马开峰,张明,边金亮,焦文燕,张志毅.3年生毛白杨无性系光合特性的比较研究[J].林业科学研究,2011,24(3):370-378.
    [218]富丰珍,徐程扬,李广德,贾黎明.冠层部位对三倍体毛白杨光合生理特性的影响[J].中南林业科技大学学报,2010,30(3):95-99.
    [219]贾士芳,李从锋,董树亭,张吉旺.弱光胁迫影响夏玉米光合效率的生理机制初探[J].植物生态学报,2010,34(12):1439-1447.
    [220]闰海龙,张希明,许浩,刘英.塔里木沙漠公路防护林3种植物光合特性对干旱胁迫的响应[J].生态学报,2010,30(10):2519-2528.
    [221]邓雄,李小明,张希明,叶万辉.种荒漠植物气体交换特征的研究[J].植物生态学报,2002,26(5):605-612.
    [222]霍仕平,晏庆九.玉米抗旱鉴定的形态和生理生化指标研究进展[J].干旱地区农业研究,1995,13(3):67-73.
    [223]童方平,方伟,马履一,宋庆安,龙应忠,吴际友,易霭琴,程勇.湿地松优良半同胞家系蛋白质及糖类对水分胁迫的生理响应[J].中国农学通报,2007,22(12):459-464.
    [224]张磊,吴冬云.灌浆期不同温光对水稻叶、籽粒可溶性蛋白质及可溶性糖动态变化的影响[J].华南师范大学学报:自然科学版,2002,(2):98-101.
    [225]汪湲.水稻叶片衰老过程生理变化及蛋白质降解与蛋白酶活性变化研究[D].扬州:扬州大学.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700